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In this paper, in order to achieve automatic defect identification for pneumatic pressure equipment, an improved feature extraction
algorithm eddy current pulsed thermography (ECPT) is presented. The presented feature extraction algorithm contains four
elements: data block selection; variable step search; relation value classification; and between-class distance decision function.
The data block selection and variable step search are integrated to decrease the redundant computations in the automatic defect
identification.The goal of the classification and between-class distance calculation is to select the typical features of thermographic
sequence.The main image information can be extracted by the method precisely and efficiently. Experimental results are provided
to demonstrate the capabilities and benefits (i.e., reducing the processing time) of the proposed algorithm in automatic defect
identification.

1. Introduction

As one of the most significant energy storage and transmis-
sion kind of equipment, the pneumatic pressure equipment
has been widely used in modern aerospace industries, such
as manned spacecraft and ground wind tunnel testing in
Figure 1. Moreover, given its wide range of applications, the
equipment possesses a variety of specifications that make it
flexible.The flexibility of their specifications adds complexity
to problem of inspecting and testing this important equip-
ment to identify defects. Researchers have studiedmethods to
characterize pressure vessel properties in recent years. J. Lee
et al. proposed a method of estimating the design pressure in
a prismatic storage vessel for liquefied natural gas [1]. H. Al-
Gahtaniet et al. studied the local pressure testing of spherical
vessels with nozzles [2]. J. Proczka et al. reported guidelines
for the efficient design and sizing of Small-Scale Compressed
Air Energy Storage (SS-CAES) pressure vessels [3]. P. Blanc
studied the residual burst pressure of composite cylinders
after mechanical impacts on their cylindrical part [4].

These studies, however, do not explore the impact of defects
related to the on-going use of pressure vesselsmade of diverse
materials in a wide range of operating environments.

The complicated usage environments and diversity of
materials cause the pneumatic pressure equipment to gener-
ate fatigue cracks, corrosion pits, and other defects. Therefore
it is important to detect the potential defects for the pressure
equipment. Nondestructive testing and evaluation (NDT&E)
[5–10] are important to ensure the safety of manufacturing
environments and equipment operation. K. Schabowicz et al.
presented some nondestructive methods for the testing of
concretemembers and fibre cement boards [11]. Furthermore,
the criteria for special specimen inspection are distinct,
so various detection methods are needed including surface
nondestructive testing, appearance inspection, and physic-
ochemical test. The surface nondestructive testing mainly
includes magnetic particle testing and penetrant testing. Due
to the advantages of surface nondestructive testing, like
high sensitivity and easy identification, this method been
broadly adopted. However, there are many problems that
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Figure 1: Pneumatic pressure equipment.

need to be resolved in its practical application, like high
labor intensity, low efficiency, pollution of the environment,
poor safety, and so on. In recent years, ECPT has been
developing rapidly. In addition to not damaging the body,
the method is fast, is efficient, and can solve the issues of
regular methods. So in this paper, the eddy current pulsed
thermography is implemented in the detection of defects of
pneumatic pressure equipment. Researchers also have made
valuable contributions in processing data [12–15], which
can be applied in (NDT&E). P. Zhu et al. presented an
improved feature extraction algorithm for automatic defect
identification based on eddy current pulsed thermography
[16]. H. Yu utilized the normalized fuzzy weighting functions
to dispose the records of experiment [17].

Nevertheless, the above-mentioned researches possess
low efficiency and limitations in processing data from low-
alloy steel material. Besides, there are many methods, such
as Independent Component Analysis (ICA); the processed
feature information will be distorted after restructuring,
because of data normalization, lending to no visual effect in
detection. In recent years, adaptive technique has gained a lot
of interest to enhance the efficiency of processing data [18–21].
To make the detection system be more useful for detecting
the defect, it may own the ability of adapting property. A
novel characteristic identification algorithm that uses the
similarity of the typical transient thermal responses (𝑇𝑇𝑅𝑠)
with the mixing vectors (the vectors of the pseudo-inverse
matrix of the demixing matrix) in ICA is proposed. It solves
the poor accuracy and low efficiency of the ICA efficiently
by using the choice of a known message. The proposed
algorithm has four steps. First the thermal imager collects
the thermal image sequence of the pneumatic pressure
equipment. Second, the 𝑇𝑇𝑅𝑠 are separated into parts using
threshold values with a variable interval search. The variable
interval search in an infrared image sequence can reduce
the repetitive computation and hold the typical feature of
the pneumatic pressure equipment. Third, the membership
matrix and the clustering center are calculated to classify the
acquired 𝑇𝑇𝑅𝑠. Moreover, the rule of the largest distance of
two class is used to identify the typical 𝑇𝑇𝑅𝑠. Fourth, the
typical 𝑇𝑇𝑅𝑠 are transformed into a two-dimension matrix in
linear time.Themain features of the infrared image sequence
in the pneumatic pressure equipment can be extracted by the
typical𝑇𝑇𝑅𝑠. Experimental results indicate the algorithm can
select the typical feature more precise than ones of the ICA.
Furthermore, the processing time of the presented algorithm
is shorter than ones of the ICA.Therefore, the new algorithm

Figure 2: Pneumatic pressure equipment in China Aerodynamics
Research & Development Center.

can extract the main image information of the pneumatic
pressure equipment accurately and efficiently in comparison
to the ICA.

