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In this paper, dynamic behavior analysis has been discussed for a class of switched complex-valued neural networks with interval
parameter uncertainties and impulse disturbance. Sufficient conditions for guaranteeing the existence, uniqueness, and global
robust exponential stability of the equilibrium point have been obtained by using the homomorphismmapping theorem, the scalar
Lyapunov function method, the average dwell time method, and M-matrix theory. Since there is no result concerning the stability
problem of switched neural networks defined in complex number domain, the stability results we describe in this paper generalize
the existing ones. The effectiveness of the proposed results is illustrated by a numerical example.

1. Introduction

It is of great importance to study complex-valued neural
networks because of their extensive application in many
fields, such as filtering, speech synthesis, remote sensing,
signal processing, and others, which cannot be analyzed
comprehensively with only their real-valued counterparts
[1, 2]. Complex-valued neural networks are not only the
simple extensions of real-valued systems due to their more
complicated properties and research methods for dynamic
behavior analysis, including stability, synchronization, and
periodicity of system states.Therefore, there have been a great
number of important studies published in the last few years
that investigate dynamic behavior analysis of complex-valued
neural networks.

Ever since the authors in [3, 4] studied the stability prob-
lems of several kinds of neural networks defined in complex
number domain, scholars have presented plenty of significant
conclusions about the stability of various complex-valued
neural networks. Considering that time delay is unavoidable
in the practice model of artificial neural networks, which

could lead to instability of systems, Hu [5] established a class
of delayed complex-valued neural networks and obtained suf-
ficient conditions for assuring the equilibrium point stability
of the system with two classes of complex-valued activation
functions. With respect to complex-valued neural networks
with various delays, the corresponding achievements can
be referred in [6–12]. The impulsive effect inevitably exists
in practical neural networks. For instance, system states
are subject to instantaneous perturbations and experience
abrupt changes in certain instances, which may be caused by
the switching phenomenon, a frequency change or another
sudden noise, and exhibits an impulsive effect [13]. Authors
[13] established some sufficient conditions for assuring the
exponential stability of a class of delayed complex-valued
neural networks with impulsive disturbance by using the
vector Lyapunov function method and the mathematical
induction method. In [14], the global exponential conver-
gence of T-S fuzzy complex-valued neural networks with
time-varying delays and impulsive effects was discussed,
and some sufficient conditions were obtained in terms of
a complex-valued linear matrix inequality for assuring the
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global exponential convergence of the system states. Song
[15, 16] also considered the impulsive effect in two tapes of
complex-valued neural networks with time delays.

Recently, fruitful results on dynamic behavior analysis of
nonlinear systems including neural networks with switching
signals have been reported in the existing literatures [17–
29]. As pointed out in [17], the nodes of a neural network
in reality may encounter a connection failure or a new
connection build-up; the structure of a neural network is
inevitably designed to change abruptly with some internal
or external incentives. This usually obligates neural networks
to exhibit a special characteristic, network mode switching.
Modeling this behavior by using the technique of the Markov
process [2] or the switched system [18, 19] is more natural
and generally accepted in the practical application of neural
networks. However, the stability results proposed in [17–
27] are only suitable to neural networks defined in the
real number domain. In [2], a class of delayed complex-
valued neural networks with Markova jumping parameters
was established. The existence, uniqueness, and stochastic
exponential robust stability of the equilibrium point of the
addressed system were studied by coupling the M-matrix
theory with the vector Lyapunov function method. Thus
far, there are no stability results with respect to complex-
valued neural networks with switching signal. In addition
to the impulsive effects, parameter uncertainties have been
considered in the form of delayed neural networks including
real-valued systems [20, 30, 31] and complex-valued systems
[2, 32–34], which were named interval systems. With respect
to the stability problem of switched neural networks, there
are two main problems that need to be generalized further.
The switched neural networks defined in the real number
domain can be extended to switched systems defined in the
complex number domain. Moreover, the switched activation
functions and self-feedback coefficients were not considered
in the models of switched real-valued neural networks in the
most of existing results, such as [19, 20, 26], which can be
assumed to be switch signals.

Motivated by the above discussion, in this paper we
will investigate the robust exponential stability of a class
of switched complex-valued neural networks with inter-
val parameter uncertainties and impulsive disturbance. The
advantages and contributions can be described as follows.
(1) The switched neural networks are defined in the com-
plex number domain which including real-valued neural
networks. (2) The interconnected matrices, self-feedback
coefficients, and activation functions in the model are with
different forms in different switched subsystems. (3) Both
impulsive disturbances and interval parameter uncertainties
are considered in the systems. (4)The sufficient conditions for
ensuring the robust exponential stability of the equilibrium
point are expressed in terms of the simple forms of inequali-
ties, which are easy to check in practice.

This paper is organized as follows. In Section 2, a
model description and preliminaries are given, including
definitions, assumed conditions, and lemmas. In Section 3,
a theorem and several corollaries are proposed for the
stability judgment of the complex-valued neural networks
addressed in this paper. In Section 4, a numerical example

with simulation results is given to verify the effectiveness of
the main results. Finally, the conclusion is drawn and future
work is proposed in Section 5.

2. Model Description and Preliminaries

Notations, herein defined, will be used throughout the whole
paper. Let R, C, and Z+ denote a real number set, a complex
number set, and a positive integer set, respectively. Assuming
that 𝑢 = 𝑥+𝑦i; here𝑥, 𝑦 ∈ R and i denotes the imaginary unit.
Let |𝑢| be the module; i.e., |𝑢| = √𝑥2 + 𝑦2. Denote 𝑢 as the
conjugate complex number of 𝑢. For complex number vector
𝑢 ∈ C𝑛, let |𝑢| = (|𝑢1|, |𝑢2|, . . . , |𝑢𝑛|)T, when (⋅)T denotes
the transpose of the vector. Define the norm of the complex
number vector 𝑢 as ‖𝑢‖ = √∑𝑛𝑗=1 |𝑢𝑗|2. For the complex
number matrix 𝐴 = (𝑎𝑗𝑚)𝑛×𝑛 ∈ C𝑛×𝑛, let |𝐴| = (|𝑎𝑗𝑚|)𝑛×𝑛 ∈
R𝑛×𝑛, where |𝑎𝑗𝑚| = √[Re(𝑎𝑗𝑚)]2 + [Im(𝑎𝑗𝑚)]2 and Re(⋅) and
Im(⋅) represent the real and the imaginary parts of a complex
number, respectively.

A class of switched complex-valued neural networks with
interval parameter uncertainties and impulse disturbance is
considered in this paper. It can be described as follows:

𝑢̇ (𝑡) = −𝑊𝜎(𝑡)𝑢 (𝑡) + 𝐴𝜎(𝑡)𝑓𝜎(𝑡) (𝑢 (𝑡))
+ 𝐵𝜎(𝑡)𝑓𝜎(𝑡) (𝑢 (𝑡 − 𝜏)) +𝑂, 𝑡 ≥ 𝑡0

𝑢 (𝑡+𝑘 ) = Δ𝑘 (𝑡𝑘, 𝑢 (𝑡𝑘)) , 𝑘 ∈ {1, 2, . . .}
𝑢 (𝑠 + 𝑡0) = 𝜑 (𝑠) , 𝑠 ∈ [−𝜏, 0] ,

(1)

For analysis convenience, (1) is separated into the following
forms:

𝑢̇𝑗 (𝑡) = −𝜔𝜎(𝑡)𝑗 𝑢𝑗 (𝑡) + 𝑛∑
𝑚=1

[𝑎𝜎(𝑡)𝑗𝑚 𝑓𝜎(𝑡)𝑚 (𝑢𝑚 (𝑡))
+ 𝑏𝜎(𝑡)𝑗𝑚 𝑓𝜎(𝑡)𝑚 (𝑢𝑚 (𝑡 − 𝜏𝑗𝑚))] + 𝑂𝑗, 𝑡 ≥ 𝑡0

𝑢𝑗 (𝑡+𝑘 ) = Δ𝑘𝑗 (𝑡𝑘, 𝑢𝑗 (𝑡𝑘)) , 𝑘 ∈ {1, 2, . . .}
𝑢𝑗 (𝑠 + 𝑡0) = 𝜑𝑗 (𝑠) , 𝑠 ∈ [−𝜏, 0] ,

(2)

In (2), 𝑢𝑗(𝑡) ∈ C represents the neuron state, 𝑗 = 1, 2, . . . , 𝑛.
It is assumed that the impulsive effect only occurs at the
switching instant. The neuron state is right continuous at
the instant of impulsive occurrence, i.e., 𝑢𝑗(𝑡𝑘) = 𝑢𝑗(𝑡+𝑘 )
and 𝑢𝑗(𝑡−𝑘 ) = lim𝑡󳨀→𝑡−

