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This paper describes a method that addresses the transient loss of observations in sea surface target state estimations. A six degrees
of freedom swing platform fixed with a MiniRadaScan is used to simulate the loss of observations. The state transition model based
on the historical observation data fit prediction is designed because the existing state estimation method can only use the system
model prediction while the observation is missing. An observation data sliding window width adaptive adjustment strategy is
proposed that can improve the fitting accuracy of the state transition model. To solve the problem where the weight value of the
Gaussian components of the Gaussian mixture filter is not changed in the time update stage while the observation is missing, an
adaptive adjustment strategy for the weight is proposed based on the Chapman-Kolmogorov equation, which can improve the
estimation precision under the conditions of the missing observation. The simulation test demonstrates the proposed accuracy
and real-time performance of the proposed algorithm.

1. Introduction

The submarine floating on the sea suffers from environmen-
tal factors such as the wind, waves, and currents due to the
accidental loss of power. To ensure the safety of the subma-
rine personnel and property, it is important to have a timely
rescue. The rescue ship detects the target submarine in real
time through a sensor and, when close to the target, tracks
the target and maintains a relative distance and bearing with
the target submarine; then, the rescue ship carries out the
effective rescue operation. It is quite difficult and dangerous
to carry out the rescue operation in the level four sea condi-
tions because of the transient loss of the sensor. Therefore,
it is practical to study the state estimation algorithm with
the missing measurement.

In the actual ocean environment, the sensor and the
responders have certain installation height differences and
the scanning range of the sensor is limited. In the level four
sea conditions, the relative movement between the rescue
ship and target boats, including roll and heave, may produce
a transient failure situation. There are many state estimation
methods for the missing measurements in the existing litera-
ture. Sinopoli et al. [1] studies the problem of tracking

applications of wireless sensor networks with intermittent
observations, where the measurements are assumed to be
received in full or lost completely. Liu and Goldsmith [2]
designs a state estimation method for partial observation
losses based on [1], where the observation process can be sent
in two packets, which are lost separately. A Kalman filter is
designed [3] where the time delay is considered simulta-
neously for the general case that observations are sent over
more than two different wireless channels. Feng et al. [4]
designed a robust finite horizon Kalman filter for linear dis-
crete time systems subject to norm-bounded uncertainties
in the modeling parameters and missing measurements,
and the simulation illustrated the effectiveness of the pro-
posed approach. He et al. [5] designed a novel measurement
model to represent both the random measurement delays
and the stochastic missing data phenomenon. These methods
have a common point: when measurements are absent, only
use a system model to predict the state.

There are some studies that researched the state estima-
tion algorithms with a measurement missing that is used in
the field of target tracking [6]. Yan et al. [7] designed the
federated Kalman filter for the case of asynchronous multi-
rate multisensor dynamic systems with randomly missing
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measurements. Li et al. [8] developed a robust filter by apply-
ing the basic interacting multiple model approach and the
H-infinity technique for the missing measurements based
on a maneuvering target tracking example. Pathirana et al.
[9] used the nonlinearly modeled Doppler radar measure-
ments to obtain an accurate estimate of the target dynamics
in a linear framework utilizing a recently developed robust
state estimation approach. Salti and Di Stefano [10] proposed
an online learning transition model via support vector
regression for the state estimation with the missing measure-
ment. Williams and Maybeck [11] proposed a new method
for tracking the whole trajectory of a ballistic missile in a dif-
ficult to observe environment with imperfect sensor mea-
surement, incorporating both missing observations and
false alarms.