2. Background: Pneumatic Pressure
Equipment and Nondestructive Testing

2.1. Pneumatic Pressure Equipment. Themanufacture of high
pressure vessels is complex, involving the coordination of
subject knowledge and professional technology in many
industries, including metallurgy, corrosion and protection,
mechanical processing, safety protection, chemical engineer-
ing, and testing. The recent advances in technologies across
various industries, including nondestructive testing, have
enabled considerable progress in pressure vessel manufactur-
ing.

(1) Varieties and specifications: the types of material
can be mainly divided into carbon steel, low-alloy steel,
and a small amount of stainless steel. Moreover, the main
specification of external diameter has dozens of kinds.

(2) Complex usage environment: pressure vessels and
pipes often suffer from high pressure, some special aerody-
namic erosion, and environmental corrosion in the open air,
which usually lead to cracks, perforation, fatigue damage, and
corrosion of the equipment.

(3) Devastating consequences of defects: accidents not
only endanger the safety of personnel, equipment, and the
plant, but also lead to delay of test task, failures, and so on.

2.2. Nondestructive Testing. Surface nondestructive testing is
the key test method of pressure equipment, such as pressure
piping and pressure vessels. Surface nondestructive testing
basically includes magnetic particle testing and penetrant
testing. The method possesses numerous advantages such
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as high defect detection rate and high sensitivity. But there
are also many problems, including high labor intensity, long
overhaul cycle, low efficiency, pollution of the environment,
and poor safety. So there exist a great many obstructors
for development of detection skill. In flammable explosive
environment, because of the safety risks, the traditional types
of surface nondestructive testing methods (magnetic particle,
penetrant) cannot be implemented in the field.

In recent years, surface detection by eddy current has
been (developing) rapid. In addition to not damaging the
body, the method is fast and efficient and can achieve
large area rapid detection reducing manpower and material
resources. The surface detection by eddy current is a method
that utilizes thermal infrared image analysis.

The temperature field distribution is based on a vortex
phenomenon that can be measured using infrared detection.
The device is a thermal infrared imager with high speed
and high resolution. Moreover, through the analysis of
the infrared thermal image sequence, we could detect the
changes of electromagnetic and thermal characteristics of
the structure and material defects. It can detect the surface
and near surface by using the eddy current effect; it also
can detect deeper defects. In the light of Joule’s law, the
eddy current is turned into Joule heat in the testing piece
generating high temperature and low temperature zones.The
infrared thermal imager collects these temperature changes
in the specimen. The collected data are analyzed to compute
anticorrelation results and detect the presence of defects.

Eddy density can be indicated as 𝐽𝑒 = 𝜎 × (𝜕𝐴/𝜕𝑡), in
which 𝐴 expresses the magnetic vector bit and 𝜎 indicates
the electrical conductivity ofmaterials. In the depth direction,
the eddy current density is 𝐽𝑒(𝑧) = 𝐽𝑒(0) ⋅ 𝑒−𝑧√𝜋𝜇𝜎𝑓, in which
𝑧 is the depth, 𝜇 is the permeability of testing material, and
𝑓 is the frequency of alternating current flowing through an
exciting coil. The depth of eddy density has an attenuation to
the 1/𝑒 of the strength surface, which is called as skin depth
𝛿 = 1/√𝜋𝜇𝜎𝑓. According to Joule’s law, the heat power is
𝑃𝑤 = (1/𝜎)|𝐽𝑒|2 = (1/𝜎)|𝜎𝐸|2 and E is electric field intensity.
The Joule heat Q is transmitted inside the material, and the
heat propagation equation is 𝜌𝐶𝑝(𝜕𝑇/𝜕𝑡) − Δ(𝜎𝑇∇𝑇) = 𝑄,
in which 𝜌 is material density, 𝐶𝑝 is specific heat capacity of
materials, 𝜎𝑇 is thermal conductivity of materials, and 𝑇 is
temperature of materials. The crack depth is larger than eddy
current skin depth in this specimen, so

𝐽𝑒 = √2𝛽𝐻
√cosh (2𝛽𝑥) − cos (2𝛽𝑥)
√cosh (𝛽𝑏) + cos (𝛽𝑏)

, (1)

in which 𝑏 is height, H is magnetic field intensity, and

𝛽 = √𝜋𝑓𝜎𝜇 = 1
𝛿 . (2)

The thermal power in the unit volume of the two sides
of the crack is 𝑃𝑤 = 0.5(1/𝜎) ∫ 𝐽2𝑒𝑑𝑥, when the eddy skin
depth is smaller than the plate thickness (𝛿 ≪ 𝑏), the thermal
power 𝑃𝑤 = 𝛽𝐻2/(2𝜎). Recognizing the defects change the
heat distribution in the parts, or zones of a specimen, the

principal component analysis enhances the zones where the
thermal response and the eigenvector has similar trends. So,
in the enhancement of defects in a principal component, the
amplitude of other regionswill be inhibited and distributed in
a very small range. In this paper, a new algorithm in view of
principal component selection is presented to automatically
extract the principal components containing defects.