𝑘
𝑢𝑗(𝑡). 𝜎(𝑡) is the switching signal or

switching law, which is a piecewise constant function. Let𝜎(𝑡)
be [0,∞) 󳨀→ Ξ = {1, 2, . . . ,𝑁}. It is assumed that 𝜎(𝑡) is
unknown switching signal.The following switching sequence
can be obtained according to the switching signal 𝜎(𝑡), which
means that the ℎ-th subsystem is active when 𝑡 ∈ (𝑡𝑘, 𝑡𝑘+1],

{(𝑡0, 𝑗0) , (𝑡1, 𝑗1) , . . . , (𝑡𝑘, 𝑗ℎ) , . . . | 𝑗ℎ, ℎ ∈ Ξ, 𝑘
= 1, 2, . . .} . (3)
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𝑊ℎ = diag(𝜔ℎ1 , 𝜔ℎ2 , . . . , 𝜔ℎ𝑛) ∈ R𝑛×𝑛 denotes the neuron self-
feedback coefficient matrix of the h-th subsystem, where𝜔ℎ𝑗 >0, ℎ ∈ Ξ, 𝑗 = 1, 2, . . . , 𝑛. 𝐴ℎ = (𝑎ℎ𝑗𝑚)𝑛×𝑛 ∈ C𝑛×𝑛 and
𝐵ℎ = (𝑏ℎ𝑗𝑚)𝑛×𝑛 ∈ C𝑛×𝑛 are the connection weight matrices
of the h-th subsystem. 𝑓ℎ(𝑢(𝑡)) = [𝑓ℎ1 (𝑢1(𝑡)), 𝑓ℎ2 (𝑢2(𝑡)), . . . ,𝑓ℎ𝑛 (𝑢𝑛(𝑡))]T ∈ C𝑛 represents the activation function of the h-
th subsystem. 𝑂(𝑡) = [𝑂1(𝑡), 𝑂2(𝑡), . . . , 𝑂𝑛(𝑡)]T ∈ C𝑛 is the
external input vector. Δ𝑘𝑗(𝑡𝑘, 𝑢𝑗(𝑡𝑘)) is a bounded sequence
depending on 𝑡𝑘 and 𝑢𝑗(𝑡𝑘). The delay 𝜏𝑗𝑚 ≥ 0 is a positive
number with 𝜏 = max1≤𝑗,𝑚≤𝑛{𝜏𝑗𝑚}. 𝑢𝑗(𝑠 + 𝑡0) = 𝜑𝑗(𝑠) is the
initial condition of system; here 𝜑𝑗(𝑠) is continuous function
mapping from [−𝜏, 0] to C, 𝑗 = 1, 2, . . . , 𝑛.
Assumption 1. Each function 𝑓ℎ𝑗 (⋅) is globally Lipschitz with
Lipschitz constant 𝑙ℎ𝑗 > 0; i.e., the inequality |𝑓ℎ𝑗 (𝑢𝑗(𝑡)) −𝑓ℎ𝑗 (V𝑗(𝑡))| ≤ 𝑙ℎ𝑗 |𝑢𝑗(𝑡) − V𝑗(𝑡)| holds for all 𝑢𝑗(𝑡), V𝑗(𝑡) ∈ C,
𝑗 = 1, 2, . . . , 𝑛, ℎ ∈ Ξ. Let 𝐿ℎ = diag(𝑙ℎ1 , 𝑙ℎ2 , . . . , 𝑙ℎ𝑛), ℎ ∈ Ξ.
Remark 2. Activation functions in complex number domains
that satisfy Assumption 1 are actually the extensions of the

real-valued functions that satisfy the Lipschitz continuity
condition. As demonstrated in [2, 7, 14, 34, 35], it is easy
to verify that assumptions concerning the conditions of
the decomposition of a complex-valued activation function
into its real and imaginary parts in [8, 10, 13] are strong
constraints, and that, in this case, shows a special case
of Assumption 1. In order to unify the research approach
using real-valued systems and complex-valued systems, it is
assumed that complex-valued activation functions are not
explicitly expressed by separating real and imaginary parts,
but by satisfying the Lipschitz continuity condition.

Assumption 3. It is assumed that, for all 𝑢𝑗(𝑡), V𝑗(𝑡) ∈ C, there
exists a positive number 𝜌𝑘𝑗 > 0 such that |Δ𝑘𝑗(𝑡𝑘, 𝑢𝑗(𝑡+𝑘 )) −Δ𝑘𝑗(𝑡𝑘, V𝑗(𝑡+𝑘 ))| ≤ 𝜌𝑘𝑗 |𝑢𝑗(𝑡−𝑘 ) − V𝑗(𝑡−𝑘 )| holds, and 𝑗 = 1, 2, . . . , 𝑛,𝑘 = 1, 2, . . ..

It is obvious that Assumption 3 implies that the impulsive
function Δ𝑘𝑗(𝑡𝑘, 𝑢𝑗(𝑡+𝑘 )) is bounded.

After considering parameter uncertainties in (2), the
interval weight matrices in the complex number domain are
defined as follows for every switching subsystem h (ℎ ∈ Ξ):

𝐴ℎ ∈ 𝐴ℎ𝐼 = {󵄨󵄨󵄨󵄨󵄨𝐴ℎ󵄨󵄨󵄨󵄨󵄨 = (󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨)𝑛×𝑛 : 󵄨󵄨󵄨󵄨󵄨𝐴̃ℎ
󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝐴ℎ󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨󵄨𝐴̃ℎ󵄨󵄨󵄨󵄨󵄨󵄨 , i.e. 󵄨󵄨󵄨󵄨󵄨󵄨𝑎̃ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨} , (4)

𝐵ℎ ∈ 𝐵ℎ𝐼 = {󵄨󵄨󵄨󵄨󵄨𝐵ℎ󵄨󵄨󵄨󵄨󵄨 = (󵄨󵄨󵄨󵄨󵄨𝑏ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨)𝑛×𝑛 : 󵄨󵄨󵄨󵄨󵄨𝐵̃ℎ
󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝐵ℎ󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨󵄨𝐵̃ℎ󵄨󵄨󵄨󵄨󵄨󵄨 , i.e. 󵄨󵄨󵄨󵄨󵄨󵄨𝑏ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝑏ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝑏̃ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨} . (5)

Let 𝑢# = (𝑢#1, 𝑢#2, . . . , 𝑢#𝑛)T ∈ C𝑛 be the equilibrium point
of (2).

Definition 4. The equilibrium point 𝑢# of (2) is defined to be
robustly exponentially stable if there exists𝑀 ≥ 1 and 𝜆 > 0
such that the following inequality holds for all𝐴ℎ ∈ 𝐴ℎ𝐼,𝐵ℎ ∈
𝐵ℎ𝐼(ℎ ∈ Ξ) and 𝑡 ≥ 𝑡0 ≥ 0,󵄩󵄩󵄩󵄩󵄩𝑢 (𝑡) − 𝑢#󵄩󵄩󵄩󵄩󵄩 ≤ 𝑀 exp (−𝜆 (𝑡 − 𝑡0)) sup

𝑠∈[−𝜏,0]

󵄩󵄩󵄩󵄩󵄩𝜑 (𝑠) − 𝑢#󵄩󵄩󵄩󵄩󵄩 . (6)

Definition 5 (see [36, 37]). It is supposed that 𝑁𝜎(𝑡1, 𝑡2)
denotes the switching numbers on time-interval (𝑡1, 𝑡2), here𝑡1 > 0. If there exists Γ > 0 such that, for any 𝑡2 ≥ 𝑡1 ≥ 0 and𝑁0 ≥ 0, the inequality 𝑁𝜎(𝑡1, 𝑡2) ≤ 𝑁0 + ((𝑡2 − 𝑡1)/Γ) holds,
then Γ is called the average dwell time.

In order to obtain results, the following lemmas are given
in this paper.

Lemma 6 (see [6]). Let𝑄 = (𝑞𝑗𝑚)𝑛×𝑛 ∈ R𝑛×𝑛 be a matrix with𝑞𝑗𝑚 ≤ 0(𝑗,𝑚 = 1, 2, ⋅ ⋅ ⋅ , 𝑛, 𝑗 ̸= 𝑚). �e following statements
are equivalent: (i) 𝑄 = (𝑞𝑗𝑚)𝑛×𝑛 is an M-matrix; (ii) the real
parts of all eigenvalues of𝑄 are positive; and (iii) there exists a
positive vector 𝜉 ∈ R𝑛 such that 𝑄𝜉 > 0.

Denote Ω(𝑄) = {𝜉 ∈ R𝑛 | 𝐴𝜉 > 0, 𝜉 > 0} if 𝑄 is an
M-matrix.

