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An observer-based finite-time 𝐿2-𝐿∞ control law is devised for a class of positive Markov jump systems in a complex environment.
The complex environment parameters include bounded uncertainties, unknown nonlinearities, and external disturbances. The
objective is to devise an appropriate observer-based control law thatmakes the corresponding augment error dynamicMarkov jump
systems be positive and finite-time stabilizable and satisfy the given 𝐿2-𝐿∞ disturbance attenuation index. A sufficient condition is
initially established on the existence of the observer-based finite-time controller by using proper stochastic Lyapunov-Krasovskii
functional. The design criteria are presented by means of linear matrix inequalities. Finally, the feasibility and validity of the main
results can be illustrated through a numerical example.

1. Introduction

As a special kind of hybrid systems, Markov jump systems
(MJSs) consist of two kinds of hybrid dynamic forms. One
form is characterized by a discrete state and continuous-time
Markov process, called mode; the other form is described by
state space equations in each mode, called state. This kind
of MJSs was firstly proposed by Krasovskii and Lidskii [1]
in 1960s. Due to the stochastic Markov process, it is always
considered as a special stochastic system. Moreover, MJSs
tend to describe systems in which structures are subjected
to abrupt stochastic variations. Such variations usually come
from sudden failure of connection between system com-
ponents, abrupt environmental changes, or changes in the
operating point of nonlinear dynamics. MJSs are widely used
in many applications, for example, economic systems [2],
power electronic system [3], communication systems [4], and
circuit network systems [5]. Due to the wide applications, the
research of MJSs has been paid much attention in the past
decades. For more details about this issue, we can refer to [6–
15].

On another research front, we notice that in some
dynamic systems there always exist nonnegative character-
istics, such as the number of animals, absolute temperature,
density ofmatter, and the concentration of chemical reactions
[16–18]. To describe these characteristics, we usually use
a positive system to illustrate the nonnegative (positive,
strictly) dynamic behavior of state variables. Positive system
is a special system; the states and the outputs are both nonneg-
ative (positive, strictly) for any nonnegative (positive, strictly)
initial conditions. More recently, the research of positive
system has become a heated topic and many publications
about this issue have been developed; see, for example, [19–
23] and the references therein. However, the main result
in above references only considered that the states of the
systems can be measurable case. It should be noted that
the states always cannot be measurable in some practical
application systems [24–26]. Up to present, the observer-
based finite-time control problem of positive Markov jump
systems (PMJSs) with some complex environment parame-
ters has not been intensively studied, saying nothing of the
simultaneous presence of uncertainties [27–32], unknown
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nonlinearities [21, 33–37], and external disturbances [38–40].
These motivate our research on observer-based finite-time
controller design problem for MJSs.

This paper analyzes the problems of observer-based
finite-time 𝐿2-𝐿∞ control for a class of PMJSs in a com-
plex environment. Compared with existing results related
to Markovian jump systems, the main contributions and
difficulties are addressed as follows.

(i) The main contributions of this paper mainly consist
of three aspects. Firstly, we aim to analyze the stabilizable
problem of a class of PMJSs with some complex environ-
ment parameters. Secondly, we try to design an appropriate
observer-based finite-time 𝐿2-𝐿∞ control law to ensure that
closed-loop Markov jump systems be finite-time stabilizable
when the states of the system cannot be measured. Thirdly,
we attempt to give a sufficient condition to guarantee the
positiveness of the augment error dynamicMJSs andwe essay
to illustrate the validity of the designed method through a
numerical example.

(ii) Different from the existing results in [3, 6, 12, 13], the
main difficulties of the paper are how to design an appropriate
control law for PMJSs in a complex environment with
nonmeasurable states such that the corresponding augment
error dynamic Markov jump systems be positive and finite-
time stabilizable and satisfy the given 𝐿2-𝐿∞ disturbance
attenuation index. It is necessary to point out that the main
results in [3, 6, 12, 13] only considering the states of the
systems can be measurable case.

In this paper, all matrices are assumed with proper
dimensions and all notations are quite standard. The impli-
cation of the symbols is given in Table 1.

2. Preliminaries

2.1. SystemDescription. For a probability spaceΘ𝑠 : (Φ,Λ,∏𝑟)
composed of sample space Φ, algebra of events Λ, and
the probability measure Π𝑟 which is defined on Λ, assume
that the stochastic process {𝑟𝑡, 𝑡 ≥ 0} is a continuous-
time discrete-state Markov stochastic process in a finite set𝑀 = {1, 2, ...,𝑁} over the probability spaceΘ𝑠. The transition
probability matrix∏𝑟 = {∏𝑖𝑗(𝑡), 𝑖, 𝑗 ∈ 𝑀} is defined as

∏
𝑖𝑗

(𝑡) = ∏{𝑟𝑡+Δ𝑡 = 𝑗 | 𝑟𝑡 = 𝑖}

= {{{
𝜋𝑖𝑗Δ𝑡 + 𝑜 (Δ𝑡) , 𝑖 ̸= 𝑗,
1 + 𝜋𝑖𝑖Δ𝑡 + 𝑜 (Δ𝑡) , 𝑖 = 𝑗

(1)

where Δ𝑡 > 0 and limΔ𝑡󳨀→0(𝑜(Δ𝑡)/Δ𝑡) 󳨀→ 0; 𝜋𝑖𝑗(𝑡) ≥ 0 is the
transition probability rate from mode 𝑖 at time 𝑡 to mode 𝑗 at
time 𝑡 + Δ𝑡 and satisfies ∑𝑁

𝑗=1,𝑖 ̸=𝑗 𝜋𝑖𝑗 = −𝜋𝑖𝑖.
In this paper, we investigate a class of PMJSs in complex

environments including uncertainties, unknown nonlineari-
ties, and unknown external disturbances. The PMJSs in the
probability space Θ𝑠 are described by

∑
𝑆

:

{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝑥̇ (𝑡) = [𝐴 (𝑟𝑡) + 𝐴Δ (𝑟𝑡, 𝑡)] 𝑥 (𝑡) + [𝐵 (𝑟𝑡) + 𝐵Δ (𝑟𝑡, 𝑡)] 𝑢 (𝑡) + 𝐹1 (𝑟𝑡) 𝑓 (𝑥 (𝑡) , 𝑡) + 𝑊1 (𝑟𝑡) 𝑤 (𝑡)
𝑦 (𝑡) = [𝐶 (𝑟𝑡) + 𝐶Δ (𝑟𝑡, 𝑡)] 𝑥 (𝑡)
𝑚 (𝑡) = [𝑀(𝑟𝑡) +𝑀Δ (𝑟𝑡, 𝑡)] 𝑥 (𝑡) + 𝑊2 (𝑟𝑡) 𝑤 (𝑡)
𝑥 (0) = 𝑥0,
𝑟 (0) = 𝑟0,
𝑡 = 0