Most of the existing methods are based on the premise
of an accurate target motion model, but the application is a
radar-target-state estimation based on target tracking and
tracking due to the lack of prior knowledge of the environ-
ment; if there is a difference between the target model
parameters and the actual situation, the model will cause
the target state estimation performance worse. The state
estimation algorithm cannot provide normal control input
for the surface target tracking control system, which is very
dangerous for surface target rescue. In this paper, an
improved Gaussian mixture cubature Kalman filter with a
state transition model based on the historical observation
data fit prediction and adaptive weight update of a Gauss-
ian component is proposed. The remainder of this paper
is organized as follows. First, a six degrees of freedom swing
platform fixed with a MiniRadaScan is used to simulate the
loss of observations. Second, the state transition model,
based on the historical observation data fit prediction, is
designed and an observation data sliding window width
adaptive adjustment strategy is proposed. Third, an adap-
tive adjustment strategy for the weight is proposed based
on the Chapman-Kolmogorov equation. Finally, a simula-
tion based on a rescue at sea is illustrated.

2. Problem Description

To simulate the loss of observation, a 6 degrees of freedom
(DOF) platform (Figure 1) is used to simulate the motion
of the rescue ship. Figure 2 shows the distance and bearing
data of the responder fixed on the forklift, respectively.

It can be seen that when the radar has movement with the
6 DOF platform, the observation data will lose approximately
3~5 seconds periodically. In the test, the transponder is
placed on the forklift as the target, unlike the radar with 6
DOF of movement. In a practical application, the target will
also be influenced by the external environment, which will
increase the probability of a missing observation and insuffi-
cient time. Therefore, it is crucial to design the state estima-
tion algorithm with observation loss. In this paper, the
design of the state estimation algorithm will be introduced
in two parts: the state transition model, which is based on
observation, and the Gaussian mixture cubature Kalman
filter, which is based on an adaptive weight update.

3. The Design of the State Transition
Model with Historical Measurement

3.1. The State Transition Model. First, the model of the sur-
face target tracking system is given, which is the basis of the
state transition model based on observation fitting:

xk = Fxk−1 + γΔxm +wk−1,
zk = 1 − γ h xk + vk,

1

where γ is the parameter of observation loss, γ = 1 indicates
the loss of the observation, and γ = 0 denotes that there is
no observation loss. Δxm is the compensation of the observa-
tion which needs to be designed in this paper.

The position information x t of the target in the
Cartesian coordinate system of the two-dimensional plane
can be fitted by some function with variable time t, and
then, the state estimation model of the target is established
by p t :

x t = p t +w t , 2

where p t denotes the fitting function of x t and w t
represents the fitting error. The polynomial fitting p t =
a0 + a1t +⋯ + akt

k is usually used to determine the fitting
function, where ai i = 0,… , k is a particular polynomial
coefficient.

According to the introduction, since the movement of
the target when floating on the sea belongs to a slow
maneuvering state, greater results with a low polynomial
order are available, such as the constant velocity model
and the constant acceleration model corresponding to the
polynomial with order k = 1 and k = 2, respectively. As
the order increases, the representative change of state
may be more accurate but also leads to an exponential
accumulation of computations as the dimension of the
equation increases. An improved modeling method for a
self-learning state estimation model based on measurement
data is proposed.

Assuming that the measured data sequence is x n , n =
1, 2,… ,N , and each of them is processed independently,
the result is expressed as follows:

Δx n = x n + 1 − x n 3

Figure 1: The 6 DOF platform fixed with MiniRadaScan.
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The polynomial function p n is used to fit the differen-
tial function of the measured data, and Δx n can be repre-
sented as

Δx n = Δx n + ε n = p n + ε n , 4

where Δx n denotes the fitted estimation values of Δx n
and ε n represents the fitting errors. Hence, the fitting esti-
mate values x n + 1 of x n + 1 can be expressed as

x n + 1 = x n + Δx n 5

Assume that the sampling time of the observation data is
T , and n = t/T ; then, the derivative of formula (5) of time t
can be calculated:

x n + 1 = x n + Δx n 6

Then, the discrete form of the state estimation model can
be expressed as

x n + 1
x n + 1

=
1 0
0 1

x n

x n
+

Δx n

Δx n
+Wx n ,

7

where Wx n indicates the process noise of the system.
The measurement data of the polynomial fitting method

require a certain amount of measured data to achieve the
approximate fitting. In the practical application, in order to
reflect the state change of the target in real time, one of the
most used methods for fitting a coefficient calculation is to
point forward continuous observation data from the current.
Then, the polynomial prediction equation of the state of the
target is modeled, which is called the limited memory data

model. To simply distinguish this from formula (7), the index
number in the model is changed tom, and formula (7) can be
rewritten as

x m + 1
x m + 1

=
1 0
0 1

x m

x m
+

p m

p m
+Wx m ,

8

whereΔx n is replaced by polynomial fitting estimates p m .

