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As a new type of electronic components, a memristive device is receiving worldwide attention and can enrich the dynamical
behaviors of the oscillating system. In this paper, we propose a 3D jerk system by introducing a generalized memristive device.
It is found that the dynamical behaviors of the system are sensitive to the initial conditions even the system parameters are
fixed, which results in the coexistence of multiple attractors. And there exists different transition behaviors depending on the
selection of the parameters and initial values. Thereby, it is one important type of the candidate system for secure communication
since the reconstruction of accurate state space becomes more difficult. Moreover, we build a hardware circuit and the experimental

results effectively confirm the theoretical analyses.

1. Introduction

As the fourth basic circuit element besides resistance, induc-
tance, and capacitance, the memristor was postulated by
Chua in 1971, to link the charge with the flux [1]. And the
concept of the memristive system was further extended by
Chua and Kang [2]. However, research on the memristor
had not been received much interest until 2008, when the
solid-state realization of the memristor was reported by
the scholars in Hewlett-Packard Laboratory [3]. The mem-
ristor belongs to a nonvolatile two-terminal passive device
with variable quantity called memristance, which connects
the electric flux applied to the device with the electric
charge passing through in a particular direction. When the
electrical field in the memristor is removed, the memristance
may remain unchanged, thus holding memory characteristic
[4, 5]. It was proved that the memory characteristic of the
memristor could not be reproduced by any combination of
the other three fundamental elements. Therefore, the mem-
ristor could be in fact considered as a new electronic element
in electrical circuit theory, which is generally called as the
fourth element [1].

In 2009, Chua put forward the other two hypothetical cir-
cuit elements called memcapacitor and meminductor from
the nanoworld [6-8], which have closely the same character-
istics as the memristor depending on the past states through
which the system has evolved, so they are all called to be
memory circuit elements.

As the new circuit element, the memristor has poten-
tial applications in the construction of the new generation
of computers and memories and has been found to have
significant applications in memristor oscillators, memristor-
based neural networks, and memristor-based charge pump
locked loops [9, 10]. Additionally, a memristive circuit is
propitious to generate chaotic signal for the intrinsic non-
linearity and plasticity properties [11-13]. Different from
the conventional nonlinear systems, the most significant
feature of the memristor-based nonlinear system is that
the long-term dynamical behaviors extremely rely on the
initial state of the memristor, which leads to the emergence
of multistability or coexisting many attractors [14, 15]. The
phenomenon of multistability has attracted a lot of research
enthusiasm recently. In many cases, the multistability exists in
dynamical systems with stable equilibrium, no-equilibrium,
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FIGURE 1: (a) Relationship curves of input and output under different frequencies and (b) the time-domain waveforms when f = 0.2 Hz.

or aline of equilibrium, in which one cannot use the Shilnikov
method to explain the chaos [14-18].

In this paper, we introduce a generalized memristive
device by extending the definition of the memristor and pro-
pose a 3D jerk system based on the memristive element. Basic
dynamical properties of the jerk system are displayed and
studied. Specially, the coexistence of multiple attractors is
investigated by analyzing the bifurcation map, spectrum of
Lyapunov exponent, and distribution of the stable region in
the initial value space. And there exist different transition
behaviors depending on the selection of the parameters and
initial values. Thereby, this system exhibits a rich and com-
plex dynamics relying on the system parameters, initial
values, and time evolution, which are of significance for
secure communication since the reconstruction of accurate
state space becomes more difficult. Moreover, we build a
hardware circuit and the experimental results effectively con-
firm the theoretical analysis.

2. Generalized Memristive Device

By extending the definition of the memristive system [2, 19-21],
we introduce a generalized memristive device, depicted by
the following relation:

 _
ar > (1)
r=(x"-2)y.

In relation (1), x(t) denotes the internal state variable
of the memristive element; y(t) and r(f) are complemen-
tary constitutive variables representing the input and out-
put, respectively.