3. Introduction of Proposed
Algorithm in ECPT

First of all, some definitions are introduced in the Appendix
to make the algorithm clear. Then, the proposed algorithm is
explicit as follows.

Step 1. 3D matrix 𝐷 saves the initial image sequence. Every
pixels value of thermal images is saved in the matrix 𝐷. The
third-dimension of 𝐷 is the time axis t.

Step 1.1. Search for 𝐷(𝑅𝑚𝑚, 𝐶𝑚𝑚, 𝑇𝑚𝑚). To find the length of
the interval in the column coordinate, this step sets (𝐾 =
1, 2, ⋅ ⋅ ⋅ 𝑘 ⋅ ⋅ ⋅ ) temperature thresholds 𝑇(𝑚), (𝑚 = 1, 2, ⋅ ⋅ ⋅ 𝐾)
from large to small; moreover the row which includes the
highest temperature point 𝐷(𝑅𝑚𝑚, 𝐶𝑚𝑚, 𝑇𝑚𝑚) is divided into
𝐾 + 1 parts.

Step 1.2. Set temperature thresholds 𝑇 𝐶𝐿𝑘, for each part,
and the highest temperature point 𝐷𝑘(𝑅𝑚𝑚, 𝐶𝑘, :), (𝑘 =
1, 2, ⋅ ⋅ ⋅ , 𝐾) will be found in every part.

Step 1.3. Set 𝑃 (𝑃 = 1, 2, ⋅ ⋅ ⋅ 𝑝 ⋅ ⋅ ⋅ ) temperature thresholds
𝑇(𝑛), (𝑛 = 1, 2, ⋅ ⋅ ⋅ 𝑃) from large to small, at the same time,
the column which includes the highest temperature point
𝐷(𝑅𝑚𝑚, 𝐶𝑚𝑚, 𝑇𝑚𝑚) is divided into 𝑃 + 1 parts. After the row
is divided, the temperature value of the column also should
be cut apart rationally in order to extract the characteristics
of the defect more accurately.

Step 1.4. Set temperature thresholds 𝑇 𝑅𝐿𝑃, for each part,
and the highest temperature point 𝐷𝑝(𝑅𝑚𝑚, 𝐶𝑝, :), (𝑝 =
1, 2, ⋅ ⋅ ⋅ , 𝑃), will be found in every part. The number of each
block is regarded as 𝑙𝑒𝑛𝑝, (𝑝 = 1, 2, ⋅ ⋅ ⋅ ). Moreover, the same
method as that of column is employed to find the row variable
interval 𝑅𝐿𝑝. The specific procedure of searching for interval
is in the following.

(a) Set (𝐾 = 1, 2, ⋅ ⋅ ⋅ 𝑘 ⋅ ⋅ ⋅ ) temperature thresholds to
divide the 𝑇𝑇𝑅 into 𝐾 + 1 parts.

(b) Set temperature thresholds 𝑇 𝐶𝐿𝑘 for each part.
(c) Search for the highest temperature point𝐷𝑘(𝑅𝑚𝑚, 𝐶𝑘,

:).
(d) Calculate the PCC of (𝐷𝑘(𝑅𝑚𝑚, 𝐶𝑘, :) with 𝐷𝑘(𝑅𝑚𝑚,

𝑐, :))
(e) until their PCC is less than 𝑇 𝐶𝐿𝑘.
(f) The number of (𝐷𝑘(𝑅𝑚𝑚, 𝐶𝑘, :) whose PCCs with

𝐷𝑘(𝑅𝑚𝑚, 𝑐, :)) are more than 𝑇 𝐶𝐿𝑘 is regarded as 𝐶𝐿𝑘.
(g) Set (𝑃 = 1, 2, ⋅ ⋅ ⋅ 𝑝 ⋅ ⋅ ⋅ ) temperature thresholds to

divide the 𝑇𝑇𝑅 into 𝑃 + 1 parts.
(h)The same process as the searching for column interval

to find the row interval.
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(i) The row interval is regarded as 𝑅𝐿𝑝.