3.2. The Adaptive Scheme of the Sliding Window. To estab-
lish the model by fitting the measured data, the main
problem is how to select the amount of data. Considering
that M <N , add a sliding window of length M to the
observation data. The random error of the system will be
decreased while the value of M is large. However, a large
value of M will result in a delay of the state estimation; the
smaller the value of M, the more accurately it reflects
the state and latest trend of the target. However, the state
estimation will be easily affected by the measurement noise
while the value of M is too small, for which the value of
M needs to be compromised.

Figure 3 gives fitting curves of different widths of the
sliding window of the measurements. It can be seen that
the fitting value cannot accurately approximate the real
value as the length of sliding window increases, but the
fitting curve is smooth, which could smooth the observa-
tion as a filter. When the length of the sliding window is
small, the fitting values can approximate the actual mea-
sured value accurately but will be more easily affected by
noise. Therefore, the length of the sliding window should
be designed according to the estimated requirements in a
practical application. The method based on the fitting
error of an adaptive design sliding window length will
be introduced.

To improve the influence of the length of sliding win-
dow on the fitting accuracy, in this paper, the value of M
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Figure 2: The measurements of the responder.
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is determined according to the fitting error in real time,
and the value of M will be larger while the fitting error
is relatively stable; on the contrary, the value of M will
be smaller. Figure 4 shows the flow chart of the adaptive
value of M.

Assuming that the initialization of theM isMmin, XM m
is the m-th observation; gM X is the fitting model which
can be modeled as

Δx m = px m = a0 + a1m + a2m
2,

Δx m = px m = a1 + 2a2m,
Δx m = px m = 2a2,

9

and it corresponds to the fitting estimation value gM X,m ,
and the fitting error can be denoted as

W gM , XM =
XM 1 − gM X, 1

⋮

XM M − gM X,M
10

Assuming that the root mean square fitting error is εM ,
then

εM = W gM , XM
2
2

M
11

M = Mmin

From the current position to forward
obtain M measured data

Calculate the
fitting error

Is the threshold
exceeded?

M = M − 1

Yes

No

Obtain one more data forward

M = M + 1

Figure 4: Flow chart of the adaptive scheme of M.
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Figure 3: The fitting curves of different widths of the sliding window.
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The minimum observation data fitting error εmin can be
expressed as

εmin =
εM , M =Mmin,
min εM , εmin , M >Mmin

12

Then, repeat as the flow chart demonstrates, until the fol-
lowing conditions are met:

εM > κεmin 13

4. The Design of the Improved Gaussian
Mixture Cubature Kalman Filter

4.1. The Gaussian Mixture Cubature Kalman Filter. The
probability density function of the initial system state is
given as (1):

p x0 = 〠
I

i=1
ωs
0 i N x0 i ; x̂0 i , P0 i 14

The state and covariance can be propagated using the
CKF time update stage, as follows:

x̂k∣k−1 r = 〠
m

c=1
ωcξc,k∣k−1 i +wk j , 15

Pk∣k−1 r = 〠
m

c=1
ωcξc,k∣k−1 i ξTc,k∣k−1 i − x̂k∣k−1 r −wk j

x̂k∣k−1 r −wk j T +Qk j ,
16

ωt
k∣k−1 r = ωs

k∣k−1 i ⋅ ωp
k j , 17

ωs
k∣k−1 i = ωs

k−1∣k−1, 18

where m is the number of cubature points, r = i − 1 J + j,
ωt
k∣k−1 r denotes the weight of Gaussian components after