To study the fingerprint, we consider a sinusoidal stimu-
lus y = h sin (wt) = h sin (27ft) with the amplitude h and

the frequency w or f, connected across the terminals of
the memristive element [22-24]. Thus, we have

y(r)dt + Jty(‘r)dr

x(t) = Jt_ooy(r)d‘r = JO i o

—00

=x(0) + L [1—cos (27tft)].

2nf

And we further obtain the output of the memristive ele-
ment, as

r=(x*-2)y= {(x(o) + %(1 - cos (Zﬂft))) - 2] h sin (27tft).
(3)

As we know that the resulting output not only depends
on the initial state of the memristive element but also
depends on the frequency and amplitude of the sinusoidal
input. Figure 1(a) depicts the relations of input and output
of the memory element for sinusoidal stimulus at different
frequencies, when h=1 and x(0) =1. Figure 1(b) shows
the corresponding time domain waveform of f=0.2.
Figure 2(a) depicts the relations of input and output of
the memory element with 4 =1 and f =0.2 under different
initial states. Figure 2(b) depicts the relations of input and
output of the memory element with x(0)=1 and f=0.2
under different amplitudes of the sinusoidal signal.

From the simulation results in Figures 1 and 2, it can be
seen that the memory device is not passive and behaves as a
linear negative commutator in the limit of infinite frequency.
Besides, there exist at most two values of the output r(¢) for
any designated input y(¢) [20].
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FIGURE 2: Relationship curves of input and output under (a) different initial states and (b) different amplitudes of the sinusoidal signal.

3. Model of a Memristor-Based Jerk System

Jerk system is of interest within the nonlinear dynamics
domain for the simple mathematical form yet rich dynam-
ics. A jerk system is depicted by the third-order ordinary
differential equation as d’x/dt’ = J(d*x/dt*, dx/dt, x), in
which the function J(-) is nonlinear. From the point of
view of mechanics, the function J(-) corresponds to the
first-time derivative of acceleration; thus, it is called to be a
jerk or jolt [25-27].

In this work, we introduce a 3D jerk system which pos-
sesses the generalized memristive element of (1):

dx_
a

dy
i dz,
dz

= —az+bx - +kr,
dt

where r = (x> — 2)y, x, y, z are the state variables, and a, b, ¢, k

are the positive system parameters.

The volume contraction of system (4) can be described by
the Lie derivative:

ox 0y 0z
VV=(—|+(=|+|[=— ) =—a 5
G G) @) e

This signifies that the dissipativity of system (4) is nega-
tive. Thereby, the limit sets of system (4) will infinitely con-
verge to zero volume, and the asymptotic motion at time
through the flow will settle onto an attractor.

We obtain the three equilibrium points of system (4) as

Ey(0,0,0), E,(vb/c,0,0), and E,(—v'blc,0,0), by simple
mathematical derivation. When letting the parameter set

P=(a,b,c,d, k)=(0.5,0.8,0.6,3.0,1), we get the typical
equilibrium points and the corresponding characteristic
roots, as below

Ey(0,0,0): A, = —1.12415 — 1.88224i,
A, = —1.12415 + 1.88224i, A, = 1.2483,
E,,(+1.1547,0,0): A, = -2.54216, A, = 0.771078 — 2.03122i,
A; =0.771078 + 2.03122i.

(6)

Therefore, the equilibrium point E, is a saddle node
of index 1, and the equilibrium points E, and E, are both
saddle-focus points of index 2. Accordingly, the three
equilibrium points are all instable.

With the parameter set P, we get the Lyapunov exponents
as 0.165274, 0, and —0.662735 and the Kaplan-Yorke dimen-
sion as 2.2494, implying a fractional feature with chaotic
behavior, as depicted in Figure 3.