(2)

where 𝑥(𝑡) ∈ 𝑅𝑛 denote the state, 𝑚(𝑡) ∈ 𝑅𝑙 denote
the measured output, 𝑦(𝑡) ∈ 𝑅𝑚 denote the controlled
output, 𝑤(𝑡) ∈ 𝐿𝑃2[0, +∞] denote the unknown exter-
nal disturbance, 𝑢(𝑡) ∈ 𝑅𝑞 denote the controlled input,
and 𝑓(𝑥(𝑡), 𝑡) denote the unknown nonlinearities, which
indicate the nonlinear disturbances related to the state.𝑟0 and 𝑥0 are initial mode and initial state, respectively.[𝐴(𝑟𝑖) + 𝐴Δ(𝑟𝑖, 𝑡)] is a mode-dependent Metzler matrix;𝐵(𝑟𝑖), 𝐵Δ(𝑟𝑖, 𝑡), 𝐹(𝑟𝑖), 𝑊1(𝑟𝑖), 𝑊2(𝑟𝑖), 𝐶(𝑟𝑖), 𝐶Δ(𝑟𝑖, 𝑡), 𝑀(𝑟𝑖),
and 𝑀Δ(𝑟𝑖, 𝑡) are mode-dependent positive matrices. For
convenience, we use 𝐴 𝑖, 𝐴Δ𝑖, 𝐵𝑖, 𝐵Δ𝑖, 𝐹1𝑖, 𝑊1𝑖, 𝑊2𝑖, 𝐶𝑖, 𝐶Δ𝑖,𝑀𝑖, and 𝑀Δ𝑖 to denote the relevant parameter matrices
with 𝑟𝑡 = 𝑖. Moreover, the time-varying uncertain matrices
satisfy

[𝐴Δ𝑖 𝐵Δ𝑖 𝐶Δ𝑖 𝑀Δ𝑖] = 𝐿1𝑖Γ𝑖 (𝑡) [𝑁1𝑖 𝑁2𝑖 𝑁3𝑖 𝑁4𝑖] (3)

where Γ𝑖(𝑡) is a mode-dependent Lebesgue normmeasurable
function and satisfies ‖Γ𝑖(𝑡)‖ ≤ 1; 𝐿1𝑖, 𝑁1𝑖, 𝑁2𝑖, 𝑁3𝑖, and 𝑁4𝑖

are known mode-dependent matrices.

Remark 1. In this paper, the uncertain matrices 𝐴Δ𝑖, 𝐵Δ𝑖, 𝐶Δ𝑖,
and𝑀Δ𝑖 in (3) can be considered as admissible conditions. In
actual applications, it is usually impossible directly to get the
accurate mathematical model of realistic dynamics because
of some complex environment including unknown nonlin-
earities, environmental noises, and time-varying parameters
[10, 27]. Thus, the uncertain dynamics existing in PMJSs
(2) reflect the inexactness in mathematical modeling of
such Markov jump systems. Moreover, the mode-dependent
Lebesgue norm measurable function Γ𝑖(𝑡) is selected as a
full row rank matrix and it also can be considered as state-
dependent; that is, Γ𝑖(𝑡) = Γ𝑖(𝑡, 𝑥(𝑡)) if ‖Γ𝑖(𝑡, 𝑥(𝑡))‖ ≤ 1. For
more results of this issue, we refer readers to [30–32].
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Table 1: Symbols throughout this paper.

Symbol Means Symbol Means
𝐴Τ matrix transpose diag {𝐴 𝐵} block-diagonal matrix of 𝐴 and 𝐵𝐴−1 matrix inverse 𝜆min(max)(𝐷) minimum (maximum) eigenvalue of 𝐷‖⋅‖ Euclidean vector norm 0 zero matrix𝐼 unit matrix R𝑛×𝑚 𝑛 × 𝑚 real matrices
R𝑛 𝑛-dimensional Euclidean space 𝐻 ≻ (≺, ⪰, ⪯)0 all elements of the matrix𝐻 are positive (negative, non-negative, non-positive)∗ Symmetric matrix 𝑃 > (<, ≥, ≤)0 positive- (negative, non-negative, non-positive) definite matrix

When the states of PMJSs (2) cannot be available, we can
construct the following state observer and feedback control
law:

Σ𝑠 :
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝑥̇ = 𝐴 𝑖𝑥 (𝑡) + (𝐵𝑖 + 𝐵Δ𝑖) 𝑢 (𝑡) + 𝐸𝑖 [𝑚 (𝑡) − 𝑚 (𝑡)]
𝑚 (𝑡) = 𝑀𝑖𝑥 (𝑡)
𝑢 (𝑡) = 𝐾𝑖𝑥 (𝑡)
𝑦 (𝑡) = 𝐶𝑖𝑥 (𝑡)
𝑥 (0) = 𝑥0,
𝑟 (0) = 𝑟0,
𝑡 = 0

(4)

where 𝑥(𝑡) ∈ 𝑅𝑛 denote the estimated state; 𝑚(𝑡) ∈ 𝑅𝑙 denote
the observer output; 𝑦(𝑡) ∈ 𝑅𝑚 denote the estimation output.𝐸𝑖 and 𝐾𝑖 are observer and control law gains to be devised,
respectively. The state estimated error and the controlled
output error of Σ𝑠 are defined by 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡) and 𝑧(𝑡) =𝑦(𝑡)−𝑦(𝑡), respectively.Therefore, we have the followingMJSs
by (2) and (4):

𝑥̇ (𝑡) = [(𝐴 𝑖 + 𝐴Δ𝑖) + (𝐵𝑖 + 𝐵Δ𝑖)𝐾𝑖] 𝑥 (𝑡)
− (𝐵𝑖 + 𝐵Δ𝑖)𝐾𝑖𝑒 (𝑡) + 𝐹1𝑖𝑓 (𝑥 (𝑡) , 𝑡)
+ 𝑊1𝑖𝑤 (𝑡)

𝑒̇ (𝑡) = (𝐴Δ𝑖 − 𝐸𝑖𝑀Δ𝑖) 𝑥 (𝑡) + (𝐴 𝑖 − 𝐸𝑖𝑀𝑖) 𝑒 (𝑡)
+ 𝐹1𝑖𝑓 (𝑥 (𝑡) , 𝑡) + (𝑊1𝑖 − 𝐸𝑖𝑊2𝑖)𝑤 (𝑡)

(5)

Letting 𝑥̃(𝑡) = col[𝑥(𝑡) 𝑒(𝑡)], the closed-loop augment
error dynamic MJSs can be represented as

Σ̃𝑠 :
{{{{{{{{{{{{{{{

̇̃𝑥 = (𝐴̃𝑖 + 𝐴̃Δ𝑖) 𝑥̃ (𝑡) + 𝐹̃𝑖𝑓 (𝑥̃ (𝑡) , 𝑡) + 𝑊̃𝑖𝑤 (𝑡)
𝑧 (𝑡) = 𝐶̃𝑖𝑥̃ (𝑡)
𝑥̃ (0) = 𝑥̃0,
𝑡 = 0

(6)

where

𝐴̃𝑖 = [𝐴 𝑖 + 𝐵𝑖𝐾𝑖 −𝐵𝑖𝐾𝑖0 𝐴 𝑖 − 𝐸𝑖𝑀𝑖

] ,

𝐴̃Δ𝑖 = [𝐴Δ𝑖 + 𝐵Δ𝑖𝐾𝑖 −𝐵Δ𝑖𝐾𝑖𝐴Δ𝑖 − 𝐸𝑖𝑀Δ𝑖 0 ] ,

𝐹̃𝑖 = [𝐹1𝑖𝐹1𝑖] ,

𝑊̃𝑖 = [ 𝑊1𝑖𝑊1𝑖 − 𝐸𝑖𝑊2𝑖

] ,
𝐶̃𝑖 = [𝐶Δ𝑖 𝐶𝑖] ,

𝑓 (𝑥 (𝑡) , 𝑡) = 𝑓 (𝑥̃ (𝑡) , 𝑡) .

(7)

2.2.MainDefinitions, Lemmas, andAssumptions. Thefollow-
ingmain definitions, lemmas, and assumptions are important
for analyzing and giving the main results of the paper.

Definition 2. For given constants 𝑇 > 0 and 𝜇1 > 0, the
augment error dynamic MJSs (6) are finite-time stabilizable
(FTS) with regard to (𝜇1, 𝜇2, 𝑇, 𝑅), if there exist constants𝑢2 > 𝑢1 > 0 and positive-definite matrix 𝑅 > 0, such that

Ε {𝑥̃Τ (𝑡) 𝑅𝑥̃ (𝑡)} < 𝜇2,
∀𝑡 ∈ [0 𝑇] , if 𝑥̃Τ (0) 𝑅𝑥̃ (0) ≤ 𝜇1.

(8)

Definition 3. For given constants 𝑇 > 0 and 𝜇1 > 0, Σ𝑠 is said
to be the finite-time 𝐿2-𝐿∞ observer-based state feedback
control law of MJSs (6) under the zero initial condition, if
the augment error dynamic MJSs (6) are FTS with regard to(𝜇1, 𝜇2, 𝑇, 𝑅) and satisfy

Ε {‖𝑧 (𝑡)‖2∞} − 𝛿2 ‖𝑤 (𝑡)‖22 < 0 (9)

where 𝑑 > 0, 𝛿 > 0, Ε{‖𝑧(𝑡)‖2∞} = 𝐸 {sup𝑡∈[ 0 𝑇][𝑧(𝑡)Τ𝑧(𝑡)]},
and ‖𝑤(𝑡)‖22 = ∫𝑇

0
𝑤(𝑡)Τ𝑤(𝑡)𝑑𝑡.
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Definition 4. The weak infinitesimal operator of stochastic
Lyapunov-Krasovskii functional (SLKF) 𝑉[𝑥̃(𝑡), 𝑖, 𝑡 > 0] is
defined as

I𝑉 [𝑥̃ (𝑡) , 𝑖, 𝑡]
= lim

Δ𝑡󳨀→0

1Δ𝑡 [𝐸 {𝑉 [𝑥̃ (𝑡 + Δ𝑡) , 𝑟(𝑡+Δ𝑡), 𝑡 + Δ𝑡] | 𝑥̃ (𝑡) ,
𝑟𝑡} − 𝑉 [𝑥̃ (𝑡) , 𝑟𝑡, 𝑡]]. = 𝜕𝜕𝑡𝑉 [𝑥̃ (𝑡) , 𝑖, 𝑡] + 𝜕𝜕𝑥̃
⋅ 𝑉 [𝑥̃ (𝑡) , 𝑖, 𝑡] ̇̃𝑥 (𝑡) + 𝑁∑

𝑗=1

𝜋𝑖𝑗𝑉 [𝑥̃ (𝑡) , 𝑗, 𝑡]

(10)

Definition 5. MJSs (2) are positive, if, for the initial conditions𝑥0 > 0 and 𝑟0 > 0 and the controlled input 𝑢(𝑡) > 0, the
relevant trajectories of Σ𝑠 satisfy 𝑥(𝑡) > 0 and 𝑦(𝑡) > 0, ∀𝑡 >0.
Lemma 6 (see [41]). 𝐴 𝑖 +𝐴Δ𝑖 is said to be aMetzler matrix, if
there exists a mode-dependent constant 𝜀𝑖 satisfying𝐴 𝑖 +𝐴Δ𝑖 +𝜀𝑖𝐼 ⪰ 0, where 𝐴 𝑖 + 𝐴Δ𝑖 is a real square matrix.

Lemma 7 (see [41]). MJSs (2) are said to be positive if and only
if𝐴 𝑖 +𝐴Δ𝑖 is a Metzler matrix and 𝐵𝑖 +𝐵Δ𝑖 ⪰ 0, 𝐹𝑖 ⪰ 0, 𝑊1𝑖 ⪰0, 𝐶𝑖 + 𝐶Δ𝑖 ⪰ 0, 𝑀𝑖 +𝑀Δ𝑖 ⪰ 0, and 𝑊2𝑖 ⪰ 0.
Lemma 8 (see [30]). Suppose that 𝐿 𝑖 and 𝑁𝑖 are mode-
dependent real matrices and Γ𝑖(𝑡) is a mode-dependent
Lebesgue norm measurable function and satisfies ‖Γ𝑖(𝑡)‖ ≤ 1.
There exists a mode-dependent constant 𝛼𝑖 > 0, satisfying

𝐿 𝑖Γ𝑖 (𝑡)𝑁𝑖 + [𝐿 𝑖Γ𝑖 (𝑡)𝑁𝑖]Τ < 𝛼−1𝑖 𝐿 𝑖𝐿Τ𝑖 + 𝛼𝑖𝑁Τ
𝑖 𝑁𝑖. (11)

Lemma 9 (see [30]). Suppose that 𝐹𝑖 and 𝐸𝑖 are mode-
dependent real matrices. There exists a positive-definite matrix𝑀 and a mode-dependent constant 𝛽𝑖 > 0, satisfying

𝐹Τ𝑖 𝐸𝑖 + 𝐸Τ𝑖 𝐹𝑖 ≤ 𝛽𝑖𝐹Τ𝑖 𝑀𝐹𝑖 + 𝛽−1𝐸Τ𝑖 𝑀−1𝐸𝑖. (12)

Assumption 10. The mode-dependent nonlinear function𝑓(𝑥(𝑡), 𝑡) satisfies the following Lipschitz condition:
󵄩󵄩󵄩󵄩𝑓 (𝑥 (𝑡) , 𝑡)󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝐺 𝑥 (𝑡)󵄩󵄩󵄩󵄩 (13)

where 𝐺 is a real matrix with proper dimension.

Assumption 11. For given constant 𝑑 > 0, 𝑤(𝑡) is energy-
bounded and satisfies

∫Τ
0
𝑤Τ (𝑡) 𝑤 (𝑡) 𝑑𝑡 ≤ 𝑑. (14)

Remark 12. Assumption 10 guarantees that we can use lin-
earization method to study the nonlinear systems by means
of linear matrix inequalities [3, 5, 11]. In the design of
observer-based finite-time 𝐿2-𝐿∞ control law, Assumption 11
is given to assume that the unknown external disturbance
is to be an arbitrary deterministic signal of bounded energy
[20, 24, 27].

3. Main Results

3.1. FTS Analysis. In this subsection, the FTS analysis for the
augment error dynamic MJSs (6) will be considered. Based
on the SLKF approach and LMIs techniques, a sufficient
condition of FTS will be given in Theorem 13.

Theorem 13. For given constants 𝑇 > 0, 𝜇1 > 0, 𝛾 > 0,
and 𝑑 > 0, the augment error dynamic MJSs (6) are FTS
with regard to (𝜇1, 𝜇2, 𝑇, 𝑅, 𝛾), where 𝜇2 > 𝜇1 > 0 and𝑅 > 0, if there exists a set of mode-dependent positive-definite
symmetric matrix 𝑃̃𝑖 ∈ 𝑅𝑛×𝑛, positive-definite symmetric
matrix 𝑅 > 0, matrix 𝐺 ∈ R𝑛×𝑛, a set of mode-dependent
constant 𝛽𝑖 > 0, and constant 𝛾 > 0, such that

[[[
[

𝜗1 − 𝛾𝑃̃𝑖 𝑃̃𝑖𝑊̃𝑖 𝑃̃𝑖𝐹̃𝑖∗ −𝐼 0
∗ ∗ −𝛽𝑖𝐼

]]]
]
< 0 (15)

𝑒𝛾Τ [𝜆1𝑢1 + (𝑑/𝑟) (1 − 𝑒−𝛾Τ)]𝜆2 < 𝑢2 (16)

where 𝜗1 = (𝐴̃𝑖 + 𝐴̃Δ𝑖)Τ𝑃̃𝑖+𝑃̃𝑖(𝐴 𝑖+𝐴Δ𝑖)+𝛽𝑖𝐺Τ𝐺+∑𝑁
𝑗=1 𝜋𝑖𝑗𝑃̃𝑗,𝜆1 = max𝑟∈𝑀 𝜆max[𝑃𝑖], 𝜆2 = min𝑟∈𝑀 𝜆min[𝑃𝑖], and 𝑃𝑖 =𝑅−1/2𝑃̃𝑖𝑅−1/2.

Proof. See Appendix A.

3.2. Finite-Time 𝐿2-𝐿∞ Disturbance Attenuation Index Anal-
ysis. Theorem 13 gives a sufficient condition of FTS for
augment error dynamic MJSs (6). Recalling Definition 3, we
will give the following Theorem 14 to analyze the observer-
based finite-time 𝐿2-𝐿∞ control law design.

Theorem 14. For given constants 𝑇 > 0, 𝜇1 > 0, 𝛾 >0, and 𝑑 > 0, the augment error dynamic MJSs (6) are
FTS with regard to (𝜇1, 𝜇2, 𝑇, 𝑅, 𝛾), where 𝜇2 > 𝜇1 > 0
and satisfy the given 𝐿2-𝐿∞ disturbance rejection disturbance
attenuation index (10), if there exists a set of mode-dependent
positive-definite symmetric matrix 𝑃𝑖 ∈ 𝑅𝑛×𝑛, positive-definite
symmetric matrix 𝑅 > 0, matrix 𝐺 ∈ R𝑛×𝑛, a set of mode-
dependent constant 𝛽𝑖 > 0, and constant 𝛾 > 0, such that
inequalities (15)-(16) and the following relation hold:

[
[
𝑃̃𝑖 𝐶̃Τ𝑖
∗ 𝛿2𝐼]]

> 0. (17)

Proof. See Appendix B.

3.3. Positiveness and Observer-Based Control Law Gain Solu-
tion. Recalling Definition 5, following sufficient condition
will be given to ensure the positiveness of the augment error
dynamicMJSs (6) inTheorem 15. It should be noted that there
exist some time-varying uncertain matrices in Theorem 13.
Therefore, it is difficult to obtain the observer gain 𝐸𝑖 and the
control law gain 𝐾𝑖 from matrix inequalities (15)–(17). It is
necessary for us to convert the nonlinear matrix inequalities
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(15)–(17) into the solvable inequalities, which can be directly
solved by Matlab LMI toolbox.

Theorem 15. For given constants 𝑇 > 0, 𝜇1 > 0, 𝛾 >0, and 𝑑 > 0, there exists a finite-time 𝐿2-𝐿∞ observer-
based control law with 𝐾𝑖 = 𝑆𝑖𝑉−1

𝑖 and 𝐸𝑖 = 𝑈𝑖𝑀Τ
𝑖 and

the augment error dynamic MJSs (6) are positive and FTS
and satisfy the given 𝐿2-𝐿∞ disturbance rejection disturbance
attenuation index (9) with regard to (𝜇1, 𝜇2, 𝑇, 𝑅, 𝛾), where𝜇2 > 𝜇1 > 0, if there exists a set of mode-dependent
positive-definite symmetric matrix 𝑈𝑖 ∈ 𝑅𝑛×𝑛, positive-definite
symmetric matrix 𝑅 > 0, a set of mode-dependent matrices𝑆𝑖 ∈ 𝑅𝑝×𝑛 and 𝑄1𝑖 ∈ 𝑅1×𝑛, a set of mode-dependent constants𝛼1𝑖 > 0, 𝛼2𝑖 > 0, 𝛼3𝑖 > 0, 𝛼4𝑖 > 0, 𝛽𝑖 > 0, 𝜀𝑖 > 0, and 𝜐𝑖 > 0,
and constants 𝜇2 > 0, 𝛿 > 0, 𝜆1 > 0, and 𝜆2 > 0 𝛾 > 0, such
that

[∐11 ∐22∗ ∐22

] < 0 (18)

[[[[[[[[[
[

−𝑈𝑖 0 0 𝑈𝑖𝑁Τ
3𝑖 0

∗ −𝑈𝑖 −𝐶Τ𝑖 0 0
∗ ∗ −𝛿2𝐼 0 𝐿1𝑖
∗ ∗ ∗ −𝛼−14𝑖 0
∗ ∗ ∗ ∗ 𝛼4𝑖

]]]]]]]]]
]

< 0 (19)

[𝑑 (1 − 𝑒−𝛾Τ) − 𝛾𝜆2𝜇2𝑒−𝛾Τ √𝛾𝜇1
√𝛾𝜇1 −𝜆1 ] < 0 (20)

𝜆2𝑅−1𝑖 < 𝑈𝑖 < 𝑅−1𝑖 (21)

𝐴 𝑖𝑈𝑖 + 𝐵𝑖𝑆𝑖 + 𝜀𝑖𝐼 ⪰ 0 (22)

𝐴 𝑖 − 𝐸𝑖𝑀𝑖 + 𝜐𝑖𝐼 ⪰ 0 (23)

𝐵𝑖𝑆𝑖 ⪯ 0 (24)

𝑊1𝑖𝑈𝑖 −𝑀Τ
𝑖 𝑊2𝑖𝑈𝑖 ⪰ 0 (25)

where

∐
11

=
[[[[[[[[
[

𝜃1 𝜃2 𝜃3 𝜃4 𝜃5∗ 𝜃6 𝜃7 𝜃8 𝜃9∗ ∗ 𝜃10 𝜃11 𝜃12∗ ∗ ∗ 𝜃13 𝜃14∗ ∗ ∗ ∗ 𝜃15

]]]]]]]]
]
,

∐
12

=
[[[[[[[[
[

𝜑1 𝜑2 𝜑3 𝜑4 0
0 0 𝜑7 0 𝜑90 0 0 0 0
0 0 0 0 0
0 0 0 0 0

]]]]]]]]
]
,

𝜃5 = 𝜃11 = 𝜃12 = 𝜃14 = 0,
∐
22

= diag {−𝛽−1𝑖 𝐼 −𝛼−12𝑖 𝐼 −𝛼−11𝑖 𝐼 −𝛼−13𝑖 𝐼 −𝛼3𝑖𝐼} ,

𝜃1 = 𝐴 𝑖𝑈𝑖 + 𝑈𝑖𝐴Τ
𝑖 + 𝐵𝑖𝑆𝑖 + 𝑆Τ𝑖 𝐵Τ𝑖 + (𝜋𝑖𝑖 − 𝛾)𝑈𝑖

+ 𝛼−11𝑖 𝐿1𝑖𝐿Τ1𝑖,
𝜃2 = −𝐵𝑖𝑆𝑖,
𝜃3 = 𝑊1𝑖𝑈𝑖,
𝜃4 = 𝐹1𝑖𝑈𝑖,
𝜃6 = 𝐴 𝑖𝑈𝑖 + 𝑈𝑖𝐴Τ

𝑖 + (𝜋𝑖𝑖 − 𝛾)𝑈𝑖 + 𝛼−12𝑖 𝐿1𝑖𝐿Τ1𝑖,𝜃7 = 𝑊1𝑖𝑈𝑖 −𝑀Τ
𝑖 𝑊2𝑖𝑈𝑖,

𝜃8 = 𝐹1𝑖𝑈𝑖,
𝜃9 = 𝑈𝑖𝑀Τ

𝑖 ,
𝜃10 = −𝐼,
𝜃13 = −𝛽𝑖𝐼,
𝜃15 = −2𝐼,
𝜑1 = 𝑈𝑖𝐺Τ

𝑖 ,
𝜑2 = 𝑈𝑖𝑁Τ

1𝑖,
𝜑3 = 𝑈𝑖𝑁Τ

1𝑖 + 𝑆Τ𝑖 𝑁Τ
2𝑖,

𝜑4 = 𝑈𝑖𝑁Τ
4𝑖,

𝜑5 = −𝑆Τ𝑖 𝑁Τ
2𝑖,

𝜑6 = 𝑄1𝑖.
(26)

Proof. See Appendix C.

Corollary 16. The sufficient conditions to design the stochastic
finite-time 𝐿2-𝐿∞ observer-based control law for a class
of PMJSs in complex environments have been presented in
Theorems 13–15. Considering that the coupling inequalities
(18)–(25) are related to 𝑈𝑖, 𝑆𝑖, 𝛼1𝑖, 𝛼2𝑖, 𝛼3𝑖, 𝛼4𝑖, 𝛽𝑖, 𝜇1, 𝜇2, 𝑇,𝑑, 𝛾, and 𝛿̃ = 𝛿√𝑒𝛾𝑇, we have the optimization algorithm by
setting 𝛿̃ as an optimization variable value:

min
𝑈𝑖 ,𝑆𝑖,𝛼1𝑖,𝛼2𝑖,𝛼3𝑖,𝛼4𝑖,𝛽𝑖,𝜇1,𝜇2,𝛿,𝑇,𝑑,𝛾

𝛿̃
s.t. inequalities (18) – (25) . (27)

Remark 17. It should be pointed out that the optimization
algorithm (27) is given to solve the unknown matrices and
parameters through Matlab LMI toolbox. Recalling inequal-
ity (20), it is known that all of the parameters in 𝑑(1 − 𝑒−𝛾𝑇) −𝛾𝜆2𝜇2𝑒−𝛾𝑇 are linear and also can be solved through Matlab
LMI toolbox by setting 𝜇2 as an unknown parameter. Consid-
ering 𝐿2-𝐿∞ disturbance attenuation index in Definition 3,
we select 𝛿̃ = 𝛿√𝑒𝛾𝑇 as an optimization variable value in
optimization algorithm (27).
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Remark 18. For PMJSs (2) in complex environments without
uncertainties in probability space Θ𝑠, we have the following

dynamic systems:

Σ󸀠𝑠

{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝑥̇ (𝑡) = 𝐴 (𝑟𝑡) 𝑥 (𝑡) + 𝐵 (𝑟𝑡) 𝑢 (𝑡) + 𝐹1 (𝑟𝑡) 𝑓 (𝑥 (𝑡) , 𝑡) + 𝑊1 (𝑟𝑡)𝑤 (𝑡)
𝑦 (𝑡) = 𝐶 (𝑟𝑡) 𝑥 (𝑡)
𝑚 (𝑡) = 𝑀 (𝑟𝑡) 𝑥 (𝑡) + 𝑊2 (𝑟𝑡)𝑤 (𝑡)
𝑥 (0) = 𝑥0,
𝑟 (0) = 𝑟0,
𝑡 = 0.

(28)

The state observer and feedback control law for PMJSs (28)
can be designed as

Σ󸀠𝑠 :

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝑥̇ = 𝐴 𝑖𝑥 (𝑡) + 𝐵𝑖𝑢 (𝑡) + 𝐸𝑖 [𝑚 (𝑡) − 𝑚 (𝑡)]
𝑚 (𝑡) = 𝑀𝑖𝑥 (𝑡)
𝑢 (𝑡) = 𝐾𝑖𝑥 (𝑡)
𝑦 (𝑡) = 𝐶𝑖𝑥 (𝑡)
𝑥 (0) = 𝑥0,
𝑟 (0) = 𝑟0,
𝑡 = 0

(29)

Letting 𝑥̃(𝑡) = col[𝑥(𝑡) 𝑒(𝑡)], we can obtain the following
closed-loop augment error dynamic MJSs:

Σ̃𝑠 :
{{{{{{{{{{{{{{{

̇̃𝑥 = 𝐴̃𝑖𝑥̃ (𝑡) + 𝐹̃𝑖𝑓 (𝑥̃ (𝑡) , 𝑡) + 𝑊̃𝑖𝑤 (𝑡)
𝑧 (𝑡) = 𝐶𝑖𝑥̃ (𝑡)
𝑥̃ (0) = 𝑥̃0,
𝑡 = 0

(30)

where

𝐴̃𝑖 = [𝐴 𝑖 + 𝐵𝑖𝐾𝑖 −𝐵𝑖𝐾𝑖0 𝐴 𝑖 − 𝐸𝑖𝑀𝑖

] ,

𝐹̃𝑖 = [𝐹1𝑖𝐹1𝑖] ,

𝑊̃𝑖 = [ 𝑊1𝑖𝑊1𝑖 − 𝐸𝑖𝑊2𝑖

] ,
𝐶̃𝑖 = [0 𝐶𝑖] ,

𝑓 (𝑥 (𝑡) , 𝑡) = 𝑓 (𝑥̃ (𝑡) , 𝑡) .

(31)

The main results in Theorem 15 will reduce to the
following Corollary 19.

Corollary 19. For given constants 𝑇 > 0, 𝜇1 > 0, 𝛾 > 0, and𝑑 > 0, there exists a finite-time 𝐿2-𝐿∞ observer-based control
law with 𝐾𝑖 = 𝑆𝑖𝑉−1

𝑖 and 𝐸𝑖 = 𝑈𝑖𝑀Τ
𝑖 and the augment error

dynamic MJSs (29) are positive and FTS and satisfy the given𝐿2-𝐿∞ disturbance rejection disturbance attenuation index
(10) with regard to (𝜇1, 𝜇2, 𝑇, 𝑅, 𝛾), where 𝜇2 > 𝜇1 > 0 and𝑅 > 0, if there exists a set of mode-dependent positive-definite
symmetric matrices𝑈𝑖 ∈ 𝑅𝑛×𝑛, a set of mode-dependent matrix𝑆𝑖 ∈ 𝑅𝑝×𝑛, matrix 𝐺 ∈ 𝑅𝑙×𝑛, a set of mode-dependent constants𝜐𝑖 > 0 and 𝜀𝑖 > 0, and constants 𝜇2 > 0, 𝛿 > 0, 𝜆1 > 0,
and 𝜆2 > 0, 𝛾 > 0, such that inequalities (20)–(25) and the
following relations hold:

[[[[[[[[[
[

]1 −𝐵𝑖𝑆𝑖 𝑊𝑖𝑈𝑖 𝐹1𝑖𝑈𝑖 0 𝑈𝑖𝐺Τ
𝑖

∗ ]2 ]3 𝐹1𝑖𝑈𝑖 𝑈𝑖𝑀Τ
𝑖 0

∗ ∗ ∗ −𝐼 0 0
∗ ∗ ∗ ∗ −2𝐼 0
∗ ∗ ∗ ∗ ∗ −𝛽−1𝑖 𝐼

]]]]]]]]]
]

< 0 (32)

[[[
[

−𝑈𝑖 0 0
∗ −𝑈𝑖 −𝐶Τ𝑖
∗ ∗ −𝛿2𝐼

]]]
]
< 0 (33)

where ]1 = 𝐴 𝑖𝑈𝑖 + 𝑈𝑖𝐴Τ
𝑖 + 𝐵𝑖𝑆𝑖 + 𝑆Τ𝑖 𝐵Τ𝑖 + (𝜋𝑖𝑖 − 𝛾)𝑈𝑖, ]2 =𝐴 𝑖𝑈𝑖 + 𝑈𝑖𝐴Τ

𝑖 + (𝜋𝑖𝑖 − 𝛾)𝑈𝑖, and ]3 = 𝑊1𝑖𝑈𝑖 −𝑀Τ
𝑖 𝑊2𝑖𝑈𝑖.

4. A Numerical Example

Consider a class of PMJSs with two modes described as
follows.
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Mode 1.

𝐴1 = [−20 1
7 −5] ,

𝐵1 = [12] ,
𝐶1 = [0.7 0.5] ,
𝐿11 = [0.20.3] ,
𝑊11 = [0.1] ,𝑊21 = [0.03] ,
𝐹11 = [0.2] ,
𝑀1 = [1] ,
𝐺1 = [0.2 0.3] ,
𝑁11 = [0.4 0.06] ,
𝑁21 = [0.5] ,
𝑁31 = [0.01 0.03] ,
𝑁41 = [0.2 0.4] ,
𝛼11 = 0.4,
𝛼21 = 0.2,
𝛼31 = 0.3,
𝛼41 = 0.1,
𝛽1 = 1;

(34)

Mode 2.

𝐴2 = [−18 2
6 −7] ,

𝐵2 = [21] ,
𝐶2 = [0.05 0.07] ,
𝐿12 = [0.40.1] ,
𝑊12 = [0.02] ,
𝑊22 = [0.05] ,
𝐹12 = [0.04] ,
𝑀2 = [2] ,
𝐺2 = [0.04 0.03] ,
𝑁12 = [0.1 0.4] ,
𝑁22 = [0.4] ,
𝑁32 = [0.07 0.04] ,
𝑁42 = [0.8 0.6] ,
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Figure 1: The plot of the jumping modes.
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Figure 2: The trajectories of the real state 𝑥(𝑡) in open-loop case.

𝛼12 = 0.5,
𝛼22 = 0.1,
𝛼32 = 0.2,
𝛼42 = 0.4,
𝛽2 = 2.

(35)

The values of the relevant parameters are given as 𝛾 =0.01, 𝑇 = 2, 𝜆1 = 1.1, 𝜆2 = 0.6228, 𝜇1 = 30, 𝛿 = 2, and𝑑 = 5. The mode of PMJSs (2) is converted according to the
following Markov chain conversion rate matrix: [ 𝜋11 𝜋12𝜋21 𝜋22 ] =[ −2 2
1 −1 ] and we select the unknown nonlinear function as𝑓(𝑥(𝑡), 𝑡) = 0.6/(1 + 2𝑥2(𝑡)).
Solving LMIs (18)–(25) in Theorem 15, we can get the

observer and the control law gain as 𝐸1 = [ −1.2258 −2.4435−2.4516 −4.8871 ],𝐸2 = [ −7.8209 −4.8137−3.9104 −2.4068 ], 𝐾1 = [−1.1075 − 2.0864], and 𝐾2 =[−1.0552 − 1.8873] with 𝜇2 = 37.254.
The jumping modes, the response of the real states, the

estimated state 𝑥(𝑡), the estimated error 𝑒(𝑡), the evolution𝑥̃Τ(𝑡)𝑅𝑥̃(𝑡), and the controlled output error 𝑧(𝑡) are shown
in Figures 1–6.
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Figure 3: The trajectories of the real states and the observer states.
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Figure 4: The trajectories of the state estimate errors 𝑒(𝑡).

Figure 2 gives the real state trajectory in open case and it
shows that the open-loop PMJSs are unstable. The responses
of the real state and the observer state are depicted in Figure 3.
Figure 4 shows the state estimated error 𝑒(𝑡) and Figure 5
shows the state trajectory 𝑥̃Τ(𝑡)𝑅𝑥̃(𝑡) of the closed-loopMJSs.
From Figure 5, we know that the designed observer-based
control law can ensure that the closed-loop MJSs are FTS in
the given finite-time interval. Obviously, it can be seen from
Figure 6 that the controlled output error of the closed-loop
MJSs is positive and FTS.

5. Conclusions

In this paper, we studied the observer-based finite-time 𝐿2-𝐿∞ control law design problem of a class of PMJSs in a
complex environment. Based on the designed SLKFmethods
and LMIs technique, sufficient conditions on the existence of
the observer-based finite-time 𝐿2-𝐿∞ control law are pro-
posed and proven. The designed finite-time 𝐿2-𝐿∞ control
law makes the closed-loop augment error dynamic MJSs
be positive and FTS and satisfy the given induced 𝐿2-𝐿∞
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Figure 5: The evolution 𝑥̃Τ(𝑡)𝑅𝑥̃(𝑡) for 𝑒(𝑡) and 𝑥(𝑡).
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Figure 6: The trajectories of the controlled output errors 𝑧(𝑡).

disturbance attenuation index. A numerical example was
delivered to demonstrate the contribution of themain results.

Appendix

A. Proof of Theorem 13

Proof. We select a SLKF candidate as 𝑉[𝑥̃(𝑡), 𝑖, 𝑡] =𝑥̃Τ(𝑡)𝑃̃𝑖𝑥̃(𝑡). Recalling Definition 2 and along the trajectories
of the augment error dynamic MJSs (6), the weak infinitesi-
mal operator of 𝑉[𝑥̃(𝑡), 𝑖, 𝑡] can be written as

I𝑉 [𝑥̃ (𝑡) , 𝑖, 𝑡]
= lim

Δ𝑡󳨀→0

1Δ𝑡 [Ε {𝑉 [𝑥̃ (𝑡 + Δ𝑡) , 𝑟(𝑡+Δ𝑡), 𝑡 + Δ𝑡] | 𝑥̃ (𝑡) ,
𝑟𝑡} − 𝑉 [𝑥̃ (𝑡) , 𝑟𝑡, 𝑡]] = 𝜕𝜕𝑡𝑉 [𝑥̃ (𝑡) , 𝑖, 𝑡] + 𝜕𝜕𝑥̃ (𝑡)
⋅ 𝑉 [𝑥̃ (𝑡) , 𝑖, 𝑡] ⋅ ̇̃𝑥 (𝑡) + 𝑁∑

𝑗=1

𝜋𝑖𝑗𝑉 [𝑥̃ (𝑡) , 𝑗, 𝑡]

= 𝑥̃T (𝑡) [
[
(𝐴̃𝑖 + 𝐴̃Δ𝑖)T 𝑃̃𝑖 + 𝑃̃𝑖 (𝐴 𝑖 + 𝐴Δ𝑖)

+ 𝑁∑
𝑗=1

𝜋𝑖𝑗𝑃̃𝑗]]
𝑥̃ (𝑡) + 𝑥̃T (𝑡) 𝑃̃𝑖𝐹̃𝑖𝑓 (𝑥 (𝑡) , 𝑡)

+ 𝑓T (𝑥 (𝑡) , 𝑡) 𝐹T
𝑖 𝑃̃𝑖𝑥̃ (𝑡) + 𝑥̃T (𝑡) 𝑃̃𝑖𝑊̃𝑖𝑤 (𝑡)

+ 𝑤T (𝑡) 𝑊̃T
𝑖 𝑃̃𝑖𝑥̃ (𝑡) .