time update, ωp
k j is the weight of the j-th Gaussian noise

of process noise, ωs
k−1∣k−1 i is the weight of i-th state

Gaussian component in time k − 1, and ωs
k∣k−1 denotes

the weight after propagation.
The state and covariance are updated by the CKF mea-

surement update stage. The final outputs of the filter and
the weights of components are updated as follows:

x̂k = 〠
I⋅J ⋅L

n=1
ωk n x̂k n , 19

Pk = 〠
I⋅J ⋅L

n=1
ωk n Pk n + x̂k n − x̂k x̂k n − x̂k

T ,

20

where x̂k n is the n-th Gaussian component with the
weighted value ωk n , which can be updated as follows:

ωk n = ωt
k∣k−1 r ωm

k l p zk ∣ xk, n
∑I⋅J

r=1∑
L
l=1ω

t
k∣k−1 r ωm

k l p zk ∣ xk, n
, 21

where n = r − 1 L + l, ωm
k l is the weight of l-th Gaussian

components of observation noise, and p zk ∣ xk, n is the
observation likelihood distribution of the n-th Gaussian
component and can be calculated as follows:

p zk ∣ xk, n = 1
2πσ2n

exp −
1
2

zk − ẑk∣k−1 r, l
σn

2
22

Notice that the weights ωs
k∣k−1 i do not change during

the propagation from (7), which is valid if the system has
a precise model. The reason that the weight keeps constant
is that it is assumed that the covariance is small enough.
This is particularly a problem if the uncertainty in the sys-
tem model is large and the measurements are not fre-
quently available.

4.2. Adaptive Weight Update. Consider the nonlinear system
(1) with the probability density function of the initial condi-
tions p x0 . Given the Gaussian mixture approximation of
the probability density function,

p̂ xk = 〠
I

i=1
ωs
k i N xk i ; x̂k i , Pk i 23

Given the true probability density function of the system
state by the Chapman-Kolmogorov equation,

p xk =
ℝn
p xk ∣ xk−1 p xk−1 dxk−1 24

Mean-square optimal new weights can be obtained by
minimizing the following integral square difference between
the true probability p xk and the approximated probability
p̂ xk in the least square algorithm:

wk∣k−1 = arg min 1
2 ℝn

p xk − p̂ xk
2dxk, 25

where wk∣k−1 = ωk∣k−1 1 ωk∣k−1 2 … ωk∣k−1 I T denotes
the vector of the weights of every Gaussian component
at time k. To resolve formula (18), the cost function is
given as follows [11]:

J wk∣k−1 = Jpp wk∣k−1 − 2Jpp̂ wk∣k−1 + J p̂p̂ wk∣k−1 , 26
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where the first term denotes the self-likeness of the
true probability density function of the system state
[12] and Jpp wk∣k−1 = ℝnp xk p xk dxk. The second
term denotes the cross-likeness of the true probability and
the approximation one, and Jpp̂ wk∣k−1 = ℝnp xk p̂ xk dxk.
The last term is the self-likeness of the approximation
probability of the system state, and J p̂p̂ wk∣k−1 = ℝn p̂ xk
p̂ xk dxk.

The formula (17) rests on the assumption that the
Gaussian mixture approximation is equal with the true
probability density function at time k, namely, p̂ xk = p xk ,
and the proof procedure is as follows.

Substitute the formula (14) into formula (24) and the fol-
lowing relationship can be given:

p xk = 〠
I

i=1
ωs
k−1 i

ℝn
N xk−1 i ; x̂k−1 i , Pk−1 i N xk ; f xk−1

+wk−1,Qk−1 dxk−1

= 〠
I

i=1
ωs
k−1 i

ℝn
N xk−1 i ; x̂k−1 i , Pk−1 i N xk ; xk−1 − x̂k−1 i

+ f xk−1 +wk,Qk dxk−1 + 〠
I

i=1
ωs
k=1 i

ℝn
εk−1dxk−1,

27

where

εk−1 =N xk−1 i ; x̂k−1 i , Pk−1 i N xk ; f xk−1 +wk−1,Qk−1
−N xk ; xk−1 − x̂k−1 i + f xk−1 +wk,Qk

28

Assuming that all covariance Pk−1 i of the Gaussian
components is small enough so that the linearization
around a mean is a representative for the dynamics in
the vicinity of the respective mean and that there are
sufficient number of Gaussian components, and then
Pk−1 i ⟶ 0 implies ℝnεk−1dxk−1 ⟶ 0. p xk can be
rewritten as

p xk ≈ 〠
I

i=1
ωs
k−1 i

ℝn
N xk−1 i ; x̂k−1 i , Pk−1 i N xk ; xk−1 − x̂k−1 i

+ f xk−1 +wk,Qk dxk−1

= 〠
I

i=1
ωs
k−1 i N xk−1 ; f xk−1 +wk−1,Qk−1

= 〠
I

i=1
ωs
k−1 i N xk i ; x̂k i , Pk i = p̂ xk−1

29

Now the derivation of the terms of cost function is
given as follows [13, 14]:

Jpp wk∣k−1 =
ℝn
p xk

2dxk

=
ℝn ℝn

p xk ∣ xk−1 p xk−1 dxk−1
2
dxk

≈
ℝn ℝn

p xk ∣ xk−1 p̂ xk−1 dxk−1
2
dxk

=
ℝn ℝn

N xk ; f xk−1 +wk,Qk p̂ xk−1 dxk−1
2
dxk

=
ℝn ℝn

N xk ; f xk−1 +wk,Qk 〠
I

i=1
ωs
k−1 i N

xk−1 i ; x̂k−1 i , Pk−1 i dxk−1

2
dxk

=wT
k−1 J

ppwk−1
30

Similarly,

Jpp̂ wk∣k−1 =wT
k∣k−1 J

pp̂wk−1,

J p̂p̂ wk∣k−1 =wT
k∣k−1 J

p̂p̂wk∣k−1

31

The elements of the matrices are given as follows:

Jppij = N xk ; f xk−1 +wk,Qk N xk−1 i ; x̂k−1 i , Pk−1 i dxk−1
2
dxk

= EN xk−1 i ;x̂k−1 i ,Pk−1 i N xk ; f xk−1 +wk,Qk

2
dxk,

Jpp̂ij = N f xk−1 ; xk∣k−1 i , Pk∣k−1 i +Qk−1 N xk−1 ; xk−1 j , Pk−1 j dxk−1

= EN xk−1;xk−1 j ,Pk−1 j N f xk−1 ; xk∣k−1 i , Pk∣k−1 i +Qk−1

= 〠
m

c=1
ωcN ξc,k∣k−1 ; xk∣k−1 i , Pk∣k−1 i ,

32

where ωc, ξc are the cubature points.

J p̂p̂ij =N xk∣k−1 i ; xk∣k−1 j , Pk∣k−1 i + Pk∣k−1 j

= 2π Pk∣k−1 i + Pk∣k−1 i −1/2 exp −
1
2 xk∣k−1 i

− xk∣k−1 j T Pk∣k−1 i + Pk∣k−1 i −1 xk∣k−1 i − xk∣k−1 j

33

The first term in the cost function (15) is not needed in
the optimization process and is used only to provide an over-
all magnitude of the uncertainty propagation error. Accord-
ing to the above relations, the final formulation of the
formula (15) can be obtained as follows:

wk∣k−1 = arg min 1
2w

T
k∣k−1 J

p̂p̂wk∣k−1 −wT
k∣k−1 J

pp̂wk−1 34

Based on the above derivation, the summary of the
improved Gaussian mixture CKF with adaptive weight
update can be given as shown in Table 1.
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5. Simulation

A series of simulations are carried out to evaluate the per-
formance of the method proposed in this paper. The con-
tent is divided into two parts: the first part is the
simulation of adaptive adjustment of the sliding window
and the second part is the simulation of the target state
estimation method with the loss of observation. The data
set used in the simulation is to simulate a certain subma-
rine target floating freely affected by the wind, wave, and
currents. The environmental parameters are set as follows:
the speed of wind is 13.8m/s, the average wind angle is
60°, the wave height is 2m, the average wave angle is
50°, the speed of the current is 1m/s, and the average cur-
rent angle is 55°. The initialization position of the subma-
rine is 0, 0 , and the float trajectory is the black solid line
in Figure 5.