Step 1.5. What is more, set the threshold DD, initialize 𝑝 =
1, 𝑛 = 1, 𝑧 = 1, and carry out the following procedures:

(a) Set 𝑟 = 1, save the𝐷𝑝
𝑘 (𝑟, 𝑐, :) into the𝑋(𝑧, :), 𝑟 = 𝑟+𝑅𝐿𝑝

(b) If 𝑟 ≤ 𝑙𝑒𝑛𝑝, Compute the PCC of 𝐷𝑝
𝑘 (𝑟, 𝑐, :) with

𝑋(𝑧, :), else go to step (d)
(c) If 𝑃𝐶𝐶 < 𝐷𝐷, 𝑧 = 𝑧 + 1, 𝑋(𝑧, :) = 𝐷𝑝

𝑘(𝑟, 𝑐, :), 𝑟 =
𝑟 + 𝑅𝐿𝑘, return step (b), else 𝑟 = 𝑟 + 𝑅𝐿𝑘, back to step (b)

(d) If 𝑟 < 𝑀, 𝑝 = 𝑝 + 1, 𝑧 = 𝑧 + 1 back to step (a), else
𝑐 = 𝑐 + 𝐶𝐿𝑘

(e) If 𝑐 < 𝑙𝑒𝑛𝑘, back to step (a); else go to step (f)
(f) If 𝑐 < 𝑁, 𝑘 = 𝑘 + 1, 𝑐 = 1, back to step (a), else the

steps are finished
Pneumatic pressure equipment includes high, medium,

and low pressure storage containers and inlet/outlet gas
pipelines, as shown in Figure 2. The pneumatic pressure
equipment stores and conveys compressed air. The main
features of these pressure vessels and the significance of their
defect inspection are reflected in the following aspects.

The specific calculation process is shown as Figure 3.

Remark 1. For the interval 𝐶𝐿𝑘, the suitable method to
seek out is searching for the length of region with largest
temperature variation. What is more, the 𝑇𝑇𝑅 with largest
peak value is always contained in the region with the largest
temperature variation. As analysis of Step 1, the length of
region with largest temperature variation can be found by
the coordinate value of 𝑇𝐶𝐿. For 𝑅𝐿𝑝, the homologous
setting rule is analogous to 𝐶𝐿𝑘. The proposed algorithm
can include the total typical temperature variations. And
the representative temperature variations express the feature
in the corresponding image sequence. characteristic pick-up
algorithm is put forward to handle data. In the proposed
algorithm, the appropriate interval values of column and row
𝐶𝐼𝑘, (𝑘 = 1, 2, ⋅ ⋅ ⋅ 𝐾),𝑅𝐼𝑝, (𝑝 = 1, 2, ⋅ ⋅ ⋅ 𝑃) are set to reduce the
repeated calculation. Moreover, the variable interval also can
save the significant features. At the same time the proposed
algorithm possesses less redundant computation than ICA.

Step 2. Divide 𝑋(:, 𝑧) into 𝐿 parts. The specific calculation
process is shown as Figure 4.

(a) Set the cluster number L. And, at the same time,
initialize the cluster center 𝑚𝑜; moreover set the number of
iterations 𝑐, and set the weighting coefficient 𝑏; finally set
terminating iterative threshold 𝜀.

(b) Utilize formula to calculate membership function
𝑢𝑗(𝑥𝑖) = 𝑑−2/(𝑏−1)

𝑗𝑖 /∑𝐿
𝑠=1 𝑑−2/(𝑏−1)

𝑠𝑖 , in which 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑔,
𝑑𝑗𝑘 = ‖𝑋𝑘 − 𝑚𝑗‖, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝐿; 𝑑𝑗𝑖 expresses the Euclidean
distance between the 𝑖𝑡ℎ information weight value and the
𝑗𝑡ℎ cluster center. 𝑋𝑘 is the information weight value. 𝑏
is weighting coefficient. 𝑢𝑗(𝑥𝑖) indicates the degree of the
information weight value 𝑥𝑖 attached to the 𝑗𝑡ℎ part.

(c) Update cluster center 𝑚𝑗 = ∑𝑔
𝑖=1[𝑢𝑗(𝑥𝑖)]𝑏𝑥𝑖/

∑𝑔
𝑖=1[𝑢𝑗(𝑥𝑖)]𝑏, in which𝑚𝑗 presents the 𝑗𝑡ℎ cluster center.
(d) Judge whether the absolute value of the objective

function difference is smaller than the threshold value. If

‖𝐽𝑓(𝑐) − 𝐽𝑓(𝑐 − 1)‖ ≥ 𝜀, and 𝑖 < 𝑔, 𝑖 = 𝑖 + 1, go back to
step (b). If 𝑖 > 𝑔 and 𝑗 < 𝐿, 𝑗 = 𝑗 + 1, return to step (b). If
𝑗 ≥ 𝐿, stop. If ‖𝐽𝑓(𝑐) − 𝐽𝑓(𝑐 − 1)‖ < 𝜀, stop too.

(e) The membership maximization rule is used to deblur
all characteristic information weight and get the category of
each information weight.𝑀𝑘 = argmax(𝑢𝑗(𝑥𝑖)).

Remark 2. Making use of the method of computing member-
ship function and updating the clustering center in algorithm
can extract feature information accurately and effectively.
Taking advantage of the COV to classify data is called hard
division. Hard division divides every object into a certain
category strictly, and each class is unrelated to each other.
However, the actual defect information objective exists inter-
mediation in form and category. Moreover there is no definite
boundary conditions to distinguish the class. Therefore,
classifying the categories according to the membership and
cluster centers of each class can bemore accurate.The feature
information weights in each category represent the optimal
weight of the feature information, making the extracted
features more accurate and more reliable.

Step 3. The mean value of the 𝑖𝑡ℎ classification is 𝑀𝐸𝐴𝑁𝑖 =
(1/𝑅(𝑖))∑𝑗=1,2,⋅⋅⋅ ,𝑅(𝑖) 𝐶𝐿𝐴𝑆𝑖𝑗, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝐿, in which 𝑅(𝑖)
presents the total number of 𝑇𝑇𝑅𝑠 in the 𝑖𝑡ℎ classification.
𝑁𝑃𝐶𝐶𝑖

𝑗𝑡 , (𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑅(𝑡)) is the noncorrelation value of
𝑀𝐸𝐴𝑁𝑖 and 𝐶𝐿𝐴𝑆𝑡𝑗, 𝑡 = 1, 2, ⋅ ⋅ ⋅ , 𝐿 and 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑡 − 1, 𝑡 +
1, ⋅ ⋅ ⋅ , 𝐿 (the 𝑗𝑡ℎ 𝑇𝑇𝑅 does not belong to the 𝑖𝑡ℎ classification).
Let 𝐷𝐼𝑆𝑖𝑗𝑡 = ‖𝑁𝑃𝐶𝐶𝑖

𝑗𝑡‖𝑝, where 𝐷𝐼𝑆𝑖𝑗𝑡 expresses the distance
of two classes of 𝑇𝑇𝑅𝑠 𝑗 in the 𝑡𝑡ℎ classification with other
classes. In 𝑡𝑡ℎ (𝑡 = 1, 2, ⋅ ⋅ ⋅ , 𝐿) classification, 𝐹𝑇𝑡 =
‖𝐷𝐼𝑆𝑖𝑗𝑡‖∞, in which 𝐹𝑇𝑡 is the final representation 𝑇𝑇𝑅 of 𝑡𝑡ℎ
classification. Save𝐹𝑇𝑡 , (𝑡 = 1, 2, ⋅ ⋅ ⋅ , 𝐿) into𝑌 (i.e.,𝑌(:, 𝑡), 𝑡 =
1, 2, ⋅ ⋅ ⋅ , 𝐿 saves 𝐹𝑇𝑡, 𝑡 = 1, 2, ⋅ ⋅ ⋅ , 𝐿). The specific calculation
process is shown in Figure 5.

Remark 3. The noncorrelation value of 𝑀𝐸𝐴𝑁𝑖 and 𝐶𝐿𝐴𝑆𝑡𝑗,
𝑡 = 1, 2, ⋅ ⋅ ⋅ , 𝐿 is expressed as 𝑁𝑃𝐶𝐶𝑖

𝑗𝑡 = 1 − 𝑃𝐶𝐶(𝑀𝐸𝐴𝑁𝑖,
𝐶𝐿𝐴𝑆𝑡𝑗).

Remark 4. ‖∗‖𝑝 is P-norm, ‖∗‖∞ is infinity-norm, and ‖∗‖ :
𝑋 󳨀→ 𝑅 satisfies the following:

(1) positivity: ‖𝑥‖ ≥ 0, and ‖𝑥‖ = 0 ⇐⇒ 𝑥 = 0(2) positive
homogeneity: ‖𝑐𝑥‖ = |𝑐|‖𝑥‖(3) trigonometric inequality: ‖𝑥+
𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖‖𝑥‖𝑝 = (|𝑥1|𝑝 + |𝑥1|𝑝 + ⋅ ⋅ ⋅ + |𝑥1|𝑝)1/𝑝, and
‖𝑥‖∞ = max(|𝑥1|, |𝑥2|, ⋅ ⋅ ⋅ , |𝑥𝑛|).

Remark 5. The purpose of the proposed algorithm in Step 1
to Step 3 is to select the typical thermal responses. These
typical responses have less intimately connection with each
other in ECPT. The noncorrelation is larger and the thermal
responses are more representative. Moreover, the selected
accurate data is classified by Steps 2 and 3; the cluster center
and membership function are carried out to classify the
defect feature. The classification simplifies the data of image
processing and makes the postprocessing more precise.
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Figure 3: The specific process of Step 1.