(A.1)

According to Lemma 9 and Assumption 10, we know that
there exists a set of mode-dependent constant 𝛽𝑖 > 0 and
matrix 𝐺 with proper dimension such that

𝑓Τ (𝑥̃ (𝑡) , 𝑡) 𝐹𝑖Τ𝑃𝑖𝑥̃ (𝑡) + 𝑥̃Τ (𝑡) 𝑃𝑖𝐹̃𝑖𝑓 (𝑥̃ (𝑡) , 𝑡)
≤ 𝛽𝑖𝑓Τ (𝑥̃ (𝑡) , 𝑡) 𝑓 (𝑥̃ (𝑡) , 𝑡)
+ 𝛽−1𝑖 𝑥̃Τ (𝑡) 𝑃𝑖𝐹̃𝑖𝐹̃T

𝑖 𝑃𝑖𝑥̃ (𝑡)
≤ 𝛽𝑖𝑥̃Τ (𝑡) 𝐺Τ𝐺𝑥̃ (𝑡) + 𝛽𝑖−1𝑥̃Τ (𝑡) 𝑃𝑖𝐹̃𝑖𝐹̃T

𝑖 𝑃𝑖𝑥̃ (𝑡)
(A.2)

By considering Schur complement lemma and substitut-
ing inequality (A.2) into equality (A.1), we can get

I𝑉 [𝑥̃ (𝑡) , 𝑖, 𝑡] = 𝜒̃Τ (𝑡) Ξ1𝜒̃ (𝑡) (A.3)
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where

𝜒̃ (𝑡) = col [𝑥̃ (𝑡) 𝑤 (𝑡)] ,
𝜗1 = (𝐴̃𝑖 + 𝐴̃Δ𝑖)Τ 𝑃𝑖 + 𝑃𝑖 (𝐴 𝑖 + 𝐴Δ𝑖) + 𝛽𝑖𝐺Τ𝐺

+ 𝑁∑
𝑗=1

𝜋𝑖𝑗𝑃̃𝑗,

Ξ1 = [[[
[

𝜗1 𝑃̃𝑖𝑊̃𝑖 𝑃̃𝑖𝐹̃𝑖∗ 0 0
∗ ∗ −𝛽𝑖𝐼

]]]
]
.

(A.4)

Considering Definition 2, we introduce the following
inequality:

Ε {I𝑉 [𝑥̃ (𝑡) , 𝑖, 𝑡]} < 𝛾𝐸 [𝑉 [𝑥̃ (𝑡) , 𝑖, 𝑡]]
+ 𝑤 (𝑡)Τ𝑤 (𝑡) (A.5)

Thus, inequality (A.5) can be obtained by inequality (15).
Multiplying inequality (A.5) by 𝑒−𝛾𝑡 and integrating

inequality (A.5) from 0 to 𝑡, we can obtain

𝑒−𝛾𝑡Ε [𝑉 [𝑥̃ (𝑡) , 𝑖, 𝑡]] − Ε [𝑉 [𝑥̃ (0) , 𝑟0, 0]]
< ∫𝑡

0
𝑒−𝛾𝑡𝑤Τ (𝑡) 𝑤 (𝑡) 𝑑𝑡. (A.6)

If we define 𝑃𝑖 = 𝑅−1/2𝑃̃𝑖𝑅−1/2, 𝜆1 = max𝑟∈𝑀 𝜆max[𝑃𝑖],
and 𝜆2 = min𝑟∈𝑀 𝜆min[𝑃𝑖], we have the following inequality
by 𝛾 > 0 and 0 < 𝑡 < 𝑇:

Ε {𝑉 [𝑥̃ (𝑡) , 𝑖, 𝑡]} = Ε {𝑥̃Τ (𝑡) 𝑃̃𝑖𝑥̃ (𝑡)}
< 𝑒𝛾𝑡Ε {𝑉 [𝑥̃0, 𝑟0, 0]}
+ 𝑒𝛾𝑡𝑑∫𝑡

0
𝑒−𝛾𝜏𝑑𝜏

< 𝑒𝛾𝑡 [𝑥̃0Τ𝑃̃𝑖𝑥̃0 + 𝑑𝛾 (1 − 𝑒−𝛾𝑡)]
< 𝑒𝛾𝑡 [𝜆1𝜇1 + 𝑑𝛾 (1 − 𝑒−𝛾𝑡)]
≤ 𝑒𝛾𝑇 [𝜆1𝜇1 + 𝑑𝛾 (1 − 𝑒−𝛾𝑇)]

(A.7)

Considering that

Ε {𝑉 [𝑥̃ (𝑡) , 𝑖, 𝑡]} = Ε {𝑥̃Τ (𝑡) 𝑃̃𝑖𝑥̃ (𝑡)}
≥ Ε {𝜆2𝑥̃Τ (𝑡) 𝑅𝑥̃ (𝑡) ]} (A.8)

we have

Ε {𝜆2𝑥̃Τ (𝑡) 𝑅𝑥̃ (𝑡)} < 𝑒𝛾𝑇 [𝜆1𝜇1 + 𝑑𝛾 (1 − 𝑒−𝛾𝑇)] (A.9)

which is equivalent to

Ε {𝑥̃Τ (𝑡) 𝑅𝑥̃ (𝑡)} < 𝑒𝛾𝑇 [𝜆1𝜇1 + (𝑑/𝛾) (1 − 𝑒−𝛾𝑇)]𝜆2 . (A.10)

Therefore, Ε{𝑥̃Τ(𝑡)𝑅𝑥̃(𝑡)} < 𝜇2, ∀𝑡 ∈ [0 𝑇] can be
ensured through inequality (16); that is, the augment error
dynamic MJSs (6) are FTSwith regard to (𝜇1, 𝜇2, 𝑇, 𝑅, 𝛾).This
completes the proof.

B. Proof of Theorem 14

Proof. Weselect the same SLKF asTheorem 13. From inequal-
ity (A.6), we have

Ε [𝑉 [𝑥̃ (𝑡) , 𝑖, 𝑡]] < 𝑒𝛾𝑡 ∫𝑡
0
𝑒−𝛾𝑡𝑤Τ (𝑡) 𝑤 (𝑡) 𝑑𝑡

+ 𝑒𝛾𝑡Ε [𝑉 [𝑥̃ (0) , 𝑟0, 0]] .
(B.1)

Under the zero initial condition, inequality (B.1) can be
rewritten:

Ε {𝑥̃Τ (𝑡) 𝑃̃𝑥̃𝑖 (𝑡)} < 𝑒𝛾𝑡 ∫𝑡

0
𝑒−𝛾𝑡𝑤Τ (𝑡) 𝑤 (𝑡) 𝑑𝑡

< 𝑒𝛾𝑇 ∫𝑇

0
𝑒−𝛾𝑡𝑤Τ (𝜏) 𝑤 (𝜏) 𝑑𝜏.

(B.2)

From inequality (17), it yields 𝑃̃𝑖 − 𝛿−2𝐶𝑖

Τ𝐶̃𝑖 > 0. Recalling
Definition 3, we have

Ε {𝑧Τ (𝑡) 𝑧 (𝑡)} = Ε {𝑥̃Τ (𝑡) 𝐶𝑖

Τ𝐶̃𝑖𝑥̃ (𝑡)}
< 𝛿2𝐸 {𝑥̃Τ (𝑡) 𝑃̃𝑖𝑥̃ (𝑡)}

(B.3)

Thus, we have Ε{𝑧Τ(𝑡)𝑧(𝑡)} < 𝛿2𝑒𝛾𝑡 ∫𝑇
0
𝑒−𝛾𝑡𝑤Τ(𝜏)𝑤(𝜏)𝑑𝜏

by (B.2)-(B.3). Recalling Definition 3, we know that the finite-
time 𝐿2-𝐿∞ disturbance rejection disturbance attenuation
index (10) can be guaranteed by 𝛿̃ = 𝛿√𝑒𝛾𝑇, ∀𝑡 ∈ [0, 𝑇]. This
completes the proof.

C. Proof of Theorem 15

Proof. Considering the uncertainties in inequality (6), we
substitute 𝐴̃𝑖, 𝐴̃Δ𝑖, 𝐹̃𝑖, 𝑊̃𝑖, and 𝐶̃𝑖 into inequalities (15) and
(17) and define 𝑃̃𝑖 = diag{𝑃1𝑖 𝑃1𝑖}; it yields

Φ1 + ΔΦ1 < 0 (C.1)

Φ2 + ΔΦ2 < 0 (C.2)
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where

Φ1 =
[[[[[
[

𝜑11 𝜑12 𝜑13 𝜑14∗ 𝜑22 𝜑23 𝜑24∗ ∗ 𝜑33 0
∗ ∗ ∗ 𝜑44

]]]]]
]
,

Φ2 = [[[
[

−𝑃𝑖 0 0
∗ −𝑃𝑖 −𝐶Τ𝑖
∗ ∗ −𝛿2𝐼

]]]
]
,

ΔΦ1 =
[[[[[
[

Δ𝜑11 Δ𝜑12 0 0
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

]]]]]
]
,

ΔΦ2 = [[[
[

0 0 −𝐶ΤΔ𝑖∗ 0 0
∗ ∗ 0

]]]
]
,

𝜑11 = 𝑃𝑖𝐴 𝑖 + 𝐴T
𝑖 𝑃𝑖 + 𝑃𝑖𝐵𝑖𝐾𝑖 + 𝐾T

𝑖 𝐵T
𝑖 𝑃𝑖 + 𝛽𝑖𝐺Τ𝐺

+ 𝑁∑
𝑗=1

𝜋𝑖𝑗𝑃𝑗 − 𝛾𝑃𝑖,
𝜑12 = −𝑃𝑖𝐵𝑖𝐾𝑖,
𝜑13 = 𝑃𝑖𝑊𝑖,
𝜑14 = 𝑃𝑖𝐹1𝑖,
𝜑22 = 𝑃𝑖𝐴 𝑖 + 𝐴T

𝑖 𝑃𝑖 + 𝑃𝑖𝐸𝑖𝑀𝑖 + [𝑃𝑖𝐸𝑖𝑀𝑖]Τ
+ 𝑁∑
𝑗=1

𝜋𝑖𝑗𝑃𝑗 − 𝛾𝑃𝑖,
𝜑23 = 𝑃𝑖𝑊1𝑖 − 𝑃𝑖𝐸𝑖𝑊2𝑖,
𝜑24 = 𝑃𝑖𝐹1𝑖,
𝜑33 = −𝐼,
𝜑44 = −𝛽𝑖𝐼,

Δ𝜑11 = 𝑃𝑖𝐴Δ𝑖 + 𝐴Τ
Δ𝑖𝑃𝑖 + 𝑃𝑖𝐵Δ𝑖𝐾𝑖 + 𝐾Τ

𝑖 𝐵ΤΔ𝑖𝑃𝑖,
Δ𝜑12 = −𝑃𝑖𝐵Δ𝑖𝐾𝑖 + 𝐴Τ

Δ𝑖𝑃𝑖 −𝑀Τ
Δ𝑖𝐸Τ𝑖 𝑃𝑖.

(C.3)

From inequalities (C.1)-(C.2), we know that 𝜑22, 𝜑23, andΔ𝜑12 are nonlinear. Let 𝐸𝑖 = 𝑃−1𝑖 𝑀Τ
𝑖 and get 𝜑22 = 𝑃𝑖𝐴 𝑖 +𝐴Τ

𝑖 𝑃𝑖 + 2𝑀Τ
𝑖 𝑀𝑖 +∑𝑁

𝑗=1 𝜋𝑖𝑗𝑃𝑗 − 𝛾𝑃𝑖, 𝜑23 = 𝑃𝑖𝑊1𝑖 −𝑀Τ
𝑖 𝑊2𝑖, andΔ𝜑12 = −𝑃𝑖𝐵Δ𝑖𝐾𝑖+𝐴Τ

Δ𝑖𝑃𝑖−𝑀Τ
Δ𝑖𝑀𝑖. Recalling equality (3),ΔΦ1

and ΔΦ2 can be rewritten as

ΔΦ1 = Ψ1Γ𝑖 (𝑡) 𝜉1 + 𝜉Τ1 ΓΤ𝑖 (𝑡) ΨΤ
1 + Ψ2Γ𝑖 (𝑡) 𝜉2

+ 𝜉Τ2 ΓΤ𝑖 (𝑡) ΨΤ
1 + Ψ3Γ𝑖 (𝑡) 𝜉3 + 𝜉Τ3 ΓΤ𝑖 (𝑡)ΨΤ

3

(C.4)

ΔΦ2 = Ψ4Γ𝑖 (𝑡) 𝜉4 + 𝜉Τ4 ΓΤ𝑖 (𝑡) ΨΤ
4

(C.5)

where Ψ1 = col[𝑃𝑖𝐿1𝑖 0 0 0], Ψ2 = col[0 𝑃𝑖𝐿1𝑖 0 0],Ψ3 = col[0 𝑃𝑖𝐸Τ𝑖 𝐿1𝑖 0 0], Ψ4 = col[0 0 0 𝐿1𝑖], 𝜉1 =[𝑁1𝑖 + 𝑁2𝑖𝐾𝑖 − 𝑁2𝑖𝐾𝑖 0 0], 𝜉2 = [𝑁1𝑖 0 0 0], 𝜉3 =[−𝑁4𝑖 0 0 0], and 𝜉4 = [−𝑁3𝑖 0 0 0].
According to Lemma 8, it follows from inequalities (C.1)-

(C.2) that

Φ1 + 𝛼−11𝑖 Ψ1ΨΤ
1 + 𝛼1𝑖𝜉Τ1 𝜉1 + 𝛼−12𝑖 Ψ2ΨΤ

2 + 𝛼2i𝜉Τ2 𝜉2
+ 𝛼−13𝑖 Ψ3ΨΤ

3 + 𝛼3i𝜉Τ3 𝜉3 < 0 (C.6)

Φ2 + 𝛼−14𝑖 Ψ4ΨΤ
4 + 𝛼4i𝜉Τ4 𝜉4 < 0. (C.7)

Use diag{𝑃−1𝑖 𝑃−1𝑖 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼} to pre- and postmul-
tiply matrix (C.6) and use diag{𝑃−1𝑖 𝑃−1𝑖 𝐼} to pre- and
postmultiply matrix (C.7). Considering 𝑈𝑖 = 𝑃−1𝑖 , 𝑆𝑖 =𝐾𝑖𝑃−1𝑖 , 𝐸𝑖 = 𝑃−1𝑖 𝑀Τ

𝑖 , and 𝑄1𝑖 = 𝑀Τ
𝑖 𝑃−1𝑖 𝐿1𝑖𝑃−1𝑖 and using

Schur complement lemma, we can obtain inequalities (18)-
(19). Noting that 𝑈̃𝑖 = diag{𝑈𝑖 𝑈𝑖} and 𝑅̃ = diag{𝑅 𝑅},
inequality (16) can be guaranteed by inequalities (20)-(21).

Next, we prove the positiveness of the augment error
dynamic MJSs (6). From inequalities (22)-(23), we know that𝐴 𝑖𝑈𝑖 + 𝐵𝑖𝑆𝑖 and 𝐴 𝑖 − 𝐸𝑖𝑀𝑖 are Metzler matrices. Since 𝑆𝑖 =𝐾𝑖𝑈𝑖, (𝐴 𝑖 + 𝐵𝑖𝐾𝑖)𝑈𝑖 is also a Metzler matrix. From (24)-(25),
we know that −𝐵𝑖𝑆𝑖 and (𝑊1𝑖 −𝑀Τ

𝑖 𝑊2𝑖)𝑈𝑖 are positive; that is,−𝐵𝑖𝑆𝑖 and𝑊1𝑖−𝑀Τ
𝑖 𝑊2𝑖 are positivematrices. Considering that𝐹1𝑖 is a positive matrix, 𝐴̃𝑖 is a Metzler matrix and 𝐹̃𝑖 and 𝑊̃𝑖

are positive matrices. Recalling Lemma 6, we know that the
augment error dynamic MJSs (6) are positive. This completes
the proof.
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