The length of sliding window is designed by formula (24).
As shown in Figure 6, the length of sliding windows can be
initialized by M = 16, while εmin = 0 5. In addition, Figure 7
shows the adaptive adjustment process of the sliding win-
dows during the target tracking.

As shown in Figure 7, the length of the sliding widow is
initialized as 16, and as the experiment progresses, the length
of the sliding window changes adaptively. The sliding win-
dow becomes larger because the movement of the target

Table 1: Computation steps of IGM-CKF.

Time update

x̂k∣k−1 r = ∑
m

c=1
ωcξc,k∣k−1 i +wk j

Pk∣k−1 r = ∑
m

c=1
ωcξc,k∣k−1 i ξTc,k∣k−1 i − x̂k∣k−1 r −wk j x̂k∣k−1 r −wk j T +Qk j

wk∣k−1 = arg min 1
2w

T
k∣k−1 J

p̂p̂wk∣k−1 −wT
k∣k−1 J

pp̂wk−1

Measurement update

Pzz,k∣k−1 r, l = ∑
m

c=1
ωcεc,k∣k−1 r εTc,k∣k−1 r − ẑk∣k−1 r − vk l ẑk∣k−1 r − vk l T + Rk l

Pxz,k∣k−1 r, l = ∑
m

c=1
ωcξc,k∣k−1 r εTc,k∣k−1 r − x̂k∣k−1 r ẑk∣k−1 r − vk l T

Kk r, l = Pxz,k∣k−1 r, l P−1
zz,k∣k−1 r, l

x̂k n = x̂k∣k−1 r + Kk r, l ẑk − ẑk∣k−1 r, l
Pk n = Pk∣k−1 r − Kk r, l Pzz,k∣k−1 r, l KT

k r, l
Filter output Equations (19), (20), (21), and (22)
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becomes steady, and the state estimation of the target con-
verges to a small range of error.

Figures 8 and 9 show the fitting results of position and
velocity, respectively.

Figures 10 and 11 show the fitting error of position and
velocity, respectively.

As shown in Figure 10, the error of the position fitting
estimation could be limited to 0.5m whenM = 16. The fitting

error of the estimation could be converged to approximately
0.2m, which makes the sliding window become large.
Figure 11 shows that the error of the north velocity fitting
estimation could be limited to 0.02m/s, and the error of the
east velocity could be limited to 0.006m/s.

To ensure the reliability of the observation, it is
assumed that the initial observation of the target can be
observed three times continuously, so the initial value of
the filter can be determined by the observational data at the
first three moments:

x3∣3 = x3, x3, x3, y3, y3, y3
= x3, x3 − x2, x3 − 2x2 + x1, y3, y3 − y2, y3 − 2y2 + y1
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0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

0 100

425
0.016

0.02
0.024

440435430

420

−0.01
0

0.02
0.03

440430

200 300 400 500

Time (s)

Time (s)

Ea
st 

ve
lo

ci
ty

 cu
rv

e (
m

/s
)

N
or

th
 v

elo
ci

ty
 cu

rv
e (

m
/s

)

600 700 800 900 1000
−0.05

0

0.05

0.15

0.1

North velocity estimation
North velocity fitting

East velocity estimation
East velocity fitting

Figure 9: The velocity fitting error.

0
0

0.005

0.0

0.015

0.02

100 200 300 400 500 600
Times

×10−3

RM
SE

 o
f n

or
th

 v
elo

ci
ty

 (m
/s

)

700 800 900 1000

0
0

2

4

6

100 200 300 400 500 600
Times

RM
SE

 o
f e

as
t v

elo
ci

ty
 (m

/s
)

700 800 900 1000

Figure 11: The RMSE of velocity fitting.

0
0

0.2

0.4

0.6

100 200 300 400 500 600
Times

RM
SE

 o
f n

or
th

 p
os

iti
on

 (m
)

700 800 900 1000

0
0

0.1

0.2

0.3

100 200 300 400 500 600
Times

RM
SE

 o
f e

as
t p

os
iti

on
 (m

)

700 800 900 1000

Figure 10: The RMSE of position fitting.

8 Complexity



Three observation loss times are set in the simulation
(250 s, 300 s), (450 s, 520 s), and (650 s, 700 s). In the period
of time for formula γ = 1, the adaptive state transfer model
will be used to predict the target state, and the Gaussian com-
ponent weights are adaptively updated. Figure 5 shows the
estimated trajectory curve of various algorithms with missing
measurements. In the figure, the black solid line denotes
the real target trajectory, the green cross denotes the mea-
surements, the blue dashed line denotes the estimation of
GM-CKF, and the red dash-dot line denotes the estimation
trajectory of IGM-CKF. It can be seen from the figure that
the estimated trajectories of two algorithms are consistent
with normal measurement, and GM-CKF will appear as a
larger deviation when the measurement is missing. There
are 3 observation loss times in the simulation, and the curve
of GM-CKF corresponds to the emergence of 3 section-
estimated trajectory deviations. The IGM-CKF proposed in
this paper, with an adaptive state transition model and adap-
tive Gaussian component weight update, can maintain a high
estimation accuracy in the whole simulation.

The RMSE of the position of the two methods are given
as Figures 12 and 13. It can be seen from the figure that when

the measurements are lost, the GM-CKF algorithm, without
an adaptive state transition model of the linear estimation
error, increases. This is because the method only uses the
conventional state transfer model to predict the target state,
similar to the dead reckoning, so there will be an increasing
cumulative error. When the measurement is normal, because
of the observation update, the estimation could jump to nor-
mal. The adaptive state transition model and adaptive Gauss-
ian component weight update IGM-CKF can predict the
target state according to the target motion trend, measured
when measurements are missing, and improve the accuracy
of the estimate.

The RMSE of the velocity of the two methods are given as
Figures 14 and 15. It can be seen from the figure that there are
little differences on the RMSE of the north velocity of the two
methods, because the speed on the north of the floating
wrecked boat is relatively low and the estimation error will
be relatively small. The state transition model used contains
the acceleration item, so the estimation of the speed east of
GM-CKF will be showing a gradual increase, and the RMSE
of the IGM-CKF proposed in this paper can be kept in a
low range when measurements are missing.

Table 2 shows the average RMSE and running time of the
two methods. It can be seen from the table that the GM-CKF
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has a larger RMSE and shorter running time because the
algorithm predicts the target state only using the state transi-
tion model and cannot carry out the measurement model
when the measurement is missing. The IGM-CKF proposed
in this paper could use the historical data to predict the
motion trend of the target and needs to carry the adaptive
Gaussian component weight adjustment when the measure-
ment is missing, which has a higher estimation accuracy
and a longer running time. However, the running time of
the millisecond level could completely satisfy the need for
real-time target tracking.

6. Conclusion

An improved GM-CKF algorithm is proposed to solve the
problem of state estimation of the rescue on the sea when
the measurement is missing. The state transition model
based on the historical measurements is designed to improve
the accuracy of the prediction, and a novel adaptive scheme
of the sliding window has been proposed to adjust the
length of sliding window adaptively. The adaptive weight
update scheme has been designed to improve the estima-
tion accuracy when the measurement is missing. The simu-
lation result illustrates that the proposed algorithm has high
estimation accuracy and could satisfy the need of the real-
time target tracking.
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