Step 4. The 3𝑑 initial image sequence matrix 𝐷 will be trans-
formed into 2𝑑 matrix 𝑈. The elements in one row of 𝑈 are
taken columnwise from 𝐷(:, :, 𝑝), 𝑝 = 1, 2, ⋅ ⋅ ⋅ , 𝑃. Calculate
𝑌̂ and solve this linear transformation 𝑆 = 𝑌̂ ∗ 𝑈, in which
𝑌̂ expresses the pseudo-inverse matrix of 𝑌 and 𝑅 represents

the result of the proposed algorithm. It includes the features
of the initial image sequence processed by new algorithm.
Moreover, continue to utilize the following way to achieve
the extraction of defect feature 𝑂 = (1/𝑁)∑(𝑥,𝑦)∈𝑆 𝑓(𝑥, 𝑦)
in which 𝑂 expresses the mean of sum of the pixel values,



6 Complexity

j < L

i < g

j = j + 1

i = i + 1

Jf(c) − Jf(c − 1) < 

djk =
Xk − mj



According to the maximum
t

g

g

4

3

2

1

g

g

g

g

4L

3L

2L

1L

END

END

N

N

N

Y

Y

Y

Computer membership function

The weight of characteristic information

membership criterion, the weight of

feature information is classified.

Obtain the classified weight
value of the characteristic

information

Computer distance

= g4g+ + +3g2g1g

Set c=100, L=4, i=1, ,j=1, =10−5

j(xi) =
dji

−2/(b−1)

L

∑
s=1

dsi
−2/(b−1)

mj =

g

∑
i=1

[j(xi)]
bxi

g

∑
i=1

[j(xi)]
b

j(xi)

X(:, g)

X(:, g)

Xg×t

Figure 4: The specific process of Step 2.

f(x, y) is the pixel values, and 𝑁 is the number of pixel
values. Then we can obtain the uniform measurement of S;
i.e., max|𝑓(𝑥, 𝑦) − 𝑚|(𝑥,𝑦)∈𝑆 < 𝑉, in which 𝑉 is a threshold.
Finally, we can pick up the defect feature from the image.

Remark 6. The final purpose of the proposed algorithm is to
extract the defect feature and ignore redundant information.
Themean value of selected region is obtained by the similarity
criterion of the method. Moreover the calculation of the
uniform measurement divides the region into defect feature
and other areas.

Remark 7. In order to highlight the efficiency and reason-
ability of the proposed method, the comparison of the ICA
and the proposed algorithm is shown in Figure 6. In the

first part “Data whitening”, the data in the ICA is dealt
with by normalization and then is computed to obtain the
whitening vectors according to the corresponding feature
vectors and feature matrix. These processes of calculation
take a lot of time to dispose data and reduce efficiency
of processing. However, the new algorithm does not have
these computational procedures, to avoid the redundancy
calculation. Hence, the amount of data in the proposed
algorithm after processing of pretreatment and whitening is
much less than that in the ICA, so, in the postprocessing,
the proposed algorithm avoids redundancy calculation and
possesses higher efficiency than the ICA. 2) In the second
part “Data analysis and comparison”, compared with the
extracted defect feature information graph, the amplitude
of the graph extracted by the new algorithm contains the
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Figure 7: The experimental schematic diagram.

Figure 8: The damaged pneumatic pressure device.
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Figure 9: The specimen 1 and specimen 2.

physical characteristics of the defect, and the content is
closer to the defect feature information. Thus the proposed
algorithm is more accurate and reasonable than the ICA.

Remark 8. Step 1 realizes the segmentation of data block and
the calculation of column interval and row interval. Step 2
and Figure 3 show the process of the variable interval search.
Step 3 is the correlation value classification. Step 4 selects
the 𝐿 typical 𝑇𝑇𝑅𝑠 based on the distance of two classes and
extracts the typical features.

4. Experimental Design

The setup of the experiment is shown in Figure 7. It includes
five functional parts: induction heater; coil; PC; timing
trigger; and IR camera. The induction heater produces high
frequency alternating current for coil excitation. A rectangu-
lar coil applies directional excitation to heat the sample. The
timing trigger controls the time for heating the sample. The
IR camera records the thermal image sequence of the sample.
The analysis of experimental data is represented below.

Figure 8 shows the damaged pneumatic pressure equip-
ment. All the test materials in this paper are provided by
the China Aerodynamics Research & Development Center,
which broadly supports research on aerodynamic equipment.
In view of the devices volume and degree of damage,
specimen 1 and specimen 2, shown in Figure 9, are extracted
from the pneumatic pressure equipment to analyze.

Thedefects have beendetected using themethod of ECPT
and the algorithm presented in Section 3. The two specimens
are analyzed as follows. For sample 1, the parameter index of
specimen 1 is presented in Table 1.

The process of Steps 3 and 4 is represented in Figure 10.
In Step 3, set p=1, b=1, c=100, 𝜀 = 10−5. There are 46,
13, 35, and 2 𝑇𝑇𝑅𝑠 in the corresponding parts. Through
the algorithm of Step 3, in the 1𝑠𝑡 part, compared with
other 𝑇𝑇𝑅𝑠, the 2𝑛𝑑 possesses the maximum noncorrelation,
𝐷𝐼𝑆𝑖21 = 1.3124. The same as in the 2𝑛𝑑 part, the 11(𝑡ℎ)
possesses the maximum noncorrelation, 𝐷𝐼𝑆𝑖112 = 1.3876. In
the 3𝑟𝑑 part, the 35𝑡ℎ possesses the maximum noncorrelation,
𝐷𝐼𝑆𝑖353 = 1.3097. In the 4𝑡ℎ, the 1𝑠𝑡 possesses the maximum
noncorrelation, 𝐷𝐼𝑆𝑖14 = 1.3951. 𝑇𝑇𝑅1, 𝑇𝑇𝑅2, 𝑇𝑇𝑅3, and
𝑇𝑇𝑅4 have been extracted by Steps 3 and 4. The extraction
results of proposed algorithm and the ICA result are shown
in Figure 11. It is obvious that the features of the selected𝑇𝑇𝑅𝑠
are similar to the ICs. In Figure 12, the difference of 𝑇𝑇𝑅𝑠 is
shown. Comparing the proposed algorithm result with the
result of ICA in Figure 13, the trends of the red curves are
similar to the blue curves, respectively. Moreover, Figure 14
illustrates the precise and accurate defect feature processed
by the algorithm. When comparing the proposed algorithm
result with the result of the ICA in Figure 15, the final
result of the algorithm ignores more redundant information
than the ICA result. At the same time, the defect feature
extracted by the proposed algorithm is more precise and
accurate than the ICA result. Consequently, the algorithm
has selected the typical thermal responses and extracted
main features successfully. The proposed method can not
only extract the main features like the ICA, but also reduce
the processed time substantially. Its biggest advantage is the
efficiency. Figure 16 shows the processing time of the ICA
and the proposed algorithm. It is obvious that the proposed
algorithm needs less time to complete the feature extraction
process.
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Figure 11: The proposed algorithm and ICA result of sample 1.
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Figure 13: The normalized mixing vector 1, mixing vector 2, mixing vector 3, mixing vector 4, and 𝑇𝑇𝑅1, 𝑇𝑇𝑅2, 𝑇𝑇𝑅3, and 𝑇𝑇𝑅4.

Table 1: Parameter index of specimen 1.

𝑆𝑎𝑚𝑝𝑙𝑒𝑇𝑖𝑚𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 𝑇𝐻𝑅𝐸 𝐶𝐿 𝑅𝐸𝐹𝑅 𝐿
17𝑠 𝑇(1) = 40, 𝑇(2) = 80 0.98 𝑅𝐸𝐹𝑅1 = 0.98, 𝑅𝐸𝐹𝑅2 = 0.96, 𝑅𝐸𝐹𝑅3 = 0.94 2

Table 2: Parameter index of specimen 2.

𝑆𝑎𝑚𝑝𝑙𝑒𝑇𝑖𝑚𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 𝑇𝐻𝑅𝐸 𝐶𝐿 𝑅𝐸𝐹𝑅 𝐿
18𝑠 𝑇(1) = 29, 𝑇(2) = 40 0.97 𝑅𝐸𝐹𝑅1 = 0.97, 𝑅𝐸𝐹𝑅2 = 0.95, 𝑅𝐸𝐹𝑅3 = 0.93 2

Defect

Figure 14: The defect feature of final result.

For sample 2, the parameter index of specimen 2 is
presented in Table 2.

The process of Steps 3 and 4 is represented in Figure 17. In
Step 3, set p=1, b=1, c=100, 𝜀 = 10−5. There are 30, 30, 24, and
19 𝑇𝑇𝑅𝑠 in the corresponding parts. Through the algorithm
of Step 3, in the 1𝑠𝑡 part, compared with other 𝑇𝑇𝑅𝑠, the 12𝑡ℎ
possesses the maximum noncorrelation, 𝐷𝐼𝑆𝑖121 = 1.6693.
The same as in the 2𝑛𝑑 part, the 27𝑡ℎ possesses the maximum
noncorrelation, 𝐷𝐼𝑆𝑖272 = 1.8238. In the 3𝑟𝑑 part, the 6𝑡ℎ
possesses the maximum noncorrelation, 𝐷𝐼𝑆𝑖63 = 1.3921.
In the 4𝑡ℎ, the 18𝑡ℎ possesses the maximum noncorrelation,
𝐷𝐼𝑆𝑖184 = 1.1842. 𝑇𝑇𝑅1, 𝑇𝑇𝑅2, 𝑇𝑇𝑅3, and 𝑇𝑇𝑅4 have
been extracted by Step 3. The extraction results of proposed
algorithm and the ICA result are shown in Figure 18. The
Pearson correlation coefficients between mixing vectors 1,
2, 3, and 4 and 𝑇𝑇𝑅1, 𝑇𝑇𝑅2, 𝑇𝑇𝑅3, and 𝑇𝑇𝑅4 are 0.9786,

0.9435, 0.9678, and 0.9878, respectively. It is obvious that
the features of the selected 𝑇𝑇𝑅𝑠 are similar to the ICs. In
Figure 19, the difference of 𝑇𝑇𝑅𝑠 is shown. Comparing the
proposed algorithm result with the result of ICA in Figure 20,
the trends of the red curves are similar to the blue curves,
respectively. Moreover, Figure 21 illustrates the precise and
accurate defect feature processed by the algorithm. When
comparing the proposed algorithm result with the result of
the ICA in Figure 22, the final result of the algorithm ignores
more redundant information than the ICA result. At the same
time, the defect feature extracted by the proposed algorithm is
more precise and accurate than the ICA result. Consequently,
the algorithm has selected the typical thermal responses and
extracted main features successfully. The proposed method
can not only extract the main features like the ICA, but also
reduce the processed time substantially. Its biggest advantage
is the efficiency. Figure 23 shows the processing time of
the ICA and the proposed algorithm. It is obvious that the
proposed algorithm needs less time to complete the feature
extraction process.

5. Conclusion and Future Work

In this paper, an accurate and more efficient algorithm in
ECPT is proposed.The validity and efficiency of the proposed
method are demonstrated with experimental results. The
physical meaning of ECPT and the mathematical foundation
of ICA are integrated in this proposed method. The results
contribute to advancing the use of ECPT to detect defects as
follows.

(1) The primary features of the thermal image sequences
can be extracted by the proposed approach. Meanwhile the
main features can be utilized to detect defects.

(2) Experimental results show that whitening preproce-
dure is time-consuming. The proposed algorithm has no data
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Figure 15: The specimen defect, the ICA result, and the final result.

Table 3

𝑆𝑦𝑚𝑏𝑜𝑙 𝑁𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠
𝐷 3 dimensional matrix
𝑅 the total number of rows in D
𝐶 the all number of columns in D
𝑍 the total number of the images at the t axis
𝐷(𝑟, 𝑐, :) the transient thermal response

𝐷(𝑅𝑚𝑚, 𝐶𝑚𝑚, 𝑇𝑚𝑚) the peak temperature point 𝐷(𝑅𝑚𝑚, 𝐶𝑚𝑚, 𝑇𝑚𝑚) =

max

𝑟 = 1, 2 ⋅ ⋅ ⋅𝑀
𝑐 = 1, 2, ⋅ ⋅ ⋅ 𝑁
𝑡 = 1, 2, ⋅ ⋅ ⋅ 𝑇

[𝐷(𝑟, 𝑐, 𝑡)]

𝑇𝐻𝑅𝐸 𝐶𝐿𝑘 the temperature thresholds in searching for the variable interval 𝐶𝐿𝑘

𝑇𝐻𝑅𝐸 𝑅𝐿𝑝 the temperature thresholds in searching for the variable interval 𝑅𝐿𝑝

𝑙𝑒𝑛𝑘 the number of each block in searching for the variable interval 𝐶𝐿𝑘

𝑙𝑒𝑛𝑝 the number of each block in searching for the variable interval 𝑅𝐿𝑝

(𝐷𝑝
𝑘 (𝑟, 𝑐, :) the transient thermal response in k part of row and p part of column

2 ≤ 𝐿 ≤ 𝑔 the final number of classifications in Step 2
𝑃𝐶𝐶(𝑋,𝑌) the computation of 𝑃𝐶𝐶(𝑋,𝑌) = (1/(𝑛 − 1))∑𝑛

𝑖=1((𝑋𝑖 − 𝑋)/𝜎𝑋)((𝑌𝑖 − 𝑌)/𝜎𝑌)
𝐶𝐿𝐴𝑆𝑖𝑗 the 𝑗𝑡ℎ 𝑇𝑇𝑅 of 𝑖𝑡ℎ class
𝑗𝑡 the 𝑗𝑡ℎ 𝑇𝑇𝑅 in 𝑡𝑡ℎ classification

250

200

150

100

50

0

Ti
m

e (
s)

The Processing Time

503.76s

9.77s

Specimen 1
ICA The new algorithm

Figure 16: The time comparison for specimen 1.

whitening procedure. So the proposed algorithm is more
effective.

(3) After processing of pretreatment and whitening,
the amount of data in the proposed algorithm is much

less than that of in ICA. Hence, in the postprocessing,
the proposed algorithm avoids redundancy calculation and
possesses higher efficiency than the ICA. So the proposed
algorithm is more accurate and reasonable than the ICA.

Future work will pay more attention to how to enhance
the efficiency and accuracy of the novel algorithm. In the
experiment, some external interference will bring plenty
of noise to influence the precision. Moreover, the change
of threshold values in the algorithm is also anticipated to
impact the efficiency of the detection. Therefore, it is worth
researching how to reduce the external interference and to
adjust the threshold value.

Appendix

Notations of the Proposed Algorithm

To make the algorithm explicit and clear, the mathematics
definitions in the algorithm are shown in Table 3.
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Figure 17: Steps 3 and 4 in proposed algorithm of sample 2.
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Figure 18: The proposed algorithm and ICA result of sample 2.
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