Lemma7 (see [6]). If𝐻(𝑧) is a continuous function onC𝑛 and
satisfies the following conditions, (i)𝐻(𝑧) is univalent injective

on C𝑛, and (ii) lim‖𝑧‖󳨀→∞‖𝐻(𝑧)‖ 󳨀→ ∞, then 𝐻(𝑧) is a
homeomorphism of C𝑛 into itself.

3. Main Results

In this section, we will give several sufficient conditions for
judging the robust exponential stability of 𝑢#of (2).

For analysis convenience, let 𝑢̃(𝑡) = 𝑢(𝑡) −𝑢#. Then, (2) is
converted to the following forms by translation:

̇̃𝑢𝑗 (𝑡) = −𝜔𝜎(𝑡)𝑗 𝑢̃𝑗 (𝑡) + 𝑛∑
𝑚=1

[𝑎𝜎(𝑡)𝑗𝑚 𝑔𝜎(𝑡)𝑚 (𝑢̃𝑚 (𝑡))
+ 𝑏𝜎(𝑡)𝑗𝑚 𝑔𝜎(𝑡)𝑚 (𝑢̃𝑚 (𝑡 − 𝜏𝑗𝑚))] , 𝑡 ≥ 𝑡0

𝑢̃𝑗 (𝑡+𝑘 ) = Δ̃𝑘𝑗 (𝑡𝑘, 𝑢̃𝑗 (𝑡𝑘)) , 𝑘 ∈ {1, 2, . . .}
𝑢̃𝑗 (𝑠 + 𝑡0) = 𝜑𝑗 (𝑠) , 𝑠 ∈ [−𝜏, 0] ,

(7)

where 𝜑𝑗(𝑠) = 𝜑𝑗(𝑠) − 𝑢#𝑗 , 𝑔𝜎(𝑡)𝑚 (𝑢̃𝑚(𝑡)) = 𝑓𝜎(𝑡)𝑚 (𝑢̃𝑚(𝑡) + 𝑢#𝑚) −𝑓𝜎(𝑡)𝑚 (𝑢#𝑚), and Δ̃𝑘𝑗(𝑡𝑘, 𝑢̃𝑗(𝑡𝑘)) = Δ𝑘𝑗(𝑡𝑘, 𝑢̃𝑗(𝑡𝑘)+𝑢#𝑗)−Δ𝑘𝑗(𝑡𝑘, 𝑢#𝑗).
Theorem 8. Suppose that Assumptions 1 and 3 hold. If the
following conditions are satisfied, then the equilibrium point 𝑢#
of (2) exists and is unique and robustly exponentially stable for
all𝐴ℎ ∈ 𝐴ℎ𝐼, 𝐵ℎ ∈ 𝐵ℎ𝐼, and arbitrary input 𝑂(𝑡) ∈ C𝑛:
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(I) Every matrix 𝑄ℎ = (𝑞ℎ𝑗𝑚)𝑛×𝑛 is a M-matrix, where

𝑞ℎ𝑗𝑗 = 2𝜔ℎ𝑗 − 𝑛∑
𝑚=1

𝑙ℎ𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏̃ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨) ,
𝑞ℎ𝑗𝑚 = −2𝑙ℎ𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏̃ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨) ,

ℎ ∈ Ξ, 𝑗, 𝑚 = 1, 2, . . . , 𝑛, 𝑗 ̸= 𝑚.
(8)

(II) For any given 𝜉ℎ ∈ Ω(𝑄ℎ), the average dwell time
satisfies Γ > Γ∗ = (ln 𝜐)/𝜀; here 𝜀 > 0 satisfies the following
inequalities:

𝜉ℎ𝑗 𝜀 − 2𝜔
ℎ
𝑗 + ∑𝑛𝑚=1 𝑙ℎ𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨)

exp (𝜀𝜏)
+ 2𝜉ℎmax

𝑛∑
𝑚=1

𝑙ℎ𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨) < 0,
(9)

where 𝜐 = max1≤𝑗≤𝑛,𝑘∈Z+,𝑗ℎ,𝑚ℎ∈Ξ{𝜋𝑚ℎ𝑗 (𝜌𝑘𝑗 )2, 𝜋𝑚ℎ𝑗 𝛽𝑚ℎ𝑗 } ≥ 1,
𝜉ℎmax = max1≤𝑗≤𝑛{𝜉ℎ𝑗 }, 𝜋𝑚ℎ𝑗 = max1≤𝑗≤𝑛{𝜉𝑗ℎ𝑗 }/min1≤𝑗≤𝑛{𝜉𝑚ℎ𝑗 },
and 𝛽𝑚ℎ𝑗 = max1≤𝑚≤𝑛{𝑙𝑗ℎ𝑚 |𝑏̃𝑗ℎ𝑗𝑚|}/min1≤𝑚≤𝑛{𝑙𝑚ℎ𝑚 |𝑏̃𝑚ℎ𝑗𝑚 |}.
Proof. First, the existence and uniqueness of 𝑢#of (2) will be
proven for every subsystem by Lemmas 6 and 7.

The map 𝐻ℎ(𝑢) = [𝐻ℎ1 (𝑢), 𝐻ℎ2 (𝑢), . . . , 𝐻ℎ𝑛 (𝑢)]T ∈ C𝑛
which is associated with (2), is defined, i.e., for all 𝑗 =1, 2, . . . , 𝑛 and ℎ ∈ Ξ,

𝐻ℎ𝑗 (𝑢) = −𝜔ℎ𝑗𝑢𝑗 + 𝑛∑
𝑚=1

(𝑎ℎ𝑗𝑚 + 𝑏ℎ𝑗𝑚) 𝑓ℎ𝑚 (𝑢𝑚) + 𝑂𝑗. (10)

It is well known that if𝐻ℎ(𝑢) is a homeomorphism map,
then there is a unique equilibrium point 𝑢# for (2).

We prove that𝐻ℎ(𝑢) is a univalent injective on C𝑛 under
Assumption 1.

According to Lemma 6, it can be concluded that there
exists a positive vector 𝜉ℎ such that the following inequalities
hold for all 𝑗 = 1, 2, . . . , 𝑛, ℎ ∈ Ξ:

𝜉ℎ𝑗 [−2𝜔ℎ𝑗 + 𝑛∑
𝑚=1

𝑙ℎ𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏̃ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨)]

+ 2 𝑛∑
𝑚=1

𝑙ℎ𝑚𝜉ℎ𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏̃ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨) < 0.
(11)

Moreover, it follows from (9) that there exists a sufficient
small positive number 𝜇 > 0 such that the following
inequalities hold for all 𝑗 = 1, 2, . . . , 𝑛, ℎ ∈ Ξ:

𝜉ℎ𝑗 [2𝜔ℎ𝑗 − 𝑛∑
𝑚=1

𝑙ℎ𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏̃ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨)]

− 2𝜉ℎmax

𝑛∑
𝑚=1

𝑙ℎ𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨) ≥ 𝜇 > 0.
(12)

It is assumed that there exist 𝑢, 𝑣 ∈ C𝑛 with 𝑢 ̸= 𝑣 such
that𝐻ℎ𝑗 (𝑢) = 𝐻ℎ𝑗 (𝑣), 𝑗 = 1, 2, . . . , 𝑛, ℎ ∈ Ξ; i.e.,

− 𝜔ℎ𝑗𝑢𝑗 + 𝑛∑
𝑚=1

(𝑎ℎ𝑗𝑚 + 𝑏ℎ𝑗𝑚) 𝑓ℎ𝑚 (𝑢𝑚)

= −𝜔ℎ𝑗V𝑗 + 𝑛∑
𝑚=1

(𝑎ℎ𝑗𝑚 + 𝑏ℎ𝑗𝑚) 𝑓ℎ𝑚 (V𝑚) .
(13)

Considering (4) and (5) as well as Assumption 1, for all𝑗 = 1, 2, . . . , 𝑛, ℎ ∈ Ξ, we get
𝜔ℎ𝑗 󵄨󵄨󵄨󵄨󵄨𝑢𝑗 − V𝑗

󵄨󵄨󵄨󵄨󵄨 ≤
𝑛∑
𝑚=1

𝑙ℎ𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏̃ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨𝑢𝑚 − V𝑚
󵄨󵄨󵄨󵄨 . (14)

Furthermore, (14) can be rewritten as𝑄ℎ|𝑢−𝑣| ≤ 0where
𝑞ℎ
𝑗𝑗
= 𝜔ℎ𝑗 , 𝑞ℎ𝑗𝑚 = −𝑙ℎ𝑚(|𝑎ℎ𝑗𝑚| + |𝑏̃ℎ𝑗𝑚|), 𝑗 = 1, 2, . . . , 𝑛, 𝑗 ̸= 𝑚.

Because the matrix 𝑄ℎ is an M-matrix, it is obvious that the
matrix 𝑄ℎ = (𝑞ℎ

𝑗𝑚
)𝑛×𝑛 is also an M-matrix. We know that

det(𝑄ℎ) > 0 holds and (𝑄ℎ)−1 exists obviously. Furthermore,
it can be concluded that |𝑢− 𝑣| = 0; i.e.,u= 𝑣. It is an obvious
contradiction with the assumption 𝑢 ≠ 𝑣. Hence,𝐻ℎ(𝑢) is a
univalent injective on C𝑛, ℎ ∈ Ξ.

Next, we will prove that lim‖𝑢‖󳨀→∞‖𝐻ℎ(𝑢)‖ 󳨀→ ∞.
Let 𝐻̃ℎ𝑗 (𝑢) = 𝐻ℎ𝑗 (𝑢) − 𝐻ℎ𝑗 (0), 𝑗 = 1, 2, . . . , 𝑛, ℎ ∈ Ξ; i.e.,
𝐻̃ℎ𝑗 (𝑢) = − [𝜔ℎ𝑗𝑢𝑗 − 𝜔ℎ𝑗0]

+ 𝑛∑
𝑚=1

(𝑎ℎ𝑗𝑚 + 𝑏ℎ𝑗𝑚) [𝑓ℎ𝑚 (𝑢𝑚) − 𝑓ℎ𝑚 (0)] . (15)

After multiplying by the conjugate complex number 𝑢𝑗 of𝑢𝑗 on both sides of (15), then for all 𝑗 = 1, 2, . . . , 𝑛, ℎ ∈ Ξ, we
get

𝐻̃ℎ𝑗 (𝑢) 𝑢𝑗 = − [𝜔ℎ𝑗𝑢𝑗 − 𝜔ℎ𝑗 0] 𝑢𝑗
+ 𝑢𝑗 𝑛∑
𝑚=1

(𝑎ℎ𝑗𝑚 + 𝑏ℎ𝑗𝑚) [𝑓ℎ𝑚 (𝑢𝑚) − 𝑓ℎ𝑚 (0)] . (16)

Taking the conjugate operation on both sides of (16), for
all 𝑗 = 1, 2, . . . , 𝑛, ℎ ∈ Ξ, we have

𝐻̃ℎ𝑗 (𝑢) 𝑢𝑗
= − [𝜔ℎ𝑗𝑢𝑗 − 𝜔ℎ𝑗0] 𝑢𝑗
+ 𝑢𝑗 𝑛∑
𝑚=1

(𝑎ℎ𝑗𝑚 + 𝑏ℎ𝑗𝑚) [𝑓ℎ𝑚 (𝑢𝑚) − 𝑓ℎ𝑚 (0)] .
(17)

After combining (16) and (17) and considering (4), (5),
Assumption 1, for all 𝑗 = 1, 2, . . . , 𝑛, ℎ ∈ Ξ, we obtain

Re [𝐻̃ℎ𝑗 (𝑢) 𝑢𝑗]
= −Re {(𝜔ℎ𝑗𝑢𝑗 − 𝜔ℎ𝑗0) 𝑢𝑗}
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+ Re{𝑢𝑗 𝑛∑
𝑚=1

(𝑎ℎ𝑗𝑚 + 𝑏ℎ𝑗𝑚) [𝑓ℎ𝑚 (𝑢𝑚) − 𝑓ℎ𝑚 (0)]}

≤ −𝜔ℎ𝑗 󵄨󵄨󵄨󵄨󵄨𝑢𝑗󵄨󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨𝑢𝑗󵄨󵄨󵄨󵄨󵄨
𝑛∑
𝑚=1

𝑙ℎ𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏̃ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨𝑢𝑚󵄨󵄨󵄨󵄨 .
(18)

After multiplying by 𝜉ℎ𝑗 (𝑗 = 1, 2, . . . , 𝑛, ℎ ∈ Ξ) on both
sides of (18), taking the sum, and considering (12), we get

𝑛∑
𝑗=1

𝜉ℎ𝑗 Re (𝐻̃ℎ𝑗 (𝑢) 𝑢𝑗) ≤ 𝑛∑
𝑗=1

𝜉ℎ𝑗 [−𝜔ℎ𝑗 󵄨󵄨󵄨󵄨󵄨𝑢𝑗󵄨󵄨󵄨󵄨󵄨2

+ 󵄨󵄨󵄨󵄨󵄨𝑢𝑗󵄨󵄨󵄨󵄨󵄨
𝑛∑
𝑚=1

𝑙ℎ𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏̃ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨𝑢𝑚󵄨󵄨󵄨󵄨] ≤ 12
⋅ 𝑛∑
𝑗=1

𝜉ℎ𝑗 [−2𝜔ℎ𝑗 󵄨󵄨󵄨󵄨󵄨𝑢𝑗󵄨󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨𝑢𝑗󵄨󵄨󵄨󵄨󵄨2
𝑛∑
𝑚=1

𝑙ℎ𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏̃ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨)

+ 𝑛∑
𝑚=1

𝑙ℎ𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏̃ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨𝑢𝑚󵄨󵄨󵄨󵄨2]

≤ 12
{{{
𝑛∑
𝑗=1

𝜉ℎ𝑗 [−2𝜔ℎ𝑗 + 𝑛∑
𝑚=1

𝑙ℎ𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏̃ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨)] 󵄨󵄨󵄨󵄨󵄨𝑢𝑗󵄨󵄨󵄨󵄨󵄨2 +

⋅ 2 𝑛∑
𝑗=1

𝜉ℎmax

𝑛∑
𝑚=1

𝑙ℎ𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑚𝑗󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏̃ℎ𝑚𝑗󵄨󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨󵄨𝑢𝑗󵄨󵄨󵄨󵄨󵄨2}}}
≤ −0.5𝜇 𝑛∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑢𝑗󵄨󵄨󵄨󵄨󵄨2 .

(19)

Furthermore, it can be concluded that

0.5𝜇 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑢𝑗󵄨󵄨󵄨󵄨󵄨2 < − 𝑛∑
𝑗=1

𝜉ℎ𝑗 Re (𝐻̃ℎ𝑗 (𝑢) 𝑢𝑗)

≤ 𝜉ℎmax

𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝐻̃ℎ𝑗 (𝑢)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑢𝑗󵄨󵄨󵄨󵄨󵄨
≤ 0.5𝜉ℎmax

𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝐻̃ℎ𝑗 (𝑢)󵄨󵄨󵄨󵄨󵄨2

+ 0.5𝜉ℎmax

𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑢𝑗󵄨󵄨󵄨󵄨󵄨2 .

(20)

That is (𝜇 − 𝜉ℎmax) ∑𝑛𝑗=1 |𝑢𝑗|2 ≤ 𝜉ℎmax∑𝑛𝑗=1 |𝐻̃ℎ𝑗 (𝑢)|2;
i.e., (𝜇 − 𝜉ℎmax)‖𝑢‖2 ≤ 𝜉ℎmax‖𝐻̃ℎ(𝑢)‖2. Therefore, ‖𝑢‖2 ≤
(𝜇 − 𝜉ℎmax)−1𝜉ℎmax‖𝐻̃ℎ(𝑢)‖2 holds. Obviously, we have that
‖𝐻̃ℎ(𝑢)‖ 󳨀→ ∞ as ‖𝑢‖ 󳨀→ ∞. It means that ‖𝐻ℎ(𝑢)‖ 󳨀→ ∞
as ‖𝑢‖ 󳨀→ ∞.

In summation, it follows from Lemma 7 that 𝐻ℎ(𝑢) is a
homeomorphism on C𝑛, ℎ ∈ Ξ. Therefore, (2) has a unique
equilibrium point 𝑢#.

Next, the robust exponential stability of the equilibrium
point 𝑢# will be proved by applying the scalar Lyapunov
function method.

From (11), it can be obtained that

𝜉𝜎(𝑡)𝑗 [−2𝜔𝜎(𝑡)𝑗 + 𝑛∑
𝑚=1

𝑙𝜎(𝑡)𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏̃𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨)]

+ 𝑛∑
𝑚=1

𝑙𝜎(𝑡)𝑚 𝜉𝜎(𝑡)𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏̃𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨) < 0.
(21)

Define a function as follows:

𝐹𝑗 (𝜆) = 𝜉𝜎(𝑡)𝑗 𝜆 − 2𝜔𝜎(𝑡)𝑗 + ∑𝑛𝑚=1 𝑙𝜎(𝑡)𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨)
exp (𝜆𝜏)

+ 𝑛∑
𝑚=1

𝑙𝜎(𝑡)𝑚 𝜉𝜎(𝑡)𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨) .
(22)

Due to 𝐹𝑗(0) < 0 and 𝐹𝑗(⋅) is a continuous function, there
exists 𝜀𝜎(𝑡)𝑗 > 0 such that 𝐹𝑗(𝜀𝜎(𝑡)𝑗 ) < 0; i.e.,
𝐹𝑗 (𝜀𝜎(𝑡)𝑗 )

= 𝜉𝜎(𝑡)𝑗 𝜀𝜎(𝑡)𝑗 − 2𝜔𝜎(𝑡)𝑗 + ∑𝑛𝑚=1 𝑙𝜎(𝑡)𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨)
exp (𝜀𝜎(𝑡)𝑗 𝜏)

+ 𝑛∑
𝑚=1

𝑙𝜎(𝑡)𝑚 𝜉𝜎(𝑡)𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏̃𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨) < 0.
(23)

Choose a candidate scalar Lyapunov function as follows:

𝑉 (𝑡, 𝑢̃ (𝑡)) = 𝑛∑
𝑗=1

𝜉𝜎(𝑡)𝑗 {exp (𝜀𝑡) 󵄨󵄨󵄨󵄨󵄨𝑢̃𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨2

+ 𝑛∑
𝑚=1

𝑙𝜎(𝑡)𝑚 󵄨󵄨󵄨󵄨󵄨𝑏̃𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨 ∫
𝑡

𝑡−𝜏𝑗𝑚

exp (𝜀 (𝑠 + 𝜏𝑗𝑚))

⋅ 󵄨󵄨󵄨󵄨𝑢̃𝑚 (𝑠)󵄨󵄨󵄨󵄨2 d𝑠} .

(24)

Calculating the right upper derivation𝑉(𝑡, 𝑢̃(𝑡)) along the
zero solution of (7), we obtain

D+𝑉 (𝑡, 𝑢̃ (𝑡)) = 𝑛∑
𝑗=1

𝜉𝜎(𝑡)𝑗 {𝜀 exp (𝜀𝑡) 󵄨󵄨󵄨󵄨󵄨𝑢𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨2 + 2exp (𝜀𝑡)

⋅ Re (𝑢̃𝑗 (𝑡) ̇̃𝑢𝑗 (𝑡)) + 𝑛∑
𝑚=1

𝑙𝜎(𝑡)𝑚 󵄨󵄨󵄨󵄨󵄨𝑏𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨 × [exp (𝜀 (𝑡 + 𝜏𝑗𝑚))

⋅ 󵄨󵄨󵄨󵄨𝑢̃𝑚 (𝑡)󵄨󵄨󵄨󵄨2 − exp (𝜀𝑡) 󵄨󵄨󵄨󵄨󵄨𝑢̃𝑚 (𝑡 − 𝜏𝑗𝑚)󵄨󵄨󵄨󵄨󵄨2]} = 𝑛∑
𝑗=1

𝜉𝜎(𝑡)𝑗 {𝜀

⋅ exp (𝜀𝑡) 󵄨󵄨󵄨󵄨󵄨𝑢̃𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨2 + 2 exp (𝜀𝑡)Re (𝑢̃𝑗 (𝑡) × [−𝜔𝜎(𝑡)𝑗 𝑢̃𝑗 (𝑡)
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+ 𝑛∑
𝑚=1

[𝑎𝜎(𝑡)𝑗𝑚 𝑔𝜎(𝑡)𝑚 (𝑢̃𝑚 (𝑡)) + 𝑏𝜎(𝑡)𝑗𝑚 𝑔𝜎(𝑡)𝑚 (𝑢̃𝑚 (𝑡 − 𝜏𝑗𝑚))]])

+ 𝑛∑
𝑚=1

𝑙𝜎(𝑡)𝑚 󵄨󵄨󵄨󵄨󵄨𝑏𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨 [exp (𝜀 (𝑡 + 𝜏𝑗𝑚)) 󵄨󵄨󵄨󵄨𝑢̃𝑚 (𝑡)󵄨󵄨󵄨󵄨2

− exp (𝜀𝑡) 󵄨󵄨󵄨󵄨󵄨𝑢̃𝑚 (𝑡 − 𝜏𝑗𝑚)󵄨󵄨󵄨󵄨󵄨2]} ≤ 𝑛∑
𝑗=1

𝜉𝜎(𝑡)𝑗 {𝜀 exp (𝜀𝑡)

⋅ 󵄨󵄨󵄨󵄨󵄨𝑢̃𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨2 − 2 exp (𝜀𝑡) 𝜔𝜎(𝑡)𝑗 󵄨󵄨󵄨󵄨󵄨𝑢̃𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨2 +
𝑛∑
𝑚=1

𝑙𝑘𝑚 exp (𝜀𝑡)
⋅ [󵄨󵄨󵄨󵄨󵄨𝑎𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨 (󵄨󵄨󵄨󵄨󵄨𝑢̃𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝑢̃𝑚 (𝑡)󵄨󵄨󵄨󵄨2)
+ 󵄨󵄨󵄨󵄨󵄨𝑏̃𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨 (󵄨󵄨󵄨󵄨󵄨𝑢̃𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨𝑢̃𝑚 (𝑡 − 𝜏𝑗𝑚)󵄨󵄨󵄨󵄨󵄨2)] +

𝑛∑
𝑚=1

𝑙𝜎(𝑡)𝑚 󵄨󵄨󵄨󵄨󵄨𝑏̃𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨
⋅ [exp (𝜀 (𝑡 + 𝜏𝑗𝑚)) 󵄨󵄨󵄨󵄨𝑢̃𝑚 (𝑡)󵄨󵄨󵄨󵄨2

− exp (𝜀𝑡) 󵄨󵄨󵄨󵄨󵄨𝑢̃𝑚 (𝑡 − 𝜏𝑗𝑚)󵄨󵄨󵄨󵄨󵄨2]} ≤ 𝑛∑
𝑗=1

𝜉𝜎(t)𝑗 exp (𝜀𝑡) {[𝜀

− 2𝜔𝜎(𝑡)𝑗 + 𝑛∑
𝑚=1

𝑙𝜎(𝑡)𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏̃𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨)] 󵄨󵄨󵄨󵄨󵄨𝑢̃𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨2 +
𝑛∑
𝑚=1

𝑙𝜎(𝑡)𝑚
⋅ exp (𝜀𝜏) (󵄨󵄨󵄨󵄨󵄨𝑎𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏̃𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨𝑢̃𝑚 (𝑡)󵄨󵄨󵄨󵄨2} ≤ exp (𝜀 (𝑡 + 𝜏))

⋅ {{{
𝑛∑
𝑗=1

𝜉𝜎(t)𝑗

⋅ 𝜀 − 2𝜔𝜎(𝑡)𝑗 + ∑𝑛𝑚=1 𝑙𝜎(𝑡)𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨)
exp (𝜀𝜏) 󵄨󵄨󵄨󵄨󵄨𝑢̃𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨2

+ 𝑛∑
𝑚=1

𝜉𝜎(𝑡)𝑗 𝑙𝜎(𝑡)𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏̃𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨𝑢̃𝑚 (𝑡)󵄨󵄨󵄨󵄨2}}}
.

(25)

Considering (23), we get

D+𝑉 (𝑡, 𝑢̃ (𝑡))
≤ exp (𝜀𝜎(𝑡)𝑗 (𝑡 + 𝜏)) 𝑛∑

𝑗=1

𝐹𝑗 (𝜀𝜎(𝑡)𝑗 ) 󵄨󵄨󵄨󵄨󵄨𝑢̃𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨2 ≤ 0. (26)

Because 𝜎(𝑡): [0,∞) 󳨀→ Ξ = {1, 2, . . . , 𝑁} is a piecewise
constant function, taking 𝜀 = minℎ∈Ξ,1≤𝑗≤𝑛{𝜀ℎ𝑗 }, we can get

D+𝑉(𝑡, 𝑢̃ (𝑡)) ≤ exp (𝜀 (𝑡 + 𝜏)) 𝑛∑
𝑗=1

𝐹𝑗 (𝜀) 󵄨󵄨󵄨󵄨󵄨𝑢̃𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨2 ≤ 0. (27)

Furthermore, when 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1),𝑉(𝑡, 𝑢̃(𝑡)) ≤ 𝑉(𝑡+𝑘 , 𝑢̃(𝑡+𝑘 ))
holds.

Next, we will prove the convergence of system state at
the impulsive instant. Suppose that 𝜎(𝑡) = 𝑚ℎ ∈ Ξ as 𝑡 ∈[𝑡𝑘−1, 𝑡𝑘), which means the subsystem 𝑚ℎ is activated. When

𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), 𝜎(𝑡) = 𝑗ℎ ∈ Ξ, this means that the subsystem 𝑗ℎ
is activated at 𝑡+𝑘 , 𝑘 = 1, 2, . . .. Furthermore, we have

𝑉 (𝑡+𝑘 , 𝑢̃ (𝑡+𝑘 )) = 𝑉 (𝑡𝑘, 𝑢̃ (𝑡𝑘)) = 𝑛∑
𝑗=1

𝜉𝑗ℎ𝑗 {exp (𝜀𝑡+𝑘 )

⋅ 󵄨󵄨󵄨󵄨󵄨𝑢̃𝑗 (𝑡+𝑘 )󵄨󵄨󵄨󵄨󵄨2 +
𝑛∑
𝑚=1

𝑙𝑗ℎ𝑚 󵄨󵄨󵄨󵄨󵄨𝑏̃𝑗ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨
⋅ ∫𝑡+𝑘
𝑡+
𝑘
−𝜏𝑗𝑚

exp (𝜀 (𝑠 + 𝜏𝑗𝑚)) 󵄨󵄨󵄨󵄨𝑢̃𝑚 (𝑠)󵄨󵄨󵄨󵄨2 d𝑠}

≤ 𝑛∑
𝑗=1

𝜉𝑗ℎ𝑗 {exp (𝜀𝑡+𝑘 ) (𝜌𝑘𝑗 )2 󵄨󵄨󵄨󵄨󵄨𝑢̃𝑗 (𝑡−𝑘 )󵄨󵄨󵄨󵄨󵄨2 +
𝑛∑
𝑚=1

𝑙𝑗ℎ𝑚 󵄨󵄨󵄨󵄨󵄨𝑏̃𝑗ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨
⋅ ∫𝑡+𝑘
𝑡+
𝑘
−𝜏𝑗𝑚

exp (𝜀 (𝑠 + 𝜏𝑗𝑚)) 󵄨󵄨󵄨󵄨𝑢̃𝑚 (𝑠)󵄨󵄨󵄨󵄨2 d𝑠} = 𝑛∑
𝑗=1

𝜉𝑗ℎ𝑗

⋅ 𝜉
𝑚ℎ
𝑗𝜉𝑚ℎ𝑗

{{{
exp (𝜀𝑡−𝑘 ) (𝜌𝑘𝑗 )2 󵄨󵄨󵄨󵄨󵄨𝑢̃𝑗 (𝑡−𝑘 )󵄨󵄨󵄨󵄨󵄨2

+ 𝑛∑
𝑚=1

∫𝑡−𝑘
𝑡−
𝑘
−𝜏𝑗𝑚

𝑙𝑚ℎ𝑚 󵄨󵄨󵄨󵄨󵄨𝑏𝑚ℎ𝑗𝑚 󵄨󵄨󵄨󵄨󵄨𝑙𝑚ℎ𝑚 󵄨󵄨󵄨󵄨󵄨𝑏𝑚ℎ𝑗𝑚 󵄨󵄨󵄨󵄨󵄨 𝑙
𝑗ℎ
𝑚

󵄨󵄨󵄨󵄨󵄨𝑏̃𝑗ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨 exp (𝜀𝜏𝑗𝑚) exp (𝜀𝑠)

⋅ 󵄨󵄨󵄨󵄨𝑢̃𝑚 (𝑠)󵄨󵄨󵄨󵄨2 d𝑠}}}
.

(28)

According to the conditions given below (9) andAssump-
tion 3, we have

𝑉 (𝑡+𝑘 , 𝑢̃ (𝑡+𝑘 )) ≤ 𝑛∑
𝑗=1

𝜋𝑚ℎ𝑗 𝜉𝑚ℎ𝑗 {exp (𝜀𝑡−𝑘 ) (𝜌𝑘𝑗 )2 󵄨󵄨󵄨󵄨󵄨𝑢̃𝑗 (𝑡−𝑘 )󵄨󵄨󵄨󵄨󵄨2

+ 𝛽𝑚ℎ𝑗
𝑛∑
𝑚=1

𝑙𝑚ℎ𝑚 󵄨󵄨󵄨󵄨󵄨𝑏̃𝑚ℎ𝑗𝑚 󵄨󵄨󵄨󵄨󵄨
⋅ ∫𝑡−𝑘
𝑡−
𝑘
−𝜏𝑗𝑚

exp (𝜀𝑠) exp (𝜀𝜏𝑗𝑚) 󵄨󵄨󵄨󵄨𝑢̃𝑚 (𝑠)󵄨󵄨󵄨󵄨2 d𝑠}

≤ 𝜐 𝑛∑
𝑗=1

𝜉𝑚ℎ𝑗 {exp (𝜀𝑡−𝑘 ) 󵄨󵄨󵄨󵄨󵄨𝑢̃𝑗 (𝑡−𝑘 )󵄨󵄨󵄨󵄨󵄨2 +
𝑛∑
𝑚=1

𝑙𝑚ℎ𝑚 󵄨󵄨󵄨󵄨󵄨𝑏𝑚ℎ𝑗𝑚 󵄨󵄨󵄨󵄨󵄨
⋅ ∫𝑡−𝑘
𝑡−
𝑘
−𝜏𝑗𝑚

exp (𝜀 (𝑠 + 𝜏𝑗𝑚)) 󵄨󵄨󵄨󵄨𝑢̃𝑚 (𝑠)󵄨󵄨󵄨󵄨2 d𝑠}
= 𝜐𝑉 (𝑡−𝑘 , 𝑢̃ (𝑡−𝑘 )) .

(29)

Combining (27) and (29), we have 𝑉(𝑡, 𝑢̃(𝑡)) ≤ 𝑉(𝑡+𝑘 ,
𝑢̃(𝑡+𝑘 )) ≤ 𝜐𝑉(𝑡−𝑘 , 𝑢̃(𝑡−𝑘 )); here 𝜐 ≥ 1; i.e.,

𝑉 (𝑡, 𝑢̃ (𝑡)) ≤ 𝜐𝑉 (𝑡𝑘, 𝑢̃ (𝑡𝑘)) , 𝑡 ∈ (𝑡𝑘, 𝑡𝑘+1] . (30)

Using this analogy, we have 𝑉(𝑡, 𝑢̃(𝑡)) ≤ 𝜐𝑁𝜎(𝑡0,𝑡)𝑉(𝑡0,𝑢̃(𝑡0)), where 𝑁𝜎(𝑡0, 𝑡) denotes the switching number.
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Because the impulses only occur at the switching moment,𝑁𝜎(𝑡0, 𝑡) also denotes the impulse number.
Furthermore, according to integral mean value theorem,

we have

𝑉 (𝑡0, 𝑢̃ (𝑡0)) ≤ exp (𝜀𝑡0) 𝑛∑
𝑗=1

𝜉𝜎(𝑡0)𝑗 { sup
𝑡0−𝜏≤𝑠≤𝑡0

󵄨󵄨󵄨󵄨󵄨𝑢̃𝑗 (𝑠)󵄨󵄨󵄨󵄨󵄨2

+ 𝑛∑
𝑚=1

𝑙𝜎(𝑡0)𝑚 󵄨󵄨󵄨󵄨󵄨𝑏̃𝜎(𝑡0)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨 𝜏 exp (𝜀𝜏) sup
𝑡0−𝜏≤𝑠≤𝑡0

󵄨󵄨󵄨󵄨𝑢̃𝑚 (𝑠)󵄨󵄨󵄨󵄨2}

= exp (𝜀𝑡0) [[
𝑛∑
𝑗=1

𝜉𝜎(𝑡0)𝑗 sup
𝑡0−𝜏≤𝑠≤𝑡0

󵄨󵄨󵄨󵄨󵄨𝑢̃𝑗 (𝑠)󵄨󵄨󵄨󵄨󵄨2 +

⋅ 𝑛∑
𝑗=1

𝑛∑
𝑚=1

𝜉𝜎(𝑡0)𝑗 𝑙𝜎(𝑡0)𝑗 󵄨󵄨󵄨󵄨󵄨𝑏̃𝜎(𝑡0)𝑚𝑗 󵄨󵄨󵄨󵄨󵄨 𝜏 exp (𝜀𝜏)

⋅ sup
𝑡0−𝜏≤𝑠≤𝑡0

󵄨󵄨󵄨󵄨𝑢̃𝑚 (𝑠)󵄨󵄨󵄨󵄨2]]
.

(31)

Let𝑀𝜎(𝑡0)=𝑛max1≤𝑗≤𝑛{𝜉𝜎(𝑡0)𝑗 +𝜏exp(𝜀𝜏)𝜉𝜎(𝑡0)𝑗 ∑𝑛𝑚=1𝑙𝜎(𝑡0)𝑗 |𝑏̃𝜎(𝑡0)𝑚𝑗 |}.
Then

𝑉(𝑡0, 𝑢̃ (𝑡0)) ≤ exp (𝜀𝑡0)𝑀𝜎(𝑡0) 𝑛∑
𝑗=1

sup
𝑡0−𝜏≤𝑠≤𝑡0

󵄨󵄨󵄨󵄨󵄨𝑢̃𝑗 (𝑠)󵄨󵄨󵄨󵄨󵄨2

= exp (𝜀𝑡0)𝑀𝜎(𝑡0) sup
𝑡0−𝜏≤𝑠≤𝑡0

‖𝑢̃ (𝑠)‖2 .
(32)

That is, 𝑉(𝑡, 𝑢̃(𝑡)) ≤ 𝜐𝑁𝜎(𝑡0,𝑡)𝑉(𝑡0, 𝑢̃(𝑡0)) ≤
exp(𝜀𝑡0)𝜐𝑁𝜎(𝑡0,𝑡)𝑀𝜎(𝑡0)sup𝑡0−𝜏≤𝑠≤𝑡0‖𝑢̃(𝑠)‖2.

In addition, it is obvious that 𝑉(𝑡, 𝑢̃(𝑡)) ≥∑𝑛𝑗=1 𝜉𝜎(𝑡)𝑗 exp(𝜀𝑡)|𝑢̃𝑗(𝑡)|2 holds. Let 𝜉𝑗ℎ = min1≤𝑗≤𝑛{𝜉𝑗ℎ𝑗 },
so we have 𝜉𝑗ℎexp(𝜀𝑡) ∑𝑛𝑗=1 |𝑢̃𝑗(𝑡)|2 ≤ 𝑉(𝑡, 𝑢̃(𝑡)).

That is,

𝜉𝑗ℎ exp (𝜀𝑡) 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑢̃𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨2 ≤ 𝑉 (𝑡, 𝑢̃ (𝑡))
≤ exp (𝜀𝑡0) 𝜐𝑁𝜎(𝑡0,𝑡)𝑀𝜎(𝑡0) sup

𝑡0−𝜏≤𝑠≤𝑡0

‖𝑢̃ (𝑠)‖2 ,
(33)

i.e., ‖𝑢̃(𝑡)‖2 ≤ (𝑀𝜎(𝑡0)/𝜉𝑗ℎ )𝜐𝑁𝜎(𝑡0 ,𝑡)exp(−𝜀(𝑡 −𝑡0))sup𝑡0−𝜏≤𝑠≤𝑡0‖𝑢̃(𝑠)‖2. According to 𝑁𝜎(𝑡1, 𝑡2) ≤𝑁0 + ((𝑡2 − 𝑡1)/Γ) in Definition 5, furthermore, we have

‖𝑢̃ (𝑡)‖2 ≤ 𝑀𝜎(𝑡0)𝜉𝑗ℎ exp (ln (𝜐𝑁𝜎(𝑡0,𝑡))) exp (−𝜀 (𝑡 − 𝑡0))
⋅ sup
𝑡0−𝜏≤𝑠≤𝑡0

‖𝑢̃ (𝑠)‖2 ≤ 𝑀𝜎(𝑡0)𝜉𝑗ℎ exp (ln (𝜐𝑁0+((𝑡−𝑡0)/Γ)))

⋅ exp (−𝜀 (𝑡 − 𝑡0)) sup
𝑡0−𝜏≤𝑠≤𝑡0

‖𝑢̃ (𝑠)‖2 = 𝑀𝜎(𝑡0)𝜉𝑗ℎ 𝜐𝑁0

⋅ exp(−(𝜀 − ln 𝜐Γ ) (𝑡 − 𝑡0)) sup
𝑡0−𝜏≤𝑠≤𝑡0

‖𝑢̃ (𝑠)‖2 .
(34)

Let 𝜃2 = max𝑗ℎ∈Ξ{𝑀𝑗ℎ𝜐𝑁0/𝜉𝑗ℎ }; 𝜇 = 𝜀 − ((ln 𝜐)/Γ); thus,
we get ‖𝑢̃(𝑡)‖ ≤ 𝜃 exp(−0.5𝜇(𝑡 − 𝑡0))‖𝜑̃(s)‖. It is obvious that𝜃 > 0 when Γ > (ln 𝜐)/𝜀.

According to Definition 4, it can be concluded that the
zero solution of (7) is robustly exponentially stable, which
means the equilibrium point of (2) is robustly exponentially
stable. The proof is completed.

Remark 9. Robust stability of impulsive complex-valued
neural networks with time delays was studied by applying
Lyapunov-Krasovskii functional method and the complex-
valued matrix inequality skills in [34]. Switching signal
was not considered in the model addressed in there. In
addition, in most of papers concerning switched neural
networks defined in real number domain, such as [19, 20, 26],
only interconnected matrices were supposed to be switched
signals. Obviously, the impulsive complex-valued system
with switched signals including both self-feedback functions
and activation functions in this paper includes the models
established in [19, 20, 26, 34].

When there is no impulse effect in (2), the corresponding
corollary can be stated as follows.

Corollary 10. Suppose that Assumption 1 holds. If the follow-
ing conditions are satisfied, then the equilibrium point 𝑢# of (2)
is with existence, uniqueness, and robustly exponential stability
for all 𝐴ℎ ∈ 𝐴ℎ𝐼, 𝐵ℎ ∈ 𝐵ℎ𝐼 (ℎ ∈ Ξ), and arbitrary input
𝑂(𝑡) ∈ C𝑛:

(I) Every matrix 𝑄ℎ = (𝑞ℎ𝑗𝑚)𝑛×𝑛 is an M-matrix, where

𝑞ℎ𝑗𝑗 = 2𝜔ℎ𝑗 − 𝑛∑
𝑚=1

𝑙ℎ𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨) ,
𝑞ℎ𝑗𝑚 = −2𝑙ℎ𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏̃ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨) ,

𝑗,𝑚 = 1, 2, . . . , 𝑛, 𝑗 ̸= 𝑚.
(35)

(II) �e average dwell time satisfies Γ > Γ∗ = (ln 𝜐)/𝜀,
with 𝜐 = max1≤𝑗≤𝑛,𝑗ℎ,𝑚ℎ∈Ξ{𝜋𝑚ℎ𝑗 𝛽𝑚ℎ𝑗 } ≥ 1; here 𝜀, 𝜋𝑚ℎ𝑗 , and 𝛽𝑚ℎ𝑗
are defined as �eorem 8.

Because the proof of Corollary 10 is similar to that of
Theorem 8, it is omitted here.

It is well known that complex-valued neural networks can
be viewed as extensions of real-valued neural networks. In the
following explanation, we will present some conditions guar-
anteeing the robust exponential stability of switched neural
networks with impulses and delays under the condition that
all variables and functions in (2) and Assumptions 1 and 3 are
defined in the real number domain.
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Corollary 11. Suppose that Assumptions 1 and 3 hold. If the
following conditions are satisfied, then the equilibrium point 𝑢#
of (2) is with existence, uniqueness, and robustly exponential
stability for all 𝐴ℎ ∈ 𝐴ℎ𝐼, 𝐵ℎ ∈ 𝐵ℎ𝐼 and arbitrary input𝑂(𝑡) ∈
R𝑛:

(I) Every matrix 𝑄ℎ = (𝑞ℎ𝑗𝑚)𝑛×𝑛 is an M-matrix, where

𝑞ℎ𝑗𝑗 = 𝜔ℎ𝑗 ,
𝑞ℎ𝑗𝑚 = −𝑙ℎ𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏̃ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨) ,

ℎ ∈ Ξ, 𝑗, 𝑚 = 1, 2, . . . , 𝑛, 𝑗 ̸= 𝑚.
(36)

(II) For any given 𝜉ℎ ∈ Ω(𝑄ℎ), the average dwell time
satisfies Γ > Γ∗ = (ln 𝜐)/𝜀; here, 𝜀 > 0 satisfies the following
inequality:

𝜉ℎ𝑗 𝜀 − 𝜔
ℎ
𝑗

exp (𝜀𝜏) + 𝜉ℎmax

𝑛∑
𝑚=1

𝑙ℎ𝑚 (󵄨󵄨󵄨󵄨󵄨𝑎ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑏̃ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨) < 0, (37)

where

𝜉ℎ𝑚𝑎𝑥 = max
1≤𝑗≤𝑛

{𝜉ℎ𝑗 } ,

𝜋𝑚ℎ𝑗 = max1≤𝑗≤𝑛 {𝜉𝑗ℎ𝑗 }
min1≤𝑗≤𝑛 {𝜉𝑚ℎ𝑗 } ,

𝜐 = max
1≤𝑗≤𝑛,𝑘∈Z+,𝑗ℎ,𝑚ℎ∈Ξ

{𝜋𝑚ℎ𝑗 𝜌𝑗ℎ𝑘 , 𝜋𝑚ℎ𝑗 𝛽𝑚ℎ𝑗 } ≥ 1,

𝛽𝑚ℎ𝑗 = max1≤𝑚≤𝑛 {𝑙𝑗ℎ𝑚 󵄨󵄨󵄨󵄨󵄨𝑏̃𝑗ℎ𝑗𝑚󵄨󵄨󵄨󵄨󵄨}
min1≤𝑚≤𝑛 {𝑙𝑚ℎ𝑚 󵄨󵄨󵄨󵄨󵄨𝑏̃𝑚ℎ𝑗𝑚 󵄨󵄨󵄨󵄨󵄨} .

(38)

Proof. Choose the candidate scalar Lyapunov function as
follows:

𝑉 (𝑡, 𝑢̃ (𝑡)) = 𝑛∑
𝑗=1

𝜉𝜎(𝑡)𝑗 {exp (𝜀𝑡) 󵄨󵄨󵄨󵄨󵄨𝑢̃𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 +
𝑛∑
𝑚=1

𝑙𝜎(𝑡)𝑚 󵄨󵄨󵄨󵄨󵄨𝑏𝜎(𝑡)𝑗𝑚 󵄨󵄨󵄨󵄨󵄨
⋅ ∫𝑡
𝑡−𝜏𝑗𝑚

exp (𝜀 (𝑠 + 𝜏𝑗𝑚)) 󵄨󵄨󵄨󵄨𝑢̃𝑚 (𝑠)󵄨󵄨󵄨󵄨 d𝑠} .
(39)

By using similar analysis to that used as proof for
Theorem 8, the conclusion of Corollary 11 can be obtained
directly. The proof is completed.

When comparing Theorem 8 and Corollary 11, it can be
seen that the stability conditions for judging complex-valued
neural networks are more complicated and conservative
due to the more complicated properties of complex-valued
systems.

Remark 12. In addition to impulse disturbances [13–15, 34,
35] and parameter uncertainties [2, 31, 34], stochastic dis-
turbances [10, 38] also exist in real complex-valued neu-
ral networks. Additionally, the stability problem and the
synchronization problem of fractional-order systems have
become a hot research topic [39, 40]. The research in this
paper can be extended further to the study of the stability of
the mentioned systems.

4. Example

In this section, an example with simulation results is given
to illustrate the effectiveness of the sufficient conditions
established in the preceding section.

Consider a two-order system with three subsystems
described by (2). In (2), we assume that the complex-valued
weight matrices with parameter uncertainties are the same
in all subsystems. It is supposed that the weight matrices are
defined within the following interval:

𝐴1𝐼 = 𝐴2𝐼 = 𝐴3𝐼
= [ [−0.3, 0.6] + [0, 0.8] i [0.4, 0.8] + [0.8, 1] i

[0.7, 0.9] + [−1, −0.2] i [−0.3, 0] + [0.1, 0.6] i] ,
𝐵1𝐼 = 𝐵2𝐼 = 𝐵3𝐼
= [[−1, 1] + [−0.3, 0.9] i [0, 0.7] + [−0.1, √2] i

[0, 0.5] + [0.1, 0.6] i [0.2, 0.4] + [−0.1, 0.5] i] .

(40)

By computation, the following matrices for every
switched subsystem can be obtained:

󵄨󵄨󵄨󵄨󵄨𝐴̃󵄨󵄨󵄨󵄨󵄨 = [1.000 1.281
1.345 0.671] ,

󵄨󵄨󵄨󵄨󵄨𝐵̃󵄨󵄨󵄨󵄨󵄨 = [1.345 1.578
0.781 0.640] .

(41)

Table 1 shows the self-feedback coefficients, activation
functions, and impulsive functions of three subsystems in (2),
respectively.

It can be determined from Table 1 that 𝑙11 = 𝑙12 = 0.25,𝑙21 = 𝑙22 = 0.75, 𝑙31 = 𝑙32 = 0.5, 𝜌𝑘1 = 𝜌𝑘2 = 2.2, 𝜌𝑘1 = 𝜌𝑘2 = 1.8,𝜌𝑘1 = 𝜌𝑘2 = 2.1, 𝑘 = 1, 2, . . ..
Let 𝜀 = 1, 𝜉1 = [1.05, 0.95]T, 𝜉2 = [1.1, 1]T, and
𝜉3 = [1, 1.2]T. Through calculations, we can drive that Γ∗ =(ln 𝜐)/𝜀 = 2.434𝑠. According to the condition in Theorem 8,
the average dwell time is taken as Γ = 3𝑠 > Γ∗. Therefore, the
switching time sequence (or impulse moment of occurrence)
is described as 𝑡𝑘 ∈ {3𝑠, 6𝑠, 9𝑠, . . .}. Assume that the external
inputs of the three subsystems are zero. Let the delays be
defined as 𝜏𝑗𝑚 = 0.6𝑠, 𝑗, 𝑚 = 1, 2.

Furthermore, by using calculation, we can determine the
following:

𝑄1 = [ 7.70 −1.43
−1.06 8.14 ] ,

𝑄2 = [14.10 −4.28
−3.32 15.42] ,

𝑄3 = [13.40 −2.86
−2.13 14.28] .

(42)

It follows from Lemma 6 that matrices𝑄1,𝑄2, and𝑄3 are
all M-matrix.
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Table 1: Assumptions for (2) with 𝑗 = 1, 2.
Functions Subsystem 1 Subsystem 2 Subsystem 3
𝜔𝑗 4.5 9 8

𝑓𝑗(𝑢𝑗(𝑡)) 0.25𝑢𝑗(𝑡) + 0.25 sin(𝑢𝑗(𝑡)) 0.75𝑢𝑗(𝑡) + 0.75 sin(𝑢𝑗(𝑡)) 1 − exp(−𝑢𝑗(𝑡))1 + exp(−𝑢𝑗(𝑡))Δ 𝑗(𝑡+𝑘 , 𝑢𝑗(𝑡+𝑘 )) 2.2𝑢𝑗(𝑡−𝑘 ) 1.8𝑢𝑗(𝑡−𝑘 ) 2.1𝑢𝑗(𝑡−𝑘 )

Table 2: Calculation results of inequality (9).

Subsystem 1 Subsystem 2 Subsystem 3
Neuron 1 −0.993 −0.105 −1.929
Neuron 2 −1.924 −2.254 −3.174

Table 3: Initial conditions of (2).

Subsystem 1 Subsystem 2 Subsystem 3
𝑢1(𝑠) 2+1.5i 1.3+i 0.2-0.5i
𝑢2(𝑠) -1-1.2i -1-0.2i -0.7+1.1i

Additionally, we need to verify (9) of condition (II) in
Theorem8. For the three subsystems, we obtain the calculated
results in Table 2.

It can be determined from Table 2 that inequalities (9)
hold in all three subsystems.

In conclusion, all conditions in Theorem 8 are satisfied.
According to Theorem 8, we can conclude that the equilib-
riumpoint of (2) with above assumptions possesses existence,
uniqueness, and exponential robust stability.

Tables 3 and 4 show the initial conditions and the
interconnected matrices of each of the three subsystems in
(2), respectively. They will be used in simulation.

The state curves of (2) with the three subsystems are,
respectively, given in Figures 1–6. It follows from the sim-
ulation results that the equilibrium point of (2) is existent,
unique, and stable, verifying the correctness of Theorem 8.

5. Conclusion and Future Work

The existence, the uniqueness, and the robust exponential
stability of the equilibrium point of a class of switched
complex-valued neural networks with interval parameter
uncertainties and impulses are investigated in this paper.
By employing homomorphism mapping theorem, the scalar
Lyapunov function method, the average dwell time method,
and M-matrix theory, several sufficient conditions are estab-
lished for guaranteeing the existence, the uniqueness, and the
robust exponential stability of the system. Finally, a numerical
example with simulation results has been provided to show
the effectiveness of the obtained results.

Based on the research presented in this paper, we will try
to study the dynamic behavior of a class of switched complex-
valued neural networks with mixed delays (including both
time-varying delays and continuously distributed delays) and
impulsive effect which do not only occur at the switching
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Figure 1: State curves of subsystem 1 in (2).
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moment between subsystems, but also when transferring
inside subsystems.
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Table 4: Interconnectedmatrices in (2) for numerical simulation.

Subsystem 1 Subsystem 2 Subsystem 3

𝐴 [
[
−0.3 0.4 + 0.8i
0.7 − i −0.3 + 0.1i]]

[
[
0.6 + 0.8i 0.8 + i

0.9 − 0.2i 0.6i ]]
[
[
0.3 + 0.4i 0.6 + 0.9i
0.8 − 0.6i −0.2 + 0.4i]]

𝐵 [
[
−1 − 0.3i −0.1i
0.1i 0.2 − 0.1i]]

[
[
1 + 0.9i 0.7 + √2i
0.5 + 0.6i 0.4 + 0.5i]]

[
[

0.3i 0.4 + i

0.3 + 0.6i 0.3 − 0.1i]]
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Figure 3: State curves of subsystem 3 in (2).
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