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Receding Horizon Controllers are one of the mostly used advanced control solutions in the industry. By utilizing their possibilities
we are able to predict the possible future behavior of our system; moreover, we are able to intervene in its operation as well. In this
paper we have investigated the possibilities of the design of a Receding Horizon Controller by using Nonlinear Programming. We
have applied the developed solution in order to control Type 1 Diabetes Mellitus. The nonlinear optimization task was solved by
the Generalized Reduced Gradient method. In order to investigate the performance of our solution two scenarios were examined.
In the first scenario, we applied “soft” disturbance—namely, smaller amount of external carbohydrate—in order to be sure that
the proposed method operates well and the solution that appeared through optimization is acceptable. In the second scenario,
we have used “unfavorable” disturbance signal—a highly oscillating external excitation with cyclic peaks. We have found that
the performance of the realized controller was satisfactory and it was able to keep the blood glucose level in the desired healthy
range—by considering the restrictions for the usable control action.

1. Introduction

The advanced control solutions have inevitable role in today’s
medical practice regarding the control of physiological pro-
cesses [1]. Many control solutions are under development
that can be used for various kinds of control problems.
Advanced control methods have been successfully applied
for physiological regulation problems, for example, control of
anesthesia [2, 3], angiogenic inhibition of cancer [4, 5],
immune response in presence of human immunodeficiency
virus [6], and regulation of blood glucose (BG) level [7–10]
as well.

Diabetes Mellitus (DM) is the collective name of several
chronic diseases connected to the metabolic system of the
human body. In most of the cases, the DM condition
appears due to the issues related to the insulin hormone [11].
The insulin is the key hormone which makes the glucose

molecules possible to enter from the blood into the glucose
consuming cells through the insulin-dependent gates on the
cell-wall [12].

There are many types of DM. The most dangerous is
the Type 1 DM (T1DM) where the metabolic system is not
able to function normally due to the lack of insulin. Type 2
DM (T2DM) is the most widespread kind of DM and it
occurs mostly because of the lifestyle. In this case usually
the blood glucose and insulin levels continuously increase
over a long period of time. Due to the extreme glucose
and insulin load the cells become resistant to the insulin
over time. In order to compensate this condition the body
produces more and more insulin that leads to the “burnout”
of the pancreatic 𝛽-cells that produce the hormone. At this
point the T2DM turns into T1DM. Other frequently occur-
ring type is the Gestational DM (GDM) from which women
may suffer during pregnancy. Usually, this condition is
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temporary; however, sometimes it turns into T2DM and
becomes permanent [13–15].

In case of DM the application of these kinds of advanced
control techniques has high importance. Due to the nature
of the phenomenon to be controlled the researchers on the
field have to facemany challenges such as high nonlinearities,
model and parameter uncertainties, and even time-delay
effects, as well. However, regardless the type of DM a few
common control goals can be defined: keeping the glycemia
(the BG level) in a the healthy range; totally avoiding the
hypoglycemic periods; and avoiding the high BG variability
as much as possible [16–18].

In this research we have investigated the T1DM. As we
mentioned, T1DM is the most dangerous condition because
the patients need external insulin intake in order to keep
their metabolic status on appropriate level. In this case the
patient’s pancreatic 𝛽-cells are terminated by the immune
system of the patient during an autoimmune reaction.
As a consequence, these patients are not able to produce
insulin—which leads to short term starving, coma, or even
death [11]. Furthermore, the appropriate treatment—how the
insulin is administered—is also important to avoid long term
side effects, for example, the chronic failure of peripheric
vasculature [13].

By using advanced control techniques not just acceptable
control action but higher treatment quality can be obtained.
The selected control methods have to handle the already
mentioned unfavorable effects—such as the nonlinearities
and so on—as well. In case of T1DM many solutions are
available; however, all of them have their own limitations,
simplifications, and restrictions—thus, none of them are
general [10]. In these days from control point of view themost
beneficial approach is the Artificial Pancreas (AP) concept.
This idea aims to imitate the regular operation of the pancreas
from the insulin production point of view, namely, adminis-
tering insulin demands on the needs determined by the BG
level [19]. Thus, we have to face contradictory requirements:
the generalization and personalization as well.

One of the mostly used algorithms is the modified
proportional-integral-derivative (PID) solutions due to their
simplicity and flexibility.Moreover, several clinical trials have
been done by using this methodology and investigate its
effectivity [20–22]. Linear Parameter Varying (LPV) model-
based solutions have high importance, since the uncertainties
can be handled with high efficiency by them [7, 9, 23]. The
Tensor Product (TP) model-based techniques also represent
interesting directions, since they can be combined by Linear
Matrix Inequality (LMI) based control andLPVmethodology
as well [24, 25].

Themost frequently usedmethod is theModel Predictive
Control (MPC) regarding the control of DM [19, 26–28].
MPC is a widely used approach in various research fields as
well [29–32]. In general the goals of theMPC applications are
tracking and stabilization [33]. In case of an MPC the actual
value of the control signal𝑢(𝑘) is obtained by solving an open-
loop control problem over a finite horizon. Of course, some
feedback is present because the starting point of the next
horizon is the last realized point of the previous one. The
type of the optimal control problem depends on the type of

the control task.The classical MPC is realized in a framework
of cost-function-based optimal control where the dynamics
of the system to be controlled can be considered as a
set of constraints. Furthermore, the cost function regularly
contains terms which depend on the tracking error and
the control signal itself. Optionally, a cost contribution that
depends on the tracking error at the end of the horizon can
be added as well.

In case of the Receding Horizon Control (RHC) via
Nonlinear Programming (NP) based approximation the state
variables and the control inputs of the system are consid-
ered over a discrete time grid. At each point of the grid
the Lagrangian multipliers determine the reduced gradient
which is driven into zero numerically to find the optimal
solution. This solution consists of the estimated values of the
state variables and control signals over the finite horizon.
In that case if the dynamic model of the system is not
precise, the optimal design can be used only for consecutive
finite horizons since the actual state of the controlled system
propagates according to its exact dynamics. In order to
minimize the effects coming from the inaccuracies the actual
measured state variable from the end of the previous horizon
is applied as starting point for the next one in the next
horizon-length design [34]. The RHC framework can be
hardly combined with the Lyapunov function based control.
However, certain approaches can be found in the literature
where the Lyapunov stability [35] and RHC were successfully
combined for specific cases [36–39].

Alternative solutions also exist which can be used instead
of Lyapunov’s stability theorem. The Robust Fixed Point
Transformation (RFPT) based control [40, 41] uses Banach’s
fixed point theorem [42] to transform the control problem
into a fixed point problem which can be solved iteratively.
This method allows designing a robust iterative adaptive
controller which can avoid the main limitations of RHC if
these are combined.

In this study we present the first part of our research,
namely, the design of an appropriate RHC controller on NP
basis which can be completed by RFPT in our further work.

The paper is structured as follows. First, the applied
diabetes model is introduced. After that, the RHC design
based on the NP approach is presented. Then, the results are
introduced with their discussion. Finally, we conclude our
work and provide an outline regarding our further research.

2. Type 1 Diabetes Mellitus Model

During our research we have applied a modified Minimal
Model [43] which originates from the model of Bergman
[46]. This model has several beneficial properties, such as
simplicity, good transformability, and flexibility and it is
based on simpler biological considerations. The main goal
of the model is to describe the glucose-insulin dynamics,
namely, to define the connection between the blood glucose
and insulin levels. However, in order to characterize the daily
life of a T1DM patient this model has to be extended with
additional submodels.These submodels are the absorption of
the external glucose and insulin intakes. During the daily
routine these substances are not directly injected to the blood
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stream—however, this can occur in case of persistent hos-
pitalization. Instead, the carbohydrate is consumed via food
intake and the insulin is entered through the extracellular
tissue matrix under the skin [13].Thus, their appearance does
not contain sharp peaks: it happens through longer dynamics.

The glucose and insulin absorption are described by
(1)–(4), respectively. These submodels originate from the
Cambridge model [44], but we applied them in appropriate
dimensions to insert them into the core model. The core
model is described by (5)–(7).

𝐷̇1 (𝑡) = −
1
𝜏𝐷
𝐷1 (𝑡) +

1000𝐴𝑔
𝑀𝑤𝐺𝑉𝐺

𝐶 ⋅ 𝑑 (𝑡) , (1)

𝐷̇2 (𝑡) = −
1
𝜏𝐷
𝐷2 (𝑡) +

1
𝜏𝐷
𝐷1 (𝑡) , (2)

̇𝑆1 (𝑡) = −
1
𝜏𝑆
𝑆1 (𝑡) +

1
𝑉𝐼
𝑢 (𝑡) , (3)

̇𝑆2 (𝑡) = −
1
𝜏𝑆
𝑆2 (𝑡) +

1
𝜏𝑆
𝑆1 (𝑡) , (4)

𝐺̇ (𝑡) = − (𝑝1 + 𝑋 (𝑡)) 𝐺 (𝑡) + 𝑝1𝐺𝐵 +
1
𝜏𝐷
𝐷2 (𝑡) , (5)

𝑋̇ (𝑡) = −𝑝2𝑋 (𝑡) + 𝑝3 (𝐼 (𝑡) − 𝐼𝐵) , (6)

̇𝐼 (𝑡) = −𝑛 (𝐼 (𝑡) − 𝐼𝐵) +
1
𝜏𝑆
𝑆2 (𝑡) . (7)

The state variables in (1)–(7) have the meaning and
purpose as follows. 𝐷1(𝑡) mg/dL and 𝐷2(𝑡) mg/dL are the
primary and secondary compartments belonging to glucose,
where the time constant 𝜏𝐷 determines how long it takes
for the meal to be absorbed after consumption in time.
𝑆1(𝑡) mU/L and 𝑆2(𝑡) mU/L are the primary and secondary
compartments belonging to insulin, where the time constant
𝜏𝑆 determines how long it takes the insulin to be absorbed
after injection (to the extracellular space) in time. Variable
𝐺(𝑡) mg/dL is the blood glucose (BG) concentration—the
so-called glycemia—and 𝐼(𝑡) mU/L is the blood insulin
concentration and 𝑋(𝑡) 1/min is the insulin-excitable tissue
glucose uptake activity—which describes the connection
between the blood’s glucose and insulin levels, respectively.

From system engineering point of view the external glu-
cose, namely, the food intake, can be handled as disturbance.
In this case 𝑑(𝑡) g/min is the disturbance input. It can be
inserted to 𝐷1(𝑡) via ((1000𝐴𝑔)/(𝑀𝑤𝐺𝑉𝐺))𝐶 complex which
describes the bioavailability of the glucose from complex
carbohydrates.The control signal 𝑢(𝑡)mU/min—the injected
insulin—is directly connected to 𝑆1(𝑡).More detailed descrip-
tion of the usedmodel parameters can be found in Table 1 and
in [43–45].

3. A Nonlinear Programming Approach with
regard to the Receding Horizon Controller

3.1. Nonlinear Programming in General. The numerical ap-
proximation of a given problem can be considered in the
following way:

(I) Determination of a discrete time grid which is dense
enough from the given application point of view as
{𝑡0, 𝑡1 = 𝑡0 + Δ𝑡, . . . , 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡, . . . , 𝑡𝐹}, where
𝐹 ∈ N. Here 𝑡0 belongs to the initial and 𝑡𝐹 belongs to
the final time instant of the motion to be taken into
account, respectively.

(II) Assume that the nonlinear equation of the system to
be controller is ẋ(𝑡) = 𝑓(x(𝑡),u(𝑡)), where x(𝑡) ∈
R𝑀 is the state and u(𝑡) ∈ R𝐾 is the input vector,
respectively. Furthermore, the x0 ≡ x(𝑡0) initial
condition of the system is given.

(III) Consider that x𝑁(𝑡𝑖) is the nominal trajectory to be
tracked by the states of the system over time. Here
x𝑁(𝑡𝑖) ≡ x𝑁𝑖 in the given time grid determined by (I).

(IV) The nominal prescribed trajectory cannot be exactly
realized during the execution of the control task.
However, several restrictions—in order to enforce the
realization of this trajectory—can be prescribed by
using a predefined 𝐽(x(𝑡), u(𝑡)) cost function in each
point of the grid.

(V) 𝐽(x(𝑡), u(𝑡)) ≥ 0 is able to express several require-
ments, although these are often contradictory. It can
be constructed as the sumof nonnegative termswhich
can be the differentiable functions of the control sig-
nal and the state variables—expediently. The drastic
control signals can be avoided as well by prohibiting
them via the cost function.

(VI) Terminal conditions can be embedded into the pre-
scription depending only on x𝐹 in the last step 𝑡𝐹.

(VII) During an optimal control approach, ∑𝐹−1𝑖=0 𝐽(x𝑖, u𝑖) +
Φ(x𝐹) has to be minimized, where Φ(x𝐹) is an extra
weight that belongs to the last point of the trajectory.

(VIII) The cost function ∑𝐹−1𝑖=0 𝐽(x𝑖, u𝑖) + Φ(x𝐹) cannot be
arbitrarily minimized due to the specificities of the
system to be controlled. In the minimization the
state propagation equation must be considered as a
constraint. In order to process this constraint the
Lagrangian multipliers can be used as follows.

(IX) ẋ(𝑡) can be expressed from the state propagation
equation and as a numerical approximation (x𝑖+1 −
x𝑖)/Δ𝑡 ≈ 𝑓(x𝑖, u𝑖). By using this estimation, the
control task can be expressed in the following way:

min
{x1 ,...,x𝐹}
{u0 ,...,u𝐹−1}

𝐹−1

∑
𝑖=0

𝐽 (x𝑖, u𝑖) + Φ (x𝐹)

subject to
x𝑖+1 − x𝑖
Δ𝑡

− 𝑓 (x𝑖, u𝑖) = 0,

(8)

and {𝜆0, . . . , 𝜆𝐹−1} are the Lagrangian multipliers—
which are used in accordance with the optimization
task to be solved by the reduced gradients method.

3.2. The Applied Cost Function. During the development
of the appropriate cost function—which fits to the given
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Table 1: The applied parameters of the models in this study [43–45].

Notation Value Unit Description
𝐺𝐵 110 mg/dL Basal glucose level
𝐼𝐵 1.5 mU/L Basal insulin level
𝑝1 0.028 1/min Transfer rate
𝑝2 0.025 1/min Transfer rate
𝑝3 0.00013 L/(mU min) Transfer rate
𝑛 0.23 1/min Time constant for insulin disappearance
BW 75 kg Body weight
𝑉𝐼 0.12 BW L Distribution volume of insulin
𝑉𝐺 0.16 BW L Distribution volume of glucose
𝑀𝑤𝐺 180.1558 g/mol Molecular weight of glucose
𝐴𝑔 0.8 - Glucose utilization
𝐶 18.018 mmol/L Conversion rate between mmol/L and mg/dL
𝜏𝐷 40 min Carbohydrate (CHO) to glucose absorption constant
𝜏𝑆 55 min Insulin absorption constant

problem—the specificities of model (1)–(7) should be taken
into account.

The main limitation coming from the model is the
amount of injectable insulin and the fact that we have only
one control signal. The control signals at the grid points of
the horizon are independent variables in the optimization
problem. However, the application of a specific form of lim-
itation on them—a “bias”—is reasonable. Thus, the control
signal in this construction should be limited in accordance
with the phenomenon to be controlled. Instead of the control
signal itself, another variable should be selected as inde-
pendent variable to avoid the initial value problems causing
the rough numerical approximation at the beginning of the
optimization. This is caused by the high nonlinearity in the
model.

Another property of the model is that only the blood
glucose level 𝐺(𝑡) can be measured. Thus, only this state
variable can be embedded into the cost function to be
developed. We do not have internal information about other
state variables of the process to be controlled.

Accordingly we have applied a more specific form of the
(8) cost function:

min
{𝐺1 ,...,𝐺𝐹}
{V0 ,...,V𝐹−1}

𝐹−1

∑
𝑖=0

𝐽 (𝐺𝑖, 𝑢𝑖) + Φ (𝐺𝐹)

subject to
x𝑖+1 − x𝑖
Δ𝑡

− 𝑓 (x𝑖, u𝑖) = 0,

(9)

where 𝑢𝑖 = 𝑢bias + tanh(V𝑖).
We have developed a strongly nonlinear cost function in

which all requirements can be embedded against the control
action to be reached during control.

𝐽 (𝐺, 𝑢) def=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐺𝑁 − 𝐺
𝐴1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼1

+ 𝐵
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
𝐴2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼2

, (10)

Φ(𝐺𝐹)
def=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐺𝑁final − 𝐺final
𝐴3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼3

. (11)

The tracking error in (10) and (11), namely, the deviation
of the realized blood glucose level 𝐺(𝑡) from the nominal
blood glucose level 𝐺𝑁(𝑡), can be calculated as 𝐺𝑁𝑖 − 𝐺𝑖 at
the grid points. The absolute value of this difference can be
determined by parameters 𝐴1 and 𝐴3 that contribute the
belonging level of “penalty” prevailing in the cost function.
In that case if 𝛼1 > 1 and 𝛼3 > 1 beside |𝐺𝑁 − 𝐺| < 𝐴1 and
|𝐺𝑁final − 𝐺final| < 𝐴3, the contribution to the cost function is
low. However, if |𝐺𝑁 −𝐺| > 𝐴1 and |𝐺

𝑁
final −𝐺final| > 𝐴3 then

due to the power terms the contributions to the cost of these
terms are drastically increasing. The 𝛼1 and 𝛼3 weighting
terms can be used for different purposes. 𝛼1 = 𝛼3 = 1 pro-
vides proportional contribution; namely, the pure deviation
will be better prohibited. However, if 𝛼1, 𝛼3 < 1, then the
smaller deviations will be prohibited relatively better than the
bigger ones. The role of 𝐴2 and 𝛼2 parameters are similar;
namely, the applied control input can be prohibited by
applying them. The 𝐵 parameter allows modifying the
enforcement of the effect of the control signal in the cost
function.

3.3. Applied Nonlinear Programming Solver. In order to
implement the reduced gradients based optimization as Non-
linear Programming task various software products can be
used. Due to its complex embedded nonlinear solvers and the
easy-to-use property we have selected theMicrosoft’s EXCEL
(MS EXCEL). The MS EXCEL’s “Solver” module is produced
by an external firm Frontline Systems, Inc. There are various
solutions implemented into the Solver module, including the
Generalized Reduced Gradient (GRG) method which can be
used in the given case as well. The GRG is based on [47, 48]
and its usability has been proved in various fields of research.
For example, it was successfully applied for macroeconomic
optimization problems [49], operational research problems
related to economics [50], optimization problems regarding
transportation [31], decision prediction models [51], optimal
control problems in continuous time domain [52], and so on.
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Table 2: The parameters of the applied cost function (10).

Scenario 1 Scenario 2
𝐴1 5mg/dL 1mg/dL
𝛼1 4 4
𝐴2 2mU/min 15mU/min
𝛼2 4 6
𝐴3 5mg/dL 5mg/dL
𝛼3 4 4
𝑢bias 10mU/min 50mU/min
𝐺𝑁 90mg/dL 90mg/dL

The optimization framework was built up by using the
“Visual Basic” packages of the software “MS EXCEL 2016”
under “Windows 10” operating system. The functional
dependencies have been constructed in Visual Basic, and the
grid points, parameters, and so forth have been defined on
dedicatedWorksheets—by using these data the Solver can be
easily set up.

4. Results

In order to test the realized control framework we inves-
tigated two scenarios. In the first scenario 25 g CHO was
considered—5 g over 5 minutes in each 240th time instant
from the 60th one.

In the second scenario we considered 50 g CHO intake
10 g over 5 minutes in each 240th time instant from the
60th time instant. In both cases 200 time horizons have been
considered within 10 grid points; thus the total simulated
time domain was 2000 minutes. The resolution Δ𝑡 was 1
minute in accordance with the properties of the model.

The applied cost-function parameters (which represent
the control parameters in this regard) can be found in Table 2.

It should be noted that we have used permanent reference
trajectories in both cases denoted by 𝐺𝑁 = 90mg/dL in
(9)–(11).

Therefore, in accordancewith the aforementioned details,
the goal of the control becomes to keep 𝐺𝑁 = 90 beside
respecting the predefined 𝑢bias. In this manner—via the cost
function—the deviations from these predefined values have
been “punished”; namely, the value of the cost function
became higher.

During the examinations we have considered the follow-
ing range of blood glucose as “healthy” in accordance with
[11]: from 70 to 180mg/dL.

4.1. Results of Scenario 1. In the following the results of Sce-
nario 1 are presented. First, the disturbance signal is shown by
Figure 1.The applied—calculated—control signal can be seen
in Figure 2. It is clear that the controller is able to administer
the insulin in accordance with (9)–(11) where 𝑢𝑖 = 𝑢bias +
tanh(V𝑖) is prevailed in the control action.

Figures 3 and 4 show the absorption of glucose and its
appearance in the bloodwith the dynamics determined by the
model. Figures 5 and 6 show the absorption of insulin from
the interstitium and its appearance in blood.
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Figure 1: Applied disturbance (CHO intake)—5 g over 5minutes at
each 240th time instant.

The main point can be seen on Figure 7. The controller
is able to satisfy the determined conditions and the BG level
(𝐺(𝑡)) is inside the predefined range—no hypo- and hyper-
glycemia occurred. The BG level approaches the selected
reference trajectory (𝐺𝑁) as it is expected.

On Figures 8 and 9 the variation of blood insulin level and
the intermediate state variable can be seen. 𝑋(𝑡) determines
how the blood insulin level affects the blood glucose level,
namely, the connection between them.

4.2. Results of Scenario 2. The applied disturbance input in
accordance with the detailed protocol can be seen in Fig-
ure 10. In this case, we have applied higher inputs in order to
be sure that the developed control framework is able to deal
with unfavorable external excitation.

Figure 11 reveals the calculated and administered control
signal. As it can be seen, its dynamics are significantly
different from that of the previous case due to the different
settings in the applied cost function.

Figures 12 and 13 represent the absorption of the glucose
and its appearance in the blood with the dynamics deter-
mined by the model. Figures 14 and 15 show the absorption
of insulin from the interstitium to the blood.

The main result can be seen in Figure 16. Though we
have drastically increased the disturbance input signal the
controller was able to deal with the situation and realized
appropriate control action—without domain violation from
the determined 𝑢bias point of view. The blood glucose level is
inside the selected healthy range without any hypo- or
hyperglycemia. Moreover, the BG level oscillated around the
reference trajectory—𝐺𝑁—as it was expected.

Figures 17 and 18 represent the variation of the blood
insulin level and the intermediate state 𝑋(𝑡). Due to the
higher frequency of the control signal these are oscillating
with a higher frequency as well—which is directly reflected
in the blood glucose level as well, since the𝑋(𝑡)mediates the
insulin’s effect on 𝐺(𝑡).
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Figure 2: Calculated control signals. (a) represents the whole time horizon. (b) shows a piece of the whole time horizon between 0 and 40
minutes.
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Figure 3: Variation of the first state of the glucose absorption
subsystem.
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Figure 4: Variation of the second state of the glucose absorption
subsystem.

5. Discussion

In this research our main goal was to design a RHC which is
able to control the given patientmodel and, further, to do that
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Figure 5: Variation of the first state of the insulin absorption
subsystem.
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Figure 6: Variation of the second state of the insulin absorption
subsystem.

by developing such a RHC controller which can be effectively
combinedwith the RFPTprinciples in our later work by using
the detailed NP environment.These goals have been reached.
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Figure 7: Variation of the blood glucose level over time.
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Figure 8: Variation of the insulin-excitable tissue glucose uptake
activity over time.
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Figure 9: Variation of the blood insulin level over time.
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Figure 10: Applied disturbance (CHO intake)—10 g over 5minutes
at each 240th time instant.

In our first scenario we aimed to test the control environ-
ment under strict constraints—the collection of them can be
found in Table 2. In detail, 𝐴1, 𝐴3 = 5mg/dL and 𝛼1, 𝛼3 = 4
mean that we punished the deviation of𝐺(𝑡) from𝐺𝑁 heavily
above 5mg/dL during the control action and in the terminal
points of the cycles. We applied not just a restriction on the
value of 𝑢(𝑡) via 𝑢bias, but alsowe penalized the control signals
above 2mU/min as it is reflected in 𝐴2 and 𝛼2.

In the second scenario we investigated the “robustness”
of the controller by using highly oscillating, unfavorable
disturbance input in a cyclic way. As in the previous case,
the controller was able to perform well—beside all of the
restrictions that have been considered.

The main results can be seen in Figures 7 and 16. It is
clearly visible that the main requirement has been satisfied,
since the BG level was kept by the controller in the healthy
range.

6. Conclusions and Future Work

In this paper we have proposed a possible design scheme for
RHC controller by using a NP approach in order to control
Type 1 Diabetes Mellitus. We have applied the MS EXCEL’s
embedded Solver solution which is based on the Generalized
Reduced Gradient method in order to realize the control
environment. Two different scenarios have been applied to
test our approach—the results have been satisfactory.

In the first scenario we applied “soft” disturbance and
smaller penalties via the developed cost function in order to
make sure that the controller design is possible and appro-
priate control action can be achieved by using the continuous
optimization. In the second test scenario we used unfavor-
able, cycling disturbance signal with high amplitude to test
the “robustness” of the proposed controller. The developed
RHC controller was able to handle the load and provided
satisfactory control action. Furthermore, in both cases the BG
level was kept in the predefined healthy range.

In our future work we are going to extend the developed
RHC controller with an additional RFPT framework in order
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Figure 11: Calculated control signals. (a) represents the whole time horizon. (b) shows a piece of the whole time horizon between 0 and 40
minutes.
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Figure 12: Variation of the first state of the glucose absorption
subsystem.
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Figure 13: Variation of the second state of the glucose absorption
subsystem.

to empower it with adaptive property. We will investigate the
solution from robustness, adaptivity, and other aspects’ points
of view.
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interpretations on modeling and control of diabetes,” Acta
Polytechnica Hungarica, vol. 13, no. 1, pp. 171–190, 2016.
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