4. Dynamics of a Memristor-Based Jerk System

4.1. Impact of System Parameters. We first select the param-
eter set P except let b vary in the region (0.6, 0.82), the
bifurcation diagram and the Lyapunov exponent spectrum
are displayed in Figure 4. It is known from Figure 4 that
the system trajectory evolves from a fixed point to multi-
ple period-doubling bifurcations, finally falls into a chaotic
state. And there exists an obvious periodic window near
b=0.75. The Feigenbaum’s constant can be acquired by
F,=(p, = Pu1)/(Pps1 — P,)> Where p is the critical parame-
ter value at which a period-doubling bifurcation emerges. It
is agreed that the ratio F, will converge to the ideal value
4.669 as n increases. Thus, the ratio on the parameter b is reck-
oned as (0.7241 - 0.6782)/(0.7341 - 0.7241) = 4.59, which
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FIGURE 3: (a) x-y phase portrait, (b) y-x phase portrait, (c) x-z phase portrait.
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TaBLE 1: Multistable behavior of system (4) with a=0.5,b=0.8, c¢=0.6, d =3, and k=0.95.
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FIGURE 9: (a) Time-domain waveform of variable z in the region of (0's, 250 s); (b) the phase portrait in time interval of (0's, 136); (c) the

phase portrait in time interval of (1405, 250's).

approximately equals to 4.669 with a relative deviation
(decline) of 1.69%.

Figure 5 depicts the bifurcation diagram and the Lya-
punov exponent spectrum when selecting parameter set
P except d varying in the region [2, 7]. It is obvious that
the dynamics of system (4) switch among the chaotic state
and periodic orbit by inverse period-doubling Feigenbaum
tree, with the increase of parameter d. And the Feigenbaum’s
constant is reckoned as (5.732 -4.666)/(4.666 —4.445) =
4.8235, which is approximately equal to 4.669 with a relative
deviation (rise) of 3.31%.

4.2. Coexisting Attractors. We assign the parameters of sys-
tem (4)asa=0.5,b=0.8,c=0.6,d =3,and k = 0.95 and take
the initial conditions y(0) = 0.3 and z(0) = 0.015. When let

x(0) as the bifurcation parameter varying in the region
(=0.02, 0.1), the bifurcation diagram and its Lyapunov expo-
nent spectra are plotted in Figure 6. It is found that when ini-
tial value of x increases from —0.02, system (4) starts from a
chaotic state and abruptly breaks into a periodic state via
tangent bifurcation at —0.005, and system turns into the nor-
mal chaotic state at 0.0035 then degrades into a periodic state
at 0.0065 via chaos crisis; the periodic state continues until
the tangent bifurcation at x(0) =0.012. As depicted by the
enlarged view in Figure 6(b), similar switching process will
happen in other ranges or smaller local ranges, showing a
multifractal process.

When assigning the same parameters and x(0) =0.01,
the dynamic dependence on both initial conditions y(0)
and z(0) is also studied by the dynamical map, through
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numerical simulation, as shown in Figure 7. In the dynamical
map, the system is chaotic in the cyan region, stable in the
pink region, and periodic in the blue region.

All these results of initial sensitivity indicate that there
exists palpable feature of coexisting attractors in system (4).
As the representative examples, Figure 8 displays the attrac-
tors on x-y plane with a=0.5, b=0.8, c=0.6, d=3, and
k=0.95 and different initial conditions. Figure 8(a) displays
that the initial condition (0.01, 0.2, 0.09) leads to a 2-scroll
chaotic mode and the initial condition (0.01, 0.23, 0.09) leads
to a period-3 mode. Figure 8(b) displays that the initial con-
dition (0.01, 0.4, 0) leads to a 1-scroll chaotic attractor and
the initial condition (0.01, 0.4, 0.022) leads to a 2-scroll cha-
otic attractor. The typical multistable behaviors are summa-
rized in Table 1.

4.3. Transient Dynamics. As discussed above, the dynamic
mode of the reported system strongly depends not only on
the parameters but also on the initial conditions. Another
important phenomenon is that the dynamic mode also
strongly depends on state evolution time, called to be the
transition behavior.

Taking a=0.5,b=0.8,c=0.6,d =5, k=1 and the initial
condition (0.01, 0.2, 0.01), we depict the time trajectory in the

region of (0s, 250s) and the phase portraits in time intervals
of (0s, 1365s) and (1405, 2505s), as shown in Figure 9. As we
find that the dynamics convert from transient chaos to
period-2 behavior.

Takinga=0.5,b=0.8,c=0.6,d =6.6, k=1 and the ini-
tial condition (0.01, 0, 0.1), we depict the time trajectory in
the region of (0s, 160 s) and the phase portraits in time inter-
vals of (0s, 60s) and (100s, 1605s), as shown in Figure 10,
from which we find the dynamics transition from transient
period-3 to period-1 behaviors.

Figure 11 depicts the case of a=0.5,6=0.8,c=0.6,d =3,
k=0.95 and the initial condition (0.01, 0.26, 0.01). As we
find that the system (4) is chaotic in the region of (0s,
1050s) and is in the mode of period-4 in the region of
(10505, 2000s).

5. Circuit Realization of a Memristor-Based
Jerk System

The circuit realization is important for the chaotic system,
especially by adopting commercially common electronic
components [28-30]. In this section, we build an electronic
circuit to physically realize the reported system for differ-
ent cases, based on the improved module-based technique
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Memristive device

R,

R,

F1GURE 12: Electronic circuit realization of the emulating system (4).

[31-34]. The electronic circuit is designed as the jerk form by
using the dimensionless state equations, as depicted in
Figure 12, which is simple with less circuit elements. In this
design, the operations of integral, addition, and inverse are
realized by the operational amplifier TL082 chip and the
multiply operation is realized by the AD633]N chip. More-
over, time-scale transformation is considered in our experi-
ment to guarantee capturing of the wave effectively, which
is determined by the time constant R,C, in the integrator.
Accordingly, we obtain the circuit state equation from
Figure 12, as follows

dx 1
ar - R,C,
dy 1
_y: Z,
it ~ R, )
dz 1 1 1
— == z+ x- x
it R,C,. T R,.C," 100R.C,
Ll o
100R,C," 7~ R,Gy””
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the x-y plane.

We first select the system parameter as a=0.5, b=0.8,
c=0.6, d=3, k=1. When setting R, = 10kQ and C, =500
nF, the other resistances are derived as R, = 33.3k, R, = 100
k, R, = 200k, R, = 50k, R, = 1k, Ry = 1.667k, and R, = 125k.
The experimental result of the 2-scroll chaotic attractor on
x-y plane captured from the analog oscilloscope is depicted
in Figure 13(a), which agrees well with the numerical simula-
tion in Figure 3.

To experimentally confirm the coexisting attractors, we
consider the system parameters as a=0.5, b=0.8, c=0.6,
d =3, and k=0.95. In this case, the parameter values of cir-
cuit element in Figure 12 are invariable except for R, =
52.63k and R, = 1.053k. We switch on and off the power sup-
ply for randomly selecting the initial states, the experimental
results in Figures 13(b) and 13(c) show the period-3 mode
and 1-scroll chaotic attractor, which, respectively, agrees well
with the numerical simulations in Figure 8 of initial condi-
tions (0.01, 0.23, 0.09) and (0.01, 0.4, 0).

6. Conclusions

As the fourth basic circuit element, the memristor builds the
missing bridges between flux and charge. The memory char-
acteristic of memristor will lead to complicated dynamical
behaviors of oscillating systems. The jerk system is of interest
within the field of nonlinear dynamics for the simple mathe-
matical form. Therefore, it is worth to study the dynamics of
the memristor-based jerk system. In this paper, we propose a
3D jerk system by introducing a generalized memristive
device. The dynamical behavior of the system is sensitive
to the initial conditions, which results in the coexistence
of multiple attractors. And there exist different transition
behaviors depending on the selection of the parameters
and initial values. Thereby, it is difficult for the third party
to reconstruct the accurate state space of the reported system
since the dynamics extremely rely on the system parameters,
initial values, and time evolution, which are significant for
secure communication.
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