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In this paper, an adaptive finite-time fault-tolerant control scheme is proposed for the attitude stabilization of rigid spacecrafts.
A first-order command filter is presented at the second step of the backstepping design to approximate the derivative of the
virtual control, such that the singularity problem caused by the differentiation of the virtual control is avoided. Then, an adaptive
fuzzy finite-time backstepping controller is developed to achieve the finite-time attitude stabilization subject to inertia uncertainty,
external disturbance, actuator saturation, and faults.Through using an error transformation, the prescribed performance boundary
is incorporated into the controller design to guarantee the prescribed performance of the system output. Numerical simulations
demonstrate the effectiveness of the proposed scheme.

1. Introduction

Due to the significant role in guaranteeing the success of
any spacecraft related mission, the attitude control of the
spacecraft has obtained much attention, and numerous con-
trol schemes are proposed, such as adaptive control, sliding
mode control, backstepping control, 𝐻∞ control, finite-time
control, and so on [1–8]. Considering the specificity of the
spacecraft’s working environment, the hardware of the space-
craft is unlikely repairable, and the faults or failures cannot be
fixed with replacement parts after the spacecraft is launched.
The existence of faults or failures can potentially cause all
kinds of safety, economic, and environment problems, and
they should be considered in the attitude control design.

Different from the conventional control system without
considering the possibility of fault occurrence, the fault-
tolerant control (FTC) can guarantee desirable performance
properties even the actuators are not healthy. In general,
the existing FTC technique can be roughly classified into
two categories: active FTC and passive FTC. The active FTC
relies on the fault detection and diagnosis (FDD) algorithm
to provide the real-time information of the system status
and then reconfigure the controller to achieve the control
objective. For instance, an active fault-tolerant control was

proposed for the flexible spacecraft in [9], such that the
attitude stabilization was achieved. Unlike active FTC, by
using a single fixed controller, passive FTC dose not require
any online fault information and reconfigurationmechanism.
Therefore, the passive FTC is more succinct, easy to compute
and suitable to the actual application.Most of FTC controllers
designed for the spacecraft attitude control are passive [10–
12]. In [10], an adaptive fuzzy fault-tolerant controller was
proposed to achieve the spacecraft attitude tracking. A sliding
mode control based attitude fault-tolerant controller was
presented in [11], and the attitude was stabilized for the
satellite with solar flaps. For those spacecrafts with redun-
dancy actuators, the common method is using the actuator
distribution matrix. In [12], a fault-tolerant control method
based on distribution matrix was presented for the spacecraft
attitude tracking, such that the finite-time convergence of the
tracking error was achieved.

Actuator saturation is another issue worthy of study, the
actual actuators in the spacecraft have the nominal limit of
the output, and saturated output definitely effaces the system
performance. Although there exist works concerning the
attitude control design with actuator saturation [13–15], the
possibility of the emerging of actuator failure at the same
time is ignored. When the actuator fault happens, in order
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to maintain the performance of the system, the need for large
control torque leads to severe actuator saturation. Until now,
numerous works have considered both issues and designed
controllers for the spacecraft attitude control [16–18].

Convergence speed is always significant in practically
spacecraft system, and the finite-time control is able to
provide faster convergence performance and higher tracking
precision. Most of the finite-time control methods applied to
the spacecraft have two kinds: homogeneous method [19, 20]
and Lyapunov method [21–24]. In [19], a local continuous
finite-time control scheme was proposed for the spacecraft
system with an unknown inertia matrix and the homoge-
neousmethod based controller achieved attitude stabilization
within a finite time. Homogeneous system theory was used
to design a finite-time controller in [20], and the spacecraft
attitude was stabilized within a finite time even with actuator
saturation. In [5, 21], two adaptive terminal sliding mode
controllers were proposed based on the Lyapunov method,
such that the spacecraft attitude and angular velocity could
converge to a small region of the origin within a finite time,
respectively. Furthermore, the recent works [12, 16, 22] have
achieved the finite-time spacecraft attitude stabilization or
tracking in the presence of the actuator saturation and faults.

The adaptive backstepping approach [25, 26], as a recur-
sive Lyapunov-based scheme, has emerged as a powerful
method to construct controllers for nonlinear systems since
early 1990s. There are several works using the backstepping
method to design controllers of the spacecraft [3, 27]; how-
ever, the closed-loop stability is achieved when time goes
to infinity. When designing a finite-time backstepping con-
troller, the differentiation of the virtual controller in recursive
stepsmay lead to the singularity problem. Recently, the finite-
time command filtered backstepping approach was proposed
in [28, 29], where the first-order Levant differentiator was
used to approximate the derivative of the virtual controller,
such that the finite-time convergence can be achieved when
the system model was known or partially known.

All of the aforementioned works mainly focus on the
steady-state behavior but ignore the transient performance
such as convergence rate and overshot. To achieve the specific
goals of spacecraft missions which need a specific rotating
speed or a limitation of angular velocity, prescribed transient
performance of the system output is very important. The
widely used techniques to improve transient performance
mainly include barrier Lyapunov function (BLF) [30–33],
funnel control [34–36], prescribed performance control
(PPC) [37–42], and so on. In order to guarantee the pre-
scribed performance imposed on the transient and steady-
state output error, the prescribed performance control (PPC)
method was proposed by Bechlioulis and Rovithakis for
uncertain nonlinear systems [37]. For the spacecraft attitude
system with input saturation, a PPC based adaptive fault-
tolerant control was presented in [43], such that the output of
the system was constrained by the prescribed performance.
Nevertheless, the designed controller in [43] could only
guarantee the asymptotic uniform ultimate boundedness of
the spacecraft system as the time goes to infinity.

Motivated by the aforementioned discussions, the fuzzy
finite-time attitude stabilization problem for spacecraft

systems under the actuator saturation and faults is studied
in this paper, and a fuzzy finite-time fault-tolerant controller
is proposed to achieve prescribed transient and steady-
state performance of the system output. However, it is a
challenging work to design a controller to guarantee the
prescribed transient performancewhen considering the input
constraints including actuator saturation and faults. On
the one hand, when the initial state is far away from the
equilibrium state, the required control input is usually set
relatively large to guarantee the fast transient response. But
on the other hand, due to the effect of the input saturation
and actuator fault, it is a hard work to keep the satisfactory
transient response as usual. The main contributions of this
paper are listed as follows.

(1) A first-order command filter is presented at the second
step of the backstepping design to approximate the derivative
of the virtual control, such that the singularity problem
caused by the differentiation of the virtual control is avoided.

(2) An adaptive fuzzy finite-time backstepping controller
is developed to achieve the finite-time attitude stabilization
subject to inertia uncertainty, external disturbance, actuator
saturation, and faults.

(3)Throughusing an error transformation, the prescribed
performance boundary is incorporated into the controller
design to guarantee the prescribed performance of the system
output.

The rest of this paper is organized as follows. Section 2
states the formulation of the spacecraft attitude stabilization
problem. In Section 3, some preliminary knowledge and
lemmas are given. In Section 4, the fuzzy finite-time fault-
tolerant control scheme is proposed and followed by stability
analysis. Simulation results are provided in Section 5, and the
conclusion is summarized in Section 6.

2. Problem Formulation

Considering the attitude stabilization problem for a rigid
spacecraft, the modified Rodrigues parameter (MRP) based
spacecraft system is described as [44]

�̇� = 14 [(1 − 𝜎𝑇𝜎) 𝐼3 + 2𝜎× + 2𝜎𝜎𝑇] 𝜔 = 𝐺 (𝜎) 𝜔 (1)

𝐽�̇� = −𝜔×𝐽𝜔 + 𝑢 + 𝑑 (2)

where 𝜎 = [𝜎1, 𝜎2, 𝜎3]𝑇 is the spacecraft attitude in body
framewith respect to the inertial framepresented byMPRs, 𝐼3
is the identity matrix, and the operational symbol 𝑎× denotes
the following skew-symmetric matrix for any vector 𝑎 =[𝑎1, 𝑎2, 𝑎3]𝑇

𝑎× = [[
[

0 −𝑎3 𝑎2𝑎3 0 −𝑎1−𝑎2 𝑎1 0
]]
]

(3)

𝜔 = [𝜔1, 𝜔2, 𝜔3]𝑇 is the body frame angular velocity with
respect to inertial frame. 𝐽 = 𝐽0+Δ𝐽 is the inertiamatrix of the
spacecraft, where 𝐽0 denotes the nonsingular known nominal
value of the inertia matrix and Δ𝐽 is the bounded uncertainty.
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𝑢 and 𝑑 in (2) denote the control torque and the bounded
external disturbance torque, respectively. Considering the
input saturation and actuator faults in the rigid spacecraft, the
actual control torque 𝑢 is further formulated as

𝑢 = 𝐸 sat (V) (4)

where𝐸 = diag{𝐸1, 𝐸2, 𝐸3}with 0 < 𝐸𝑖 ≤ 1 (𝑖 = 1, 2, 3) is the
fault matrix and sat(V) is the saturated control input satisfying
sat(V) = [sat(V1), sat(V2), sat(V3)], where V = [V1, V2, V3]𝑇 is
the commanded control which needs to be designed later,
sat(V𝑖) = sgn(V𝑖)×min{|V𝑖|, V𝑀𝑖}with sgn(⋅) denoting the sign
function and V𝑀𝑖 being the 𝑖th axis maximum torque.

The nonlinear saturation function sat(V𝑖) can be approxi-
mated by the following smooth function 𝑔(V𝑖):

𝑔 (V𝑖) = V𝑀𝑖 × tanh ( V𝑖
V𝑀𝑖

) = V𝑀𝑖
𝑒V𝑖/V𝑀𝑖 − 𝑒−V𝑖/V𝑀𝑖𝑒V𝑖/V𝑀𝑖 + 𝑒−V𝑖/V𝑀𝑖 . (5)

Then, sat(V) is rewritten as

sat (V) = 𝑔 (V) + 𝑑𝑠 (V) (6)

where 𝑔(V) = [𝑔(V1), 𝑔(V2), 𝑔(V3)]𝑇 and 𝑑𝑠(V) = [𝑑𝑠(V1),𝑑𝑠(V2), 𝑑𝑠(V3)]𝑇 stands for the approximation error. It is noted
that 𝑑𝑠(V𝑖) is a bounded function and its bound satisfying|𝑑𝑠(V𝑖)| = |sat(V𝑖) − 𝑔(V𝑖)| ≤ V𝑀𝑖(1 − tanh(1)).

According to the mean value theorem, there exist con-
stants 𝑐𝑖(0 < 𝑐𝑖 < 1), 𝑖 = 1, 2, 3, such that the following
inequality holds:

𝑔 (V𝑖) = 𝑔 (V𝑖) + 𝑔𝜇 (V𝑖 − V𝑖) , 𝑖 = 1, 2, 3 (7)

where 𝑔𝜇 = (𝜕𝑔(V𝑖)/𝜕V𝑖)|V𝑖=𝑐𝑖V𝑖+(1−𝑐𝑖)V𝑖 ,V𝑖∈[0,V𝑖]. By setting V𝑖 = 0,
(6) is rewritten as

sat (V) = 𝐻V + 𝑑𝑠 (V) (8)

where𝐻 = diag{𝑔𝜇(V1), 𝑔𝜇(V2), 𝑔𝜇(V3)}.
The control torque (4) is rewritten as

𝑢 = ΓV + 𝐸𝑑𝑠 (V) (9)

where Γ = 𝐸𝐻, and there exists an unknownpositive constant𝑏 satisfying 0 < 𝑏 ≤ ‖Γ‖ < 1.
From (1), (2), and (9), the spacecraft system is further

formulated as

�̇� = 𝐺 (𝜎) 𝜔
�̇� = 𝐽−10 ΓV + 𝐹 (𝑡) + 𝐷 (𝑡) (10)

where𝐹(𝑡) = 𝐽−10 (−Δ𝐽�̇�−𝜔×𝐽𝜔) is the uncertainty and𝐷(𝑡) =𝐽−10 (𝐸𝑑𝑠(V)+𝑑). Because 𝑑𝑠(V) and 𝑑 are bounded, there exists
an unknown positive constant 𝐷𝑚 satisfying ‖𝐷(𝑡)‖ ≤ 𝐷𝑚.

The matrix 𝐺(𝜎) has the following properties [45]:
𝐺 (𝜎)−1 = 16

(1 + 𝜎𝑇𝜎)2𝐺 (𝜎)𝑇 (11)

𝐺 (𝜎)𝑇𝐺 (𝜎) = (1 + 𝜎𝑇𝜎4 )2 𝐼3. (12)

From (11) and (12), it is obtained that 1/4 ≤ ‖𝐺‖ ≤ 1/2.
The control objective in this paper is to develop a fuzzy

fault-tolerant finite-time control scheme for the spacecraft
with inertia uncertainty, extra disturbance, input saturation,
and actuator faults, such that the system output 𝜎 converges
into a small region of the origin within the prescribed bounds
in a finite time.

3. Preliminaries

In this section, some preliminary knowledge critical for
control design and satiability analysis is presented.

3.1. Finite-Time Differentiator. The first-order Levant differ-
entiator [46] is formulated as

�̇�1 = 𝜄
𝜄 = −𝛽1 𝜑1 − 𝛼𝑟1/2 sgn (𝜑1 − 𝛼𝑟) + 𝜑2

�̇�2 = −𝛽2 sgn (𝜑2 − �̇�1)
(13)

where 𝛼𝑟 is the input signal, 𝛽1, 𝛽2 > 0 are the parameters,
and 𝜑1 and 𝜄 are the estimations of 𝛼𝑟 and �̇�𝑟, respectively.
Following lemma holds if the parameters 𝛽1 and 𝛽2 are
chosen properly.

Lemma 1 (see [46]). If the input 𝛼𝑟 is not affected by the noise,
the following equalities are true within a finite time

𝜑1 = 𝛼𝑟,
𝜄 = �̇�𝑟. (14)

If the input is affected by noise and satisfying |𝛼𝑟 − 𝛼𝑟| ≤𝜅1, where 𝛼𝑟 is the original signal without interference, the
following inequalities hold in a finite time:

𝜑1 − 𝛼𝑟 ≤ 𝜍1𝜅1 = 𝜛1 (15)
𝜄 − �̇�𝑟 ≤ 𝜍2𝜅1/21 = 𝜛2 (16)

where 𝜍1 and 𝜍2 are positive constants depended on the design
parameters of the differentiator.

3.2. Fuzzy Logic System. A typical fuzzy logic system (FLS)
consists of four parts: the fuzzy rules, the fuzzifier, the fuzzy
inference engine, and the defuzzifier. The foundation of the
FLS is a group of fuzzy If-Then rules as follows:

Rule 𝑙: If 𝑥1 is 𝐹𝑙1 and 𝑥2 is 𝐹𝑙2 and . . . and 𝑥𝑛 is 𝐹𝑙𝑛,
Then 𝑦 is 𝑀𝑙, 𝑙 = 1, 2, . . . ,𝑁.

where 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑇 is the input of the FLS, 𝑦 is the
FLS output, 𝐹𝑙𝑖 and 𝑀𝑙 denote the fuzzy sets relating to the
membership functions 𝜇𝐺𝑙(𝑦) and 𝜇𝐹𝑙

𝑖

(𝑥𝑖), respectively, and 𝑁
is the rules number.
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Combining the singleton fuzzifier, center average defuzzi-
fication, and product inference, the output of the FLS is
obtained as

𝑦 (𝑥) = ∑𝑁𝑙=1 𝑦𝑙∏𝑛𝑖=1𝜇𝐹𝑙
𝑖

(𝑥𝑖)
∑𝑁𝑙=1 [∏𝑛𝑖=1𝜇𝐹𝑙

𝑖

(𝑥𝑖)] (17)

where 𝑦𝑙 = max𝑦∈𝑅𝜇𝐺𝑙(𝑦) and 𝜇𝐹𝑙
𝑖

(𝑥𝑖) is the membership
function value of the fuzzy variable. The fuzzy basis function
is defined as

Φ𝑙 = ∏𝑛𝑖=1𝜇𝐹𝑙
𝑖

(𝑥𝑖)
∑𝑁𝑙=1 [∏𝑛𝑖=1𝜇𝐹𝑙

𝑖

(𝑥𝑖)] . (18)

Define 𝑊 = [𝑦1, 𝑦2, . . . , 𝑦𝑁]𝑇 = [𝑤1, 𝑤2, . . . , 𝑤3]𝑇 as the
ideal constant weight vector, and the (17) is expressed as

𝑦 (𝑥) = 𝑊𝑇Φ (𝑥) (19)

where Φ(𝑥) = [Φ1(𝑥), Φ2(𝑥), . . . , Φ𝑁(𝑥)]𝑇 is the basis
function vector. The relationship between the FLS and the
unknown nonlinear function in the system is given in the
following lemma.

Lemma 2. For any continuous function 𝑓(𝑥) defined on a
compact Ω, then for any constant 𝜇 > 0, there exists an FLS𝑊𝑇Φ(𝑥) such that

sup
𝑥∈Ω

𝑓 (𝑥) − 𝑊𝑇Φ(𝑥) ≤ 𝜇. (20)

3.3. Prescribed Performance Function. As a priori guarantee-
ing prescribed behavioral bounds on the output of the system,
the prescribed performance function (PPF) is designed as
follows:

𝜌 (𝑡) = (𝜌0 − 𝜌∞) 𝑒−𝜅𝑡 + 𝜌∞ (21)

where 𝜌0, 𝜌∞, and 𝜅 are positive parameters, where 𝜅 is the
prescribed minimum exponential convergence rate and 𝜌∞
stands for the maximum steady-state error, respectively, and
it guarantees the following inequality:

−𝛿𝑖 (𝑡) 𝜌 (𝑡) < 𝜎𝑖 < 𝛿𝑖 (𝑡) 𝜌 (𝑡) , 𝑖 = 1, 2, 3. (22)

In order to relax the assumption that the initial condition
should be precisely known to guarantee the prescribed
transient in the classic PPF, e.g., [37], the functions 𝛿𝑖 and 𝛿𝑖
are satisfying the following properties [47].

(1) 𝛿𝑖 and 𝛿𝑖 are positive and strictly decreasing; (2)
lim𝑡→0𝛿𝑖 = +∞, lim𝑡→∞𝛿𝑖 = 𝐶1, 𝐶1 ∈ 𝑅+, lim𝑡→0𝛿𝑖 = +∞,
and lim𝑡→∞𝛿𝑖 = 𝐶2, 𝐶2 ∈ 𝑅+,

An example of such 𝛿𝑖 and 𝛿𝑖 is given by

�̇�𝑖 = −𝑝𝑖𝛿𝑖 + 𝑞𝑖, 𝑝𝑖, 𝑞𝑖 ∈ 𝑅+
�̇�𝑖 = −𝑎𝑖𝛿𝑖 + 𝑏𝑖, 𝑎𝑖, 𝑏𝑖 ∈ 𝑅+ (23)

where 𝑎𝑖, 𝑏𝑖, 𝑝𝑖, 𝑞𝑖, 𝑖 = 1, 2, 3 are positive constants.

For the purpose of designing the control law to guarantee
the prescribed performance bounds (22), the error transfor-
mations are presented as

𝜀𝑖 = 12 ln(𝛿𝑖 (𝑡) + 𝜎𝑖 (𝑡) /𝜌 (𝑡)
𝛿𝑖 (𝑡) − 𝜎𝑖 (𝑡) /𝜌 (𝑡)) , 𝑖 = 1, 2, 3. (24)

Through employing the error transformation (24), the
output of the original system 𝜎 can be guaranteed within
the prescribed bound provided that the transformed error𝜀 = [𝜀1, 𝜀2, 𝜀3]𝑇 is stable.
Lemma 3 (see [37, 48]). System (10) is invariant under
the error transformation (24), and the stabilization of the
transformed error 𝜀 can guarantee the output 𝜎 converge with
the prescribed performance described by (22).

The derivative of the 𝜀𝑖 is given as

̇𝜀𝑖 = 𝑟𝑖�̇�𝑖 + 𝜗𝑖, 𝑖 = 1, 2, 3 (25)

where 𝑟𝑖, 𝑖 = 1, 2, 3, is
𝑟𝑖 = 12𝜌 (𝑡) ( 1𝜎𝑖 (𝑡) /𝜌 (𝑡) + 𝛿𝑖 (𝑡)

− 1
𝜎𝑖 (𝑡) /𝜌 (𝑡) − 𝛿𝑖 (𝑡))

(26)

and the 𝜗𝑖, 𝑖 = 1, 2, 3, is
𝜗𝑖 = �̇�𝑖 (𝑡) − ̇𝜌 (𝑡) 𝜎𝑖 (𝑡) /𝜌2 (𝑡)2𝜎𝑖 (𝑡) /𝜌 (𝑡) + 𝛿𝑖 (𝑡)

+ �̇�𝑖 (𝑡) + ̇𝜌 (𝑡) 𝜎𝑖 (𝑡) /𝜌2 (𝑡)2𝜎𝑖 (𝑡) /𝜌 (𝑡) − 𝛿𝑖 (𝑡) .
(27)

Substituting (1) into (25) yields

̇𝜀 = 𝑟𝐺𝜔 + 𝜗 (28)

where 𝑟 = diag{𝑟1, 𝑟2, 𝑟3} and 𝜗 = [𝜗1, 𝜗2, 𝜗3]𝑇.
4. Main Results

4.1. Control Design. Define virtual states 𝑧1 and 𝑧2 as
𝑧1 = 𝜀
𝑧2 = 𝜔 − 𝑥𝑐 (29)

where 𝑥𝑐 = [𝑥𝑐1, 𝑥𝑐2, 𝑥𝑐3]𝑇 is the output of the following
finite-time command filter

�̇�1𝑖 = −𝛽1 𝜑1𝑖 − 𝛼𝑖1/2 sgn (𝜑1𝑖 − 𝛼𝑖) + 𝜑2𝑖
�̇�2𝑖 = −𝛽2 sgn (𝜑2𝑖 − �̇�1𝑖) ,

𝑖 = 1, 2, 3
(30)
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where the input 𝛼 = [𝛼1, 𝛼2, 𝛼3]𝑇 is the virtual control to be
designed later and the output 𝑥𝑐𝑖 = 𝜑1𝑖, 𝑖 = 1, 2, 3.

Based on the command filtered backstepping control
approach, the compensated stabilization errors are given by𝑠1 = 𝑧1 − 𝜉1, 𝑠2 = 𝑧2 − 𝜉2, where 𝜉1 and 𝜉2 are the error
compensating signals to reduce the influence of 𝑥𝑐 − 𝛼.

Choose the Lyapunov function as 𝑉1 = (1/2)𝑠𝑇1 𝑠1. Using
(28), the time derivative of 𝑉1 is

�̇�1 = 𝑠𝑇1 ̇𝑠1 = 𝑠𝑇1 (�̇�1 − ̇𝜉1) = 𝑠𝑇1 (𝑟𝐺𝜔 + 𝜗 − ̇𝜉1)
= 𝑠𝑇1 [𝑟𝐺 (𝑧2 + 𝑥𝑐) + 𝜗 − ̇𝜉1]
= 𝑠𝑇1 [𝑟𝐺𝑧2 + 𝑟𝐺𝛼 + 𝑟𝐺 (𝑥𝑐 − 𝛼) + 𝜗 − ̇𝜉1] .

(31)

The virtual control 𝛼 and error compensation 𝜉1 are
designed as

𝛼 = 𝐺−1𝑟−1 [−𝑘1𝑧1 − 𝜏1sig𝛾 (𝑠1) − 𝜗] (32)

and

̇𝜉1 = −𝑘1𝜉1 + 𝑟𝐺 (𝑥𝑐 − 𝛼) + 𝑟𝐺𝜉2 − 𝑙1sig (𝜉1) (33)

where 𝑘1, 𝜏1, 𝑙1 > 0, 0 < 𝛾 < 1 are design parameters, sig𝛾(𝑠1)= [|𝑠11|𝛾sgn(𝑠11), |𝑠12|𝛾sgn(𝑠12), |𝑠13|𝛾sgn(𝑠13)]𝑇, and sig(𝜉1) =[sgn(𝜉11), sgn(𝜉12), sgn(𝜉13)]𝑇 with 𝜉1𝑖(0) = 0, 𝑖 = 1, 2, 3.
Substituting (32) and (33) into (31) yields

�̇�1 = 𝑠𝑇1 [−𝑘1𝑠1 + 𝑟𝐺𝑠2 − 𝜏1sig𝛾 (𝑠1) + 𝑙1sig (𝜉1)] . (34)

Construct the second Lyapunov function as

𝑉2 = 𝑉1 + 12𝑠𝑇2 𝑠2. (35)

Taking the derivative of𝑉2 along with (10) and (29) yields
�̇�2 = �̇�1 + 𝑠𝑇2 ̇𝑠2 = �̇�1 + 𝑠𝑇2 (�̇� − �̇�𝑐 − ̇𝜉2)

= �̇�1 + 𝑠𝑇2 (𝐽−10 ΓV + 𝐹 + 𝐷 − �̇�𝑐 − ̇𝜉2) . (36)

The error compensation is designed as 𝜉2 = ̇𝜉2 = [0, 0,0]𝑇. Let 𝐹 = 𝐹− �̇�𝑐+𝑟𝐺𝑠1 +𝑠2. Substituting (34) into (36) and
using the fact that 𝐺 is symmetric lead to

�̇�2 = �̇�1 + 𝑠𝑇2 (𝐹 − 𝑟𝐺𝑠1 − 𝑠2 + 𝐽−10 ΓV + 𝐷)
= −𝑘1𝑠𝑇1 𝑠1 − 𝜏1 3∑

1

𝑠1𝑖𝛾+1 + 𝑠𝑇1 𝑙1sig (𝜉1) − 𝑠𝑇2 𝑠2
+ 𝑠𝑇2 (𝐹 + 𝐽−10 ΓV + 𝐷) .

(37)

The fuzzy logic systems (19) are utilized to approximate
the unknown nonlinear 𝐹. From Lemma 2, for any given
constant 𝜇 > 0, there always exists an FLS such that

𝐹𝑖 = 𝑊𝑇𝑖 Φ𝑖 (𝑍𝑛) + 𝛿𝑖, 𝑖 = 1, 2, 3 (38)

where Φ𝑖 = [Φ𝑖1, Φ𝑖2, . . . , Φ𝑖𝑁]𝑇 is the basis function vector,
the approximation error 𝛿𝑖 satisfied |𝛿𝑖| ≤ 𝜇, and 𝑍𝑛 =[𝜔𝑇, 𝑥𝑇𝑐 , �̇�𝑇𝑐 ]𝑇.

By Young’s inequality and (38), the following inequalities
hold:

𝑠𝑇2𝐹 ≤ 3∑
𝑖=1

𝑠2𝑖𝑊𝑇𝑖 Φ𝑖 + 3∑
𝑖=1

𝑠2𝑖𝜇
≤ 𝜃∑3𝑖=1 𝑏𝑠2𝑖Φ𝑖𝑇Φ𝑖2ℎ2 + 3ℎ22 + 𝑠222 + 3𝜇22

(39)

𝑠𝑇2𝐷 ≤ 𝑠222 + 𝐷2𝑚2 (40)

𝑠𝑇1 𝑙1sig (𝜉1) ≤ 𝑙1 𝑠122 + 𝑙12 (41)

where 𝜃 = (1/𝑏)max{‖𝑊1‖2, ‖𝑊2‖2, ‖𝑊3‖2}.
The commanded controller is designed as

V = 𝐽0 [−𝑘2𝑠2 − 𝜃𝜂𝑠22ℎ2 − 𝜏2sig𝛾 (𝑠2)] (42)

where 𝑘2, 𝜏2, ℎ are positive design parameters, 𝜂 =
diag{Φ𝑇1Φ1, Φ𝑇2Φ2, Φ𝑇3Φ3}, adn 𝜃 is the estimation of 𝜃.

It is obtained for the commanded controller (42) that

𝑠𝑇2 𝐽−10 ΓV = 𝑠𝑇2 [−𝑘2Γ𝑠2 − Γ𝜃𝜂𝑠22ℎ2 − 𝜏2Γsig𝛾 (V2)]
≤ −𝑘2𝑏𝑠𝑇2 𝑠2 − 𝜃∑3𝑖=1 𝑏𝑠22𝑖Φ𝑖𝑇Φ𝑖2ℎ2

− 𝜏2𝑏 3∑
𝑖=1

𝑠2𝑖𝛾+1 .
(43)

Using (39)-(43), the derivative of the 𝑉2 is simplified as

�̇�2 ≤ − (𝑘1 − 0.5𝑙1) 𝑠𝑇1 𝑠1 − 𝜏1 3∑
𝑖=1

𝑠1𝑖𝛾+1 − 𝑘2𝑏𝑠𝑇2 𝑠2
− 𝜏2𝑏 3∑
𝑖=1

𝑠2𝑖𝛾+1 + (𝜃 − 𝜃)∑3𝑖=1 𝑏𝑠22𝑖Φ𝑖𝑇Φ𝑖2ℎ2
+ 3ℎ22 + 3𝜇22 + 𝐷2𝑚2 + 𝑙12 .

(44)

The update law of 𝜃 is designed as

̇̂𝜃 = 𝜆∑3𝑖=1 𝑠22𝑖Φ𝑖𝑇Φ𝑖2ℎ2 − 𝑚1𝜃 (45)

where 𝜆 and 𝑚1 are positive design parameters.

4.2. Stability Analysis. Before providing the stability analysis,
the following two lemmas are given.

Lemma 4 (see [49]). For 0 < 𝑎 < 1 and 𝑥𝑖 ∈ R, 𝑖 = 1, 2, 3 . . .,
the following inequality holds:

3∑
𝑖=1

𝑥𝑖𝑎+1 ≥ ( 3∑
𝑖=1

𝑥𝑖2)
(𝑎+1)/2 . (46)



6 Complexity

Lemma 5 (see [50]). For any real number 0 < 𝛾 < 1, 𝜆1, 𝜆2 >0, an continuous positive-definite Lyapunov function 𝑉(𝑥)
satisfied the from as �̇�(𝑥)+𝜆1𝑉(𝑥)+𝜆2𝑉𝛾(𝑥) ≤ 0, then 𝑉 ≡ 0
can be achieved in a finite time and the setting time can be
estimated by

𝑇reach ≤ 1𝜆1 (1 − 𝛾) ln 𝜆1𝑉1−𝛾 (0) + 𝜆2𝜆2 (47)

where 𝑉(0) is the initial value of 𝑉(𝑥).
Theorem 6. Consider the spacecraft stabilization system
described in (1) and (2) subject to input saturation and actuator
fault (4) with finite-time command filter (30), the virtual
control (32), the error compensation (33), the controller (42),
and the update law (45), and then

(i) the transformed error 𝜀 converges into a small region of
the origin in a finite time, and 𝜔 is bounded in a finite time;

(ii) the prescribed control performance of 𝜎 (22) is pre-
served.

Proof. Construct the Lyapunov function as

𝑉 = 𝑉2 + 𝑏2𝜆𝜃2 (48)

where 𝜃 = 𝜃 − 𝜃.
According to (44), the time derivative of 𝑉 is

�̇� ≤ − (𝑘1 − 0.5𝑙1) 𝑠𝑇1 𝑠1 − 𝜏1 3∑
𝑖=1

𝑠1𝑖𝛾+1 − 𝑘2𝑏𝑠𝑇2 𝑠2
− 𝜏2𝑏 3∑
𝑖=1

𝑠2𝑖𝛾+1 + ∑3𝑖=1 𝑠22𝑖Φ𝑖𝑇Φ𝑖2ℎ2 𝑏𝜃 + 3ℎ22
+ 3𝜇22 + 𝐷2𝑚2 + 𝑙12 − 𝑏𝜃 ̇̂𝜃𝜆 .

(49)

Substituting update law (45) into (49) yields

�̇� ≤ − (𝑘1 − 0.5𝑙1) 𝑠𝑇1 𝑠1 − 𝜏1 3∑
𝑖=1

𝑠1𝑖𝛾+1 − 𝑘2𝑏𝑠𝑇2 𝑠2
− 𝜏2𝑏 3∑
𝑖=1

𝑠2𝑖𝛾+1 + 3ℎ22 + 3𝜇22 + 𝐷2𝑚2 + 𝑙12
+ 𝑚1𝑏𝜃𝜃𝜆 .

(50)

According to Young’s inequality, the following inequality is
hold:

𝑚1𝑏𝜃𝜃𝜆 ≤ −3𝑚1𝑏𝜃24𝜆 + 𝑚1𝑏𝜃2𝜆 . (51)

Considering 0 < 𝛾 < 1, it is concluded that

(𝑚1𝑏𝜃22𝜆 )(𝛾+1)/2 − 𝑚1𝑏𝜃22𝜆 ≤ 14 . (52)

Using (51), (52), and Lemma 4, the time derivative of 𝑉 is
expressed as

�̇� ≤ − (𝑘1 − 0.5𝑙1) 𝑠𝑇1 𝑠1 − 𝜏1( 3∑
1

𝑠1𝑖2)
(𝛾+1)/2

− 𝑘2𝑏𝑠𝑇2 𝑠2 − 𝜏2𝑏( 3∑
1

𝑠2𝑖2)
(𝛾+1)/2 − 𝑚1𝑏𝜃24𝜆

− (𝑚1𝑏𝜃22𝜆 )(𝛾+1)/2 + 3ℎ22 + 3𝜇22 + 𝐷2𝑚2 + 𝑙12
+ 𝑚1𝑏𝜃2𝜆 + 14

(53)

which leads to

�̇� ≤ −𝜆1𝑉 − 𝜆2𝑉(𝛾+1)/2 + 𝜇1 (54)

where 𝜆1 = min{2𝑘1 − 𝑙1, 2𝑘2𝑏, 0.5𝑚1}, 𝜆2 = min{2(𝛾+1)/2𝜏1,2(𝛾+1)/2𝜏2𝑏,𝑚(𝛾+1)/21 }, and 𝜇1 = 3ℎ2/2 + 3𝜇2/2 + 𝐷2𝑚/2 +𝑙1/2 + 𝑚1𝑏𝜃2/𝜆 + 1/4. According to Lemma 5, it is con-
cluded that 𝑠1 and 𝑠2 converge to the small region ‖𝑠𝑖‖ ≤
max{√2𝜇1/𝜆1, √2(𝜇1/𝜆2)2/(𝛾+1)}, 𝑖 = 1, 2, in a finite time𝑇1 ≤(1/𝜆1(1 − 𝛾)) ln((𝜆1𝑉1−𝛾(0) + 𝜆2)/𝜆2). From the definition𝑠1 = 𝜀 − 𝜉1, 𝑠2 = 𝑧2 − 𝜉2, if the finite-time convergence of the𝜉𝑖 is guaranteed, then it is confirmed that the states 𝑧1 and 𝑧2
can converge into a small neighbourhood of the origin within
a finite time.

Since 𝜉2 = ̇𝜉2 = [0, 0, 0]𝑇 is given in the control design, in
order to show that 𝜉1 is bounded in a finite time, the following
Lyapunov function is chosen:

𝑉3 = 12𝜉𝑇1 𝜉1. (55)

Differentiating 𝑉3 along with (33) yields

�̇�3 = 𝜉𝑇1 ̇𝜉1
= 𝜉𝑇1 [−𝑘1𝜉1 + 𝐺 (𝑥𝑐 − 𝛼) + 𝐺𝜉2 − 𝑙1sig (𝜉1)]
= −𝑘1𝜉𝑇1 𝜉1 − 𝑙1 3∑

1

𝜉𝑖 + 𝜉𝑇1𝐺𝜉2 + 𝜉𝑇1𝐺(𝑥𝑐 − 𝛼) .
(56)

According to the Lemma 1, ‖𝑥𝑐 − 𝛼‖ ≤ 𝜛 can be achieved
in a finite time 𝑇2, and combining ‖𝐺‖ ≤ 1/2, the following
inequality is obtained:

𝜉𝑇1𝐺 (𝑥𝑐 − 𝛼) ≤ 12𝜛
3∑
1

𝜉𝑖 . (57)

Substituting (57) and 𝜉2 = [0, 0, 0]𝑇 into (56) leads to
�̇�3 ≤ −𝑘1𝜉𝑇1 𝜉1 − (𝑙1 − 12𝜛)( 3∑

1

𝜉𝑖2)
1/2

≤ −2𝑘1𝑉3 − √2(𝑙1 − 12𝜛)𝑉1/23 .
(58)

According to Lemma 5, it is illustrated that 𝜉1 can
converge to the origin in the finite time 𝑇3 by choosing
suitable parameter satisfying 𝑙1 > (1/2)𝜛. Since 𝑧1 = 𝑠1 + 𝜉1
and 𝑧2 = 𝑠2 + 𝜉2, the transformed error 𝜀 = 𝑧1 converges to a
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Table 1: Parameters of the control scheme.

Parameter Value Parameter Value Parameter Value
𝑘1 0.1 𝛽1 3 𝑝1, 𝑞1 5, 1𝑘2 0.8 𝛽2 4 𝑎1, 𝑏1 5, 4𝑙1 0.01 ℎ 0.5 𝑝2, 𝑞2 5, 1𝜏1 0.01 𝑚1 0.001 𝑎2, 𝑏2 5, 5𝜏2 0.5 𝜌0 0.5 𝑝3, 𝑞3 5, 4𝛾 0.3 𝜌∞ 0.001 𝑎3, 𝑏3 5, 1𝜆 2 𝜅 0.1

small region of the origin within the finite time𝑇𝐹 = 𝑇1+𝑇2+𝑇3, and from the definition 𝜔 = 𝑧2 + 𝑥𝑐, 𝜔 is also bounded.
According to Lemma 3, the stabilization of transformed
error 𝜀 is sufficient to guarantee 𝜎 converge with prescribed
performance described by (22).This completes the proof.

Remark 7. From (54) and (58), it is seen that the increase of𝑘1, 𝑘2, 𝜏1, 𝜏2, 𝑙1 and decrease of 𝛾 lead to better convergence
speed, but large 𝜏1, 𝑙1 and small 𝛾 will result in chattering
problem. Consequently, the choice of the parameters 𝜏1, 𝑙1,
and 𝛾 should be considered with a trade between the
convergence speed and chattering reduction.

5. Simulation

In order to illustrate the effectiveness of the proposed control
scheme, the simulation results and discussions are presented
in this section. The spacecraft model is expressed as (1) and
(2) where the initial values of the state parameters are set as

𝜎 (0) = [−0.3, −0.4, 0.2]𝑇
𝜔 (0) = [0, 0, 0]𝑇 rad/s. (59)

The nominal inertia matrix is

𝐽0 = [[
[
350 3 4
3 270 10
4 10 192

]]
]

(60)

and the uncertainty Δ𝐽 is
Δ𝐽 = diag {5 sin (0.1𝑡) , 7 sin (0.2𝑡) , 9 sin (0.3𝑡)} kg

⋅ m2. (61)

The external disturbance is
𝑑
= (‖𝜔‖2 + 0.05) [sin (0.8𝑡) , cos (0.5𝑡) , sin (0.3𝑡)]𝑇N

⋅m.
(62)

The maximum torque of the actuators is V𝑀𝑖 = 8 N ⋅ m,𝑖 = 1, 2, 3. In order to reflect the fault condition of real
actuators such as flywheels, a time-varying loss of actuator
effectiveness fault 𝐸 = diag{𝐸1, 𝐸2, 𝐸3} is given as [9]

𝐸1 = 0.2 + 0.1 sin (0.2𝜋𝑡) , 𝑡 ≥ 15s
𝐸2 = 0.2 + 0.1 sin (0.3𝜋𝑡) , 𝑡 ≥ 12s
𝐸3 = 0.2 + 0.1 sin (0.4𝜋𝑡) , 𝑡 ≥ 10s.

(63)

In practice, to perform a high-precision stabilization and
safety during themaneuvers, the state 𝜎𝑖 should be stabilize to
a small region, i.e., |𝜎𝑖| ≤ 1×10−3, 𝑖 = 1, 2, 3, and no overshoot
is allowed.

The comparative simulations are given to verify the effec-
tiveness of the proposed control scheme. For the notation
convenience, the three compared control schemes are given
as follows.

M1: the proposed control scheme including the finite-
time command filter (30), virtual control (32), error compen-
sation (33), commanded controller (42), and the update law
(45). The control parameter settings are shown in Table 1.

M2: the conventional backstepping control scheme [26].
The virtual control 𝛼, commanded controller V, and fuzzy
adaptive update law are given by

𝛼 = −𝑘1𝐺−1𝑧1 (64)

V = 𝐽0 (−𝑘2𝑧2 − 𝜃𝜂𝑠22ℎ2 ) (65)

̇̂𝜃 = 𝜆∑3𝑖=1 𝑠22𝑖Φ𝑖𝑇Φ𝑖2ℎ2 − 𝑚1𝜃 (66)

where 𝑧1 = 𝜎, 𝑧2 = 𝜔 − 𝛼, and the control parameters𝑘1, 𝑘2, 𝜆, ℎ are set the same as M1 scheme.
M3: the adaptive fast terminal sliding mode control

scheme proposed in [22]. The sliding function 𝑆 is given by

𝑆 = 𝜔 + 𝐾1𝜎 + 𝐾2𝑆𝑎𝑢 (67)

where 𝐾1, 𝐾2 are design parameters and 𝑆𝑎𝑢 = [𝑆𝑎𝑢1, 𝑆𝑎𝑢2,𝑆𝑎𝑢3]𝑇 is
𝑆𝑎𝑢𝑖
= {{{

sgn (𝜎𝑖) 𝛿𝑖𝑟 , if 𝜎𝑖 ≥ 𝜀
(2 − 𝑟) 𝜀𝑟−1𝜎𝑖 + (2 − 𝑟) 𝜀𝑟−2 sgn (𝜎𝑖) 𝜎2𝑖 , if 𝜎𝑖 < 𝜀

(68)

where 𝜀 > 0 is a small constant scalar; 0 < 𝑟 < 1 is a design
parameter.

The control law is

V = −𝜏𝑆 − 𝜌sig0.5 (𝑆) − V𝑠𝑠 (𝑡) (69)

where 𝜏, 𝜌 are design parameters, sig0.5(𝑆) = [|𝑆1|0.5 sgn(𝑆1),|𝑆2|0.5 sgn(𝑆2), |𝑆3|0.5 sgn(𝑆3)]𝑇, and V𝑠𝑠(𝑡) is
V𝑠𝑠 (𝑡)
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Figure 1: Attitude 𝜎 along with corresponding performance bounds.

= {{{{{{{

𝑆‖𝑆‖𝐹 (𝑡) + 𝑆
‖𝑆‖2
3∑
𝑖=1

𝑜𝑖4𝑝𝑖 𝑐𝑖 (𝑡) , if ‖𝑆‖ 𝐹 (𝑡) > 𝜖
S𝜖𝐹2 (𝑡) , if ‖𝑆‖ 𝐹 (𝑡) ≤ 𝜖

(70)

where 𝜖 > 0 is a small constant scalar, 𝐹(𝑡) = 𝑐1(𝑡)+𝑐2(𝑡)‖𝜔‖+𝑐3(𝑡)‖𝜔‖2, and the update laws are given by

̇̂𝑐1 = −𝑜1𝑐1 + 𝑝1 ‖𝑆‖

̇̂𝑐2 = −𝑜2𝑐2 + 𝑝2 ‖𝑆‖ ‖𝜔‖
̇̂𝑐3 = −𝑜3𝑐3 + 𝑝3 ‖𝑆‖ ‖𝜔‖2

(71)

where 𝑜𝑖, 𝑝𝑖, 𝑖 = 1, 2, 3, are design parameters. The parame-
ters are chosen as 𝑟 = 9/11, 𝐾1 = 0.4𝐼3, 𝐾2 = 0.2𝐼3, 𝜏 = 10𝐼3,𝜌 = 1, 𝑜𝑖 = 0.1, 𝑝𝑖 = 2, 𝑖 = 1, 2, 3, 𝜖 = 0.01, and 𝜀 = 0.0001.

The simulation results are shown in Figures 1–5. The
attitude described by MRPs 𝜎𝑖(𝑡), 𝑖 = 1, 2, 3, along with the
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Figure 2: Angular velocity 𝜔.

corresponding performance bounds is depicted in Figure 1.
As shown in Figure 1, although all the three schemes could
achieve the attitude stabilization, the M2 and M3 fail to
meet the prescribed transient and steady-state error bound,
while the proposed M1 scheme remains in the prescribed
bound all the time. The angular velocities 𝜔 of the three
schemes are depicted in Figure 2, which shows that M1
can provide better angular velocity performance than M2
and M3. From Figures 1 and 2, it is concluded that the
attitude stabilization with prescribed performance and high

precision is achieved in a finite time with the proposed
control scheme. Figure 3 shows the actual control signals𝑢, which are quite similar for different three schemes. The
three-dimensional trajectory of the transformed error 𝜀(𝑡) is
shown in Figure 4; it can be seen that the transformed error
can converge to the neighbourhood of the origin in a finite
time (around 40 s) subject to the actuator fault and input
saturation. The convergence performance of the estimated
parameter 𝜃 is shown in Figure 5, and it is clear that the
parameter 𝜃 converges to a positive constant. From Figures
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1–5, it is concluded that the proposed control scheme can
achieve the prescribed performance within a finite time in
the presence of the inertia uncertainty, external disturbance,
actuator saturation, and faults.

6. Conclusion

The problem of attitude stabilization with guaranteed tran-
sient and steady-state performance has been investigated in
this paper for the spacecraft systems with inertia uncertainty,
external disturbance, actuator saturation, and faults. The sin-
gularity problem caused by the differentiation of the virtual
control is avoided by the proposed first-order command filter.
Then, incorporate the prescribed performance boundary into
the controller design by using the error transformation to
guarantee the prescribed performance of the system output.
The control scheme stabilizes the system within a finite time
with the proposed adaptive finite-time fault-tolerant control
scheme. Finally, simulation results have been provided to
verify the effectiveness of the proposed control algorithm.
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