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This paper considers the guaranteed cost finite-time boundedness of discrete-time positive impulsive switched systems. Firstly, the
definition of guaranteed cost finite-time boundedness is introduced. By using the multiple linear copositive Lyapunov function
(MLCLF) and average dwell time (ADT) approach, a state feedback controller is designed and sufficient conditions are obtained to
guarantee that the corresponding closed-loop system is guaranteed cost finite-time boundedness (GCFTB). Such conditions can
be solved by linear programming. Finally, a numerical example is provided to show the effectiveness of the proposed method.

1. Introduction

As a special kind of positive systems [1–3], the positive
switched systems whose output and state are nonnegative
whenever the initial condition and input are nonnegative
have been found in many applications such as communica-
tion networks [4], viral mutation [5], and formation flying
[6].There have beenmany available results about continuous-
time positive switched systems [7–11] and discrete-time
positive switched systems [12–14].

However, most results mentioned above focus on the
classical Lyapunov stability, which guarantees the stability
in an infinite-time interval. Different from the Lyapunov
stability concept, the finite-time stability requires that the
states do not exceed a certain bound during a fixed finite-
time interval. The paper [15] firstly defined the definition of
finite-time stability (FTS) for linear deterministic systems.
Recently, [16] firstly extended the concept of FTS to positive
switched systems and gave some FTS conditions of positive
switched systems. So far, there have been a few meaningful
results about FTS of positive switched systems; see [17–
20]. In these results, to make the best of the nature of
positivity, the MLCLF approach has been widely used and
became a powerful tool for the analysis and synthesis of
positive switched systems. Due to the wide application of
digital controllers, some researches have been done on the

FTS of discrete-time positive switched systems. The paper
[21] investigated the problem of robust finite-time stability
and stabilization of a class of discrete-time positive switched
systems. The paper [22] studied the problem of finite-time
control of a class of discrete impulsive switched positive time-
delay systems under asynchronous switching, but the effect of
disturbance was ignored.

Moreover, in most of practical applications, the
researchers are more interested in designing the control
system which is not only finite-time stable but also
guarantees an adequate level of performance. One method
to this problem is the so-called guaranteed cost finite-time
control. Some remarkable results have been presented; see
[23–27]. These results mainly focus on nonpositive systems.
Very recently, in [28], guaranteed cost finite-time control
was extended to fractional-order positive switched systems
and a cost function for fractional-order positive systems (or
fractional-order positive switched systems) was proposed.
In [29], the problem of guaranteed cost finite-time control
for positive switched linear systems with time-varying delays
was considered and a cost function of positive systems (or
positive switched systems) was also presented. Based on [29],
[30] extended guaranteed cost finite-time control to positive
switched nonlinear systems with 𝐷-perturbation. It is worth
noting that [28–30] are involved in continuous-time positive
switched systems. However, the problem of guaranteed
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cost finite-time control for discrete-time positive impulsive
switched systems is still open, which inspires us for this
study.

In this paper, we consider the problem of GCFTB of
discrete-time positive impulsive switched systems by con-
structing the MLCLF with average dwell time (ADT) tech-
nique. Firstly, the concept of guaranteed cost finite-time
boundedness is extended to discrete-time positive impulsive
switched systems. Secondly, a state feedback controller is
designed and sufficient conditions are obtained to guarantee
that the closed-loop system is GCFTB. Some sufficient
conditions are obtained by linear programming.

The rest of the paper is organized as follows. Section 2
gives some necessary preliminaries and problem statements.
In Section 3, the main results are given. In Section 4, a
numerical example is provided. Section 5 concludes the
paper.

Notations. The representation 𝐴 ≻ 0 (≽0, ≺0, ≼0) means
that 𝑎𝑖𝑗 > 0 (≥0, <0, ≤0), which is also applying to a vector.𝐴 ≻ 𝐵 (𝐴 ⪰ 𝐵) means that 𝐴 − 𝐵 ≻ 0 (𝐴 − 𝐵 ⪰ 0).𝑅𝑛+ is the 𝑛-dimensional nonnegative (positive) vector space.𝑅𝑛×𝑛 denotes the space of 𝑛 × 𝑛 matrices with real entries. 𝐼𝑙
represents the 𝑙-dimensional vector [1, . . . , 1]𝑇. 𝐴𝑇 denotes
the transpose of matrix 𝐴. 1-norm ‖𝑥‖ is defined by ‖𝑥‖ =∑𝑛𝑘=1 |𝑥𝑘|.𝑁 and𝑁+ are the sets of nonnegative and positive
integers. 𝑍+ denotes the set of positive integers. Matrices are
assumed to have compatible dimensions for calculating if
their dimensions are not explicitly stated.

2. Preliminaries and Problem Statements

Consider the following discrete-time positive impulsive
switched systems:

𝑥 (𝑘 + 1) = 𝐴𝜎(𝑘)𝑥 (𝑘) + 𝐵𝜎(𝑘)𝑢 (𝑘) + 𝐶𝜎(𝑘)𝑤 (𝑘) ,
𝑘 ̸= 𝑘𝑚 − 1, 𝑚 ∈ 𝑍+

𝑥 (𝑘 + 1) = 𝐸𝜎(𝑘)𝑥 (𝑘) , 𝑘 = 𝑘𝑚 − 1, 𝑚 ∈ 𝑍+,
(1)

where 𝑘 ∈ 𝑁, 𝑥(𝑡) ∈ 𝑅𝑛 is the system state, and 𝑢(𝑡) ∈ 𝑅𝑙
represents the control input. 𝜎(𝑘) represents switching signal
of system and takes values in a finite set 𝐼 = 1, 2, . . . , 𝑆,𝑆 ∈ 𝑁+. In general, 𝐴 𝑖, 𝐵𝑖, 𝐶𝑖, and 𝐸𝑖 are the 𝑖th subsystem
if 𝜎(𝑘) = 𝑖 ∈ 𝐼. 𝑘0 = 0 is the initial time. 𝑘𝑚 (𝑚 ∈𝑍+) denotes the 𝑚th impulsive switching instant. Moreover,𝜎(𝑘) = 𝑖 ∈ 𝐼 means that the 𝑖th subsystem is active.𝜎(𝑘 − 1) = 𝑗 and 𝜎(𝑘) = 𝑖 (𝑖 ̸= 𝑗) indicate that 𝑘 is a
switching instant at which the system is switched from the 𝑗th
subsystem to the 𝑖th subsystem. At switching instants, there
exist impulsive jumps described by (1).𝐴𝑝,𝐵𝑝,𝐶𝑝, and𝐸𝑝 are
constant matrices with suitable dimensions, 𝑤(𝑘) ∈ 𝑅𝑙 is the
exogenous disturbance and defined as

𝑇𝑓∑
𝑘=0

‖𝑤 (𝑘)‖ ≤ 𝑑, (2)

with a known scalar 𝑑 > 0 and a given finite-time threshold
value 𝑇𝑓.

Next, wewill give somedefinitions and lemmas for system
(1).

Definition 1. System (1) is said to be positive if for any
switching signals 𝜎(𝑘), any disturbance input 𝑤(𝑘) ⪰ 0, and
control input 𝑢(𝑘) ⪰ 0, the corresponding trajectory satisfies𝑥(𝑘) ⪰ 0 for all 𝑘 ≥ 0.
Lemma2 (see [25]). System (1) is positive if and only if𝐴 𝑖 ⪰ 0,𝐵𝑖 ⪰ 0, 𝐶𝑖 ⪰ 0, and 𝐸𝑖 ⪰ 0, where 𝑖 ∈ 𝐼.
Definition 3. For any switching signal 𝜎(𝑘) and any 𝑡2 ≥𝑡1 ≥ 0, let 𝑁𝜎(𝑡1, 𝑡2) denote the switching numbers over the
interval [𝑡1, 𝑡2). For given 𝑡𝜄 > 0 and 𝑛0 > 0, if the inequality

𝑁𝜎 (𝑡1, 𝑡2) ≤ 𝑛0 + 𝑡2 − 𝑡1𝑡𝜄 , (3)

holds, then 𝑡𝜄 is called an average dwell time, and 𝑛0 is called
a chattering bound. Generally, we choose 𝑛0 = 0.
Definition 4 (finite-time stability (FTS)). For a given time 𝑇𝑓
and two vectors 𝛼 ≻ 𝛽 ≻ 0, discrete-time positive impulsive
switched system (1) with 𝜔(𝑘) ≡ 0 is said to be FTS with
respect to (𝛼, 𝛽, 𝑇𝑓, 𝜎(𝑘)), if

𝑥𝑇 (0) 𝛽 ≤ 1 󳨐⇒
𝑥𝑇 (𝑘) 𝛼 < 1, ∀𝑘 ∈ [0, 𝑇𝑓] ,

(4)

where 𝑘 is an any time point on the time interval [0, 𝑇𝑓].
Definition 5 (finite-time boundedness (FTB)). For a given
constant 𝑇𝑓, and two vectors 𝛼 ≻ 𝛽 ≻ 0, discrete-time
positive impulsive switched system (1) is said to be FTB with
respect to (𝛼, 𝛽, 𝑇𝑓, 𝑑, 𝜎(𝑘)), where 𝑤(𝑡) satisfies (2), if

𝑥𝑇 (0) 𝛽 ≤ 1 󳨐⇒
𝑥𝑇 (𝑘) 𝛼 < 1, ∀𝑘 ∈ [0, 𝑇𝑓] ,

(5)

where 𝑘 is an any time point on the time interval [0, 𝑇𝑓].
Now we give some new definitions for our further study.

Definition 6. Define the cost function of discrete-time posi-
tive impulsive switched system (1) as follows:

𝐽 =
𝑇𝑓−1∑
𝑠=0

(𝑥𝑇 (𝑠) 𝑅1 + 𝑢𝑇 (𝑠) 𝑅2) , (6)

where 𝑅1 ≻ 0 and 𝑅2 ≻ 0 are two given vectors.

Remark 7. It should be noted that the proposed cost function
is different from the general one, such as [26–28]; this
definition provides amore useful description, because it takes
full advantage of the characteristics of nonnegative states of
discrete-time positive impulsive switched systems.

Definition 8 (GCFTB). For a given time constant 𝑇𝑓 and two
vectors 𝜍 ≻ 𝜌 ≻ 0, consider discrete-time positive impulsive
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switched system (1) and cost function (6); if there exist a
control law 𝑢(𝑡) and a positive scalar 𝐽⋆ such that the closed-
loop system is FTB with respect to (𝛼, 𝛽, 𝑇𝑓, 𝑑, 𝜎(𝑘)) and the
cost function satisfies 𝐽 ≤ 𝐽⋆, then the closed-loop system is
called GCFTB, where 𝐽⋆ is a guaranteed cost value and 𝑢(𝑡) is
a guaranteed cost finite-time controller.

3. Main Results

3.1. Guaranteed Cost Finite-Time Boundedness Analysis. In
this subsection, we will focus on the problem of GCFTB
for discrete-time positive impulsive switched system (1) with𝑢(𝑘) = 0. The following theorem gives sufficient conditions
of GCFTB for system (1) with 𝑢(𝑘) = 0.
Theorem 9. Consider the discrete-time positive impulsive
switched system (1) with 𝑢(𝑘) = 0, for a given time constant𝑇𝑓, vectors 𝛼 ≻ 𝛽 ≻ 0 and 𝑅1 ≻ 0; if there exist a set of positive
vectors ]𝑖,]𝑗, 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ 𝐼 and positive constants 𝜙1, 𝜙2, 𝜍,𝜉 > 1, 𝜇 > 1 such that the following inequalities hold:

𝐴𝑇𝑖 ]𝑖 + 𝑅1 − 𝜉]𝑖 ≺ 0, (7)

𝐶𝑇𝑖 ]𝑖 − 𝜍𝐼𝑙 ≺ 0, (8)

𝐸𝑇𝑖 ]𝑗 − 𝜇]𝑖 ≺ 0, (9)

𝜙1𝛼 ≺ ]𝑖 ≺ 𝜙2𝛽, (10)

𝜙1 > (𝜙2 + 𝜍𝑑) 𝜉𝑇𝑓 , (11)

where ]𝑖 = []𝑖1, ]𝑖2, . . . , ]𝑖𝑛]𝑇 and ]𝑖𝑟 represents the 𝑖th elements
of the vectors ]𝑖, respectively, then under the following ADT
scheme:

𝑇𝛼 > 𝑇∗𝛼 = 𝑇𝑓 ln 𝜇
ln (𝜙1) − ln (𝜙2 + 𝜍𝑑) − 𝑇𝑓 ln (𝜉) , (12)

system (1) with 𝑢(𝑘) = 0 is GCFTB with respect to(𝛼, 𝛽, 𝑇𝑓, 𝑑, 𝜎(𝑘)) and the guaranteed cost value of system (1)
with 𝑢(𝑘) = 0 is given by

𝐽 =
𝑇𝑓−1∑
𝑘=0

𝑥𝑇 (𝑘) 𝑅1 ≤ 𝐽∗ = 𝜉𝑇𝑓𝜇𝑇𝑓/𝑇∗𝛼 (𝜙2 + 𝜍𝑑) . (13)

Proof. Construct the multiple linear copositive Lyapunov
function (MLCLF) for system (1) with 𝑢(𝑘) = 0 as follows:

𝑉𝑖 (𝑥 (𝑘)) = 𝑥𝑇 (𝑘) ](𝑖), (14)

where 𝑖 ∈ 𝐼.
Suppose a switching sequence 0 = 𝑘0 ≤ 𝑘1 ≤ ⋅ ⋅ ⋅ ≤ 𝑘𝑚 ≤𝑘𝑚+1 ≤ ⋅ ⋅ ⋅ ≤ 𝑇𝑓. Without loss of generality, we assume that

subsystem 𝑖 is activated at the switching instant 𝑘𝑚−1 and the
subsystem 𝑗 is activated at the switching instant 𝑘𝑚.

When 𝑘 ∈ [𝑘𝑚−1, 𝑘𝑚 − 1),𝑚 ∈ 𝑁, 𝜎(𝑘) = 𝜎(𝑘 + 1) = 𝑖,
along the trajectory of system (1) with 𝑢(𝑘) = 0, the difference
of the MLCLF is

△𝑉𝑖 (𝑥 (𝑘)) + 𝑥𝑇 (𝑘) 𝑅1
= 𝑉𝑖 (𝑥 (𝑘 + 1)) − 𝑉𝑖 (𝑥 (𝑘)) + 𝑥𝑇 (𝑘) 𝑅1
= 𝑥𝑇 (𝑘) (𝐴𝑇𝑖 ]𝑖 + 𝑅1 − ]𝑖) + 𝜔𝑇 (𝑘) 𝐶𝑇𝑖 ]𝑖.

(15)

From (7), (8) and 𝑥(𝑘) ⪰ 0, 𝑘 ∈ 𝑁, we have

△𝑉𝑖 (𝑥 (𝑘)) + 𝑥𝑇 (𝑘) 𝑅1
≤ (𝜉 − 1) 𝑥𝑇 (𝑘) ]𝑖 + 𝜍𝜔𝑇 (𝑘) 𝐼𝑙.

(16)

It implies that

𝑉𝑖 (𝑥 (𝑘 + 1)) ≤ 𝜉𝑥𝑇 (𝑘) ]𝑖 + 𝜍 ‖𝜔 (𝑘)‖1 . (17)

When 𝑘 = 𝑘𝑚−1,𝜎(𝑘+1) = 𝜎(𝑘𝑚) = 𝑗,𝜎(𝑘) = 𝜎(𝑘𝑚−1) =𝑖, 𝑖 ̸= 𝑗. Along the trajectory of system (1) with 𝑢(𝑘) = 0, we
have

𝑉𝑗 (𝑥 (𝑘 + 1)) − 𝜇𝑉𝑖 (𝑥 (𝑘))
= 𝑥𝑇 (𝑘 + 1) ]𝑗 − 𝜇𝑥𝑇 (𝑘) ]𝑖
≤ 𝑥𝑇 (𝑘) (𝐸𝑇𝑖 ]𝑗 − 𝜇]𝑖) .

(18)

From (9) and 𝑥(𝑘) ⪰ 0, 𝑘 ∈ 𝑁, we have

𝑉𝑗 (𝑥 (𝑘 + 1)) ≤ 𝜇𝑉𝑖 (𝑥 (𝑘)) , 𝑖 ̸= 𝑗. (19)

So, when 𝑘 ∈ [𝑘𝑚, 𝑘𝑚+1), from (19), we get

𝑉𝜎(𝑘) (𝑥 (𝑘)) < 𝜉𝑘−𝑘𝑚𝑉𝜎(𝑘𝑚) (𝑥 (𝑘𝑚))
+ 𝜍 𝑘−1∑
𝑠=𝑘𝑚

𝜉𝑘−1−𝑠 ‖𝜔 (𝑠)‖1
< 𝜇𝜉𝑘−𝑘𝑚𝑉𝜎(𝑘𝑚−1) (𝑥 (𝑘𝑚 − 1))

+ 𝜍 𝑘−1∑
𝑠=𝑘𝑚

𝜉𝑘−1−𝑠 ‖𝜔 (𝑠)‖1 .

(20)
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Repeating the procedure of (20) and noting 𝜉 > 1, we
obtain

𝑉𝜎(𝑘) (𝑥 (𝑘)) < 𝜉𝑘−𝑘𝑚𝑉𝜎(𝑘𝑚) (𝑥 (𝑘𝑚))
+ 𝜍 𝑘−1∑
𝑠=𝑘𝑚

𝜉𝑘−1−𝑠 ‖𝜔 (𝑠)‖1
< 𝜇𝜉𝑘−𝑘𝑚𝑉𝜎(𝑘𝑚−1) (𝑥 (𝑘𝑚 − 1))

+ 𝜍 𝑘−1∑
𝑠=𝑘𝑚

𝜉𝑘−1−𝑠 ‖𝜔 (𝑠)‖1
< 𝜇𝜉𝑘−𝑘𝑚𝜉𝑘𝑚−1−𝑘𝑚−1𝑉𝜎(𝑘𝑚−1) (𝑥 (𝑘𝑚−1))

+ 𝜍 𝑘−1∑
𝑠=𝑘𝑚

𝜉𝑘−1−𝑠 ‖𝜔 (𝑠)‖1

+ 𝜇𝜍 𝑘𝑚−1∑
𝑠=𝑘𝑚−1

𝜉𝑘𝑚−1−𝑠 ‖𝜔 (𝑠)‖1
< 𝜇𝜉𝑘−𝑘𝑚−1𝑉𝜎(𝑘𝑚−1) (𝑥 (𝑘𝑚−1))

+ 𝜍 𝑘−1∑
𝑠=𝑘𝑚

𝜉𝑘−1−𝑠 ‖𝜔 (𝑠)‖1

+ 𝜇𝜍 𝑘𝑚−1∑
𝑠=𝑘𝑚−1

𝜉𝑘𝑚−1−𝑠 ‖𝜔 (𝑠)‖1 .

(21)

By iterative operation, we get

𝑉𝜎(𝑘) (𝑥 (𝑘)) < 𝜇2𝜉𝑘−𝑘𝑚−2𝑉𝜎(𝑘𝑚−2) (𝑥 (𝑘𝑚−2))
+ 𝜍 𝑘−1∑
𝑠=𝑘𝑚

𝜉𝑘−1−𝑠 ‖𝜔 (𝑠)‖1

+ 𝜇𝜍 𝑘𝑚−1∑
𝑠=𝑘𝑚−1

𝜉𝑘𝑚−1−𝑠 ‖𝜔 (𝑠)‖1

+ 𝜇2𝜍𝑘𝑚−1−1∑
𝑠=𝑘𝑚−2

𝜉𝑘𝑚−1−𝑠 ‖𝜔 (𝑠)‖1 ≤ ⋅ ⋅ ⋅

≤ 𝜇𝑁𝜎(𝑘,𝑘0)𝜉𝑘−𝑘0𝑉𝜎(𝑘0) (𝑥 (𝑘0))
+ 𝜍 𝑘−1∑
𝑠=𝑘𝑚

𝜉𝑘−1−𝑠 ‖𝜔 (𝑘)‖1

+ 𝜇𝜍 𝑘𝑚−1∑
𝑠=𝑘𝑚−1

𝜉𝑘𝑚−1−𝑠 ‖𝜔 (𝑠)‖1

+ 𝜇2𝜍𝑘𝑚−1−1∑
𝑠=𝑘𝑚−2

𝜉𝑘𝑚−1−𝑠 ‖𝜔 (𝑠)‖1 + ⋅ ⋅ ⋅

+ 𝜇𝑁𝜎(𝑘−1,𝑘0)𝜍𝑘1−1∑
𝑠=𝑘0

𝜉𝑘1−1−𝑠 ‖𝜔 (𝑠)‖1
= 𝜇𝑁𝜎(𝑘,𝑘0)𝜉𝑘−𝑘0𝑉𝜎(𝑘0) (𝑥 (𝑘0))

+ 𝜇𝑁𝜎(𝑘−1,𝑠)𝜍 𝑘−1∑
𝑠=𝑘0

𝜉𝑘−1−𝑠 ‖𝜔 (𝑠)‖1 .
(22)

According to (2), 𝜉 > 1 and 𝜇 > 1, we also have
𝑉𝜎(𝑘) (𝑥 (𝑘)) < 𝜇𝑁𝜎(𝑘,𝑘0)𝜉𝑘−𝑘0 (𝑉𝜎(𝑘0) (𝑥 (𝑘0)) + 𝜍𝑑) . (23)

From (10) and (14), we have

𝑉𝜎(𝑘) (𝑥 (𝑘)) = 𝑥𝑇 (𝑘) ]𝜎(𝑘) ≥ 𝜙1𝑥𝑇 (𝑘) 𝛼,
𝑉𝜎(𝑘0) (𝑥 (𝑘0)) = 𝑥𝑇 (0) ]𝜎(𝑘0) ≤ 𝜙2𝑥𝑇 (0) 𝛽.

(24)

From (23) to (24) and 𝑘 ∈ [0, 𝑇𝑓], we obtain
𝑥𝑇 (𝑘) 𝛼 ≤ 1

𝜙1 𝜇
𝑇𝑓/𝑇𝛼𝜉𝑇𝑓 (𝜙2𝑥𝑇 (0) 𝛽 + 𝜍𝑑)

≤ 1
𝜙1 𝜇
𝑇𝑓/𝑇𝛼𝜉𝑇𝑓 (𝜙2 + 𝜍𝑑) .

(25)

Substituting (12) into (25), one has

𝑥𝑇 (𝑘) 𝛼 < 1, 𝑘 ∈ [0, 𝑇𝑓] . (26)

According to Definition 5, we conclude that system (1)
with 𝑢(𝑘) = 0 is FTB with respect to (𝛼, 𝛽, 𝑇𝑓, 𝑑, 𝜎(𝑘)).

Next, we will give the guaranteed cost value of system (1)
with 𝑢(𝑘) = 0.

When 𝑘 ∈ [𝑘𝑚−1, 𝑘𝑚 − 1), 𝑚 ∈ 𝑁, according to (16), we
know

𝑉𝑖 (𝑥 (𝑘)) ≤ 𝜉𝑥𝑇 (𝑘) ]𝑖 + 𝜍 ‖𝜔 (𝑘)‖1 − 𝑥𝑇 (𝑘) 𝑅1. (27)

Similar to the proof process of (17)–(22), for any 𝑘 ∈ [0, 𝑇𝑓]
and 𝜇 > 1, we can obtain

𝑉𝜎(𝑘) (𝑥 (𝑘)) < 𝜇𝑁𝜎(𝑘,𝑘0)𝜉𝑘−𝑘0𝑉𝜎(𝑘0) (𝑥 (𝑘0))
+ 𝜇𝑁𝜎(𝑘,𝑘0)𝜍𝑘−1∑

𝑠=0

𝜉𝑘−𝑠 ‖𝜔 (𝑠)‖1

− 𝑘−1∑
𝑠=𝑘0

𝑥𝑇 (𝑠) 𝑅1.
(28)

Noting that 𝑉𝜎(𝑘)(𝑥(𝑘)) > 0, (28) can be rewritten as

0 < 𝜇𝑁𝜎(𝑘,𝑘0)𝜉𝑘−𝑘0𝑉𝜎(𝑘0) (𝑥 (𝑘0))
+ 𝜇𝑁𝜎(𝑘,𝑘0)𝜍𝑘−1∑

𝑠=0

𝜉𝑘−𝑠 ‖𝜔 (𝑠)‖1 −
𝑘−1∑
𝑠=0

𝑥 (𝑠)𝑇 𝑅1.
(29)
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Substituting (2) into (29) and letting 𝑘 = 𝑇𝑓, we get
𝑇𝑓−1∑
𝑠=0

𝑥 (𝑠)𝑇 𝑅1 < 𝜇𝑁𝜎(𝑘,𝑘0)𝜉𝑘−𝑘0 (𝑉𝜎(𝑘0) (𝑥 (𝑘0)) + 𝜍𝑑)
< 𝜇𝑁𝜎(𝑇𝑓 ,𝑘0)𝜉𝑇𝑓−𝑘0 (𝑉𝜎(𝑘0) (𝑥 (𝑘0)) + 𝜍𝑑) .

(30)

Then we can obtain

𝐽 =
𝑇𝑓−1∑
𝑠=0

𝑥𝑇 (𝑠) 𝑅1 ≤ 𝐽∗ = 𝜉𝑇𝑓𝜇𝑇𝑓/𝑇∗𝛼 (𝜙2 + 𝜍𝑑) . (31)

Therefore, according to Definition 8, we can conclude that
system (1) with 𝑢(𝑘) = 0 is GCGTB. Thus, the proof is
completed.

3.2. Guaranteed Cost Finite-Time Controller Design. In this
subsection, we are concerned with the guaranteed cost finite-
time controller design of discrete-time positive impulsive
switched system (1). Under the controller 𝑢(𝑡) = 𝐾𝜎(𝑘)𝑥(𝑘),
the corresponding closed-loop system is given by

𝑥 (𝑘 + 1) = (𝐴𝜎(𝑘) + 𝐵𝜎(𝑘)𝐾𝜎(𝑘)) 𝑥 (𝑘) + 𝐶𝜎(𝑘)𝑤 (𝑘) ,
𝑘 ̸= 𝑘𝑚 − 1, 𝑚 ∈ 𝑍+,

𝑥 (𝑘 + 1) = 𝐸𝜎(𝑘)𝑥 (𝑘) , 𝑘 = 𝑘𝑚 − 1, 𝑚 ∈ 𝑍+.
(32)

By Lemma 2, to guarantee the positivity of system (32), 𝐴 𝑖 +𝐵𝑖𝐾𝑖 ⪰ 0 should be satisfied,∀𝑖 ∈ 𝐼.The followingTheorem 10
gives some sufficient conditions to guarantee that the closed-
loop system (32) is GCFTB.

Theorem 10. Consider the discrete-time positive impulsive
switched system (32), for a given time constant 𝑇𝑓, vectors𝛼 ≻ 𝛽 ≻ 0, 𝑅1 ≻ 0, and 𝑅2 ≻ 0; if there exist positive vectors
]𝑖, 𝑓𝑖, 𝑖 ∈ 𝐼 and positive constants 𝜙1, 𝜙2, 𝜍, 𝜉 > 1, 𝜇 > 1, such
that ((8)–(11)) and the following inequalities hold:

𝐴 𝑖 + 𝐵𝑖𝐾𝑖 ⪰ 0, (33)

𝐴𝑇𝑖 ]𝑖 + 𝑓𝑖 + 𝑅1 + 𝐾𝑇𝑖 𝑅2 − 𝜉]𝑖 ≺ 0, (34)

where 𝑓𝑖 = 𝐾𝑇𝑖 𝐵𝑇𝑖 ]𝑖, ]𝑖 = []𝑖1, ]𝑖2, . . . , ]𝑖𝑛]𝑇, and ]𝑖𝑟 represents
the 𝑖th elements of the vectors ]𝑖, then under the following ADT
scheme (12), the resulting closed-loop system (32) is GCFTB
with respect to (𝛼, 𝛽, 𝑇𝑓, 𝑑, 𝜎(𝑘)) and the guaranteed cost value
of system (32) is given by

𝐽 =
𝑇𝑓−1∑
𝑘=0

(𝑥𝑇 (𝑘) 𝑅1 + 𝑥𝑇 (𝑘)𝐾𝑇𝑖 𝑅2) ≤ 𝐽∗

= 𝜉𝑇𝑓𝜇𝑇𝑓/𝑇∗𝛼 (𝜙2 + 𝜍𝑑) .
(35)

Proof. From (33), we know that 𝐴 𝑖 + 𝐵𝑖𝐾𝑖 ⪰ 0. According
to Lemma 2, system (32) is positive. Next, we prove the
guaranteed cost finite-time stability of system (32).

Replacing 𝑅1 in (27) with 𝑅1 + 𝐾𝑇𝑖 𝑅2, we have
𝑉𝑖 (𝑥 (𝑘)) ≤ 𝜉𝑥𝑇 (𝑘) ]𝑖 + 𝜍 ‖𝜔 (𝑘)‖1

− 𝑥𝑇 (𝑘) (𝑅1 + 𝐾𝑇𝑖 𝑅2) .
(36)

Similar to the proof process of (17)–(22), for any 𝑘 ∈ [0, 𝑇𝑓]
and 𝜇 > 1, we can obtain

𝑉𝜎(𝑘) (𝑥 (𝑘)) < 𝜇𝑁𝜎(𝑘,𝑘0)𝜉𝑘−𝑘0𝑉𝜎(𝑘0) (𝑥 (𝑘0))
+ 𝜇𝑁𝜎(𝑘,𝑘0)𝜍𝑘−1∑

𝑠=0

𝜉𝑘−𝑠 ‖𝜔 (𝑠)‖1

− 𝑘−1∑
𝑠=𝑘0

𝑥𝑇 (𝑠) (𝑅1 + 𝐾𝑇𝑖 𝑅2) .
(37)

Noting that 𝑉𝜎(𝑘)(𝑥(𝑘)) > 0, (37) can be rewritten as

0 < 𝜇𝑁𝜎(𝑘,𝑘0)𝜉𝑘−𝑘0𝑉𝜎(𝑘0) (𝑥 (𝑘0))
+ 𝜇𝑁𝜎(𝑘,𝑘0)𝜍𝑘−1∑

𝑠=0

𝜉𝑘−𝑠 ‖𝜔 (𝑘)‖1

− 𝑘−1∑
𝑠=0

𝑥 (𝑠)𝑇 (𝑅1 + 𝐾𝑇𝑖 𝑅2) .
(38)

Substituting (2) into (38) and letting 𝑘 = 𝑇𝑓, we get
𝑇𝑓−1∑
𝑠=0

𝑥 (𝑠)𝑇 (𝑅1 + 𝐾𝑇𝑖 𝑅2)
< 𝜇𝑁𝜎(𝑘,𝑘0)𝜉𝑘−𝑘0 (𝑉𝜎(𝑘0) (𝑥 (𝑘0)) + 𝜍𝑑)
< 𝜇𝑁𝜎(𝑇𝑓 ,𝑘0)𝜉𝑇𝑓−𝑘0 (𝑉𝜎(𝑘0) (𝑥 (𝑘0)) + 𝜍𝑑) .

(39)

From (12), we can obtain

𝐽 =
𝑇𝑓−1∑
𝑠=0

𝑥𝑇 (𝑠) (𝑅1 + 𝐾𝑇𝑖 𝑅2) ≤ 𝐽∗

= 𝜉𝑇𝑓𝜇𝑇𝑓/𝑇∗𝛼 (𝜙2 + 𝜍𝑑) .
(40)

The proof is completed.

Next, an algorithm is presented to obtain the feedback
gain matrices𝐾𝑖, 𝑖 ∈ 𝐼.
Algorithm 11.

Step 1. Inputting matrices 𝐴 𝑖, 𝐵𝑖, 𝐶𝑖, 𝐸𝑖, 𝑅1, 𝑅2, 𝛼, and 𝛽.
Step 2. By adjusting the parameters 𝜉, 𝜇, then solving (8)–(11)
and (34) via linear programming, positive vectors ]𝑝, 𝑓𝑝,
and 𝐾𝑝 can be obtained. If 𝐾𝑝 ≻ 0, turn to the next step.
Otherwise, return to Step 1.

Step 3. Substituting ]𝑝 and 𝐾𝑝 into 𝑓𝑝 = 𝐾𝑇𝑝𝐵𝑇𝑝]𝑝, 𝑓𝑝 can be
obtained. If 𝑓𝑝 − 𝑓𝑝 ⪯ 0, then 𝐾𝑝 are admissible. Otherwise,
return to Step 1.
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4. Numerical Example

Consider the discrete-time positive impulsive switched sys-
tem (1) with the parameters as follows:

𝐴1 = [0.3 0.2
0.2 0.3] ,

𝐵1 = [0.2 0.1
0.3 0.1] ,

𝐶1 = [0.3 0.1
0.2 0.3] ,

𝐸1 = [0.3 0
0 0.3] ,

𝐴2 = [0.4 0.2
0.3 0.2] ,

𝐵2 = [0.3 0.1
0.1 0.2] ,

𝐶2 = [0.2 0.3
0.1 0.2] ,

𝐸2 = [0.3 0
0 0.3] ,

𝑅1 = [0.10.1] ,

𝑅2 = [0.30.1] ,

𝛼 = [0.020.03] ,

𝛽 = [0.10.2] .

(41)

Choosing 𝑇𝑓 = 5, 𝜉 = 1.1, 𝜇 = 1.05, 𝑤(𝑘) =
[0.1(cos(0.3𝑘))2, 0.1(cos(0.3𝑘))2]𝑇, 𝑑 = 1.2. Solving the
inequalities in Theorem 10 by linear programming, we have

]1 = [0.13320.2021] ,

]2 = [0.13320.2023] ,

𝑓1 = [0.12630.1432] ,

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50
time (s)
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Figure 1: State trajectories of closed-loop system (1).

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50
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1
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2

Figure 2: Switching signal of system (1) with ADT.

𝑓2 = [0.11130.1328] ,

𝐾1 = [0.0246 0.0252
0.0251 0.0254] ,

𝐾2 = [0.0242 0.0251
0.0247 0.0253] .

(42)

It is easy to confirm that 𝑓𝑝 − 𝑓𝑝 ≤ 0 and (33) is satisfied;
then𝐾𝑝 are admissible. According to (12), we get 𝑇∗𝛼 = 1.7.

The simulation results are shown in Figures 1–3, where the
initial conditions of system (1) are 𝑥(0) = [1, 2]𝑇, which meet
the condition 𝑥𝑇(𝑘)𝛼 < 1. The state trajectory of the closed-
loop system is shown in Figure 1. The switching signal 𝜎(𝑘)
is depicted in Figure 2. Figure 3 plots the evolution of 𝑥(𝑡)𝛼,
which implies that the corresponding closed-loop system is
GCFTB with respect to (𝛼, 𝛽, 𝑇𝑓, 𝑑, 𝜎(𝑘)), and the cost value
𝐽∗ = 3.72, which can be obtained by (35).
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Figure 3: The evolution of 𝑥𝑇(𝑡)𝛼 of system (1).

5. Conclusions

In this paper, we have considered the issue of guaranteed
cost finite-time control for discrete-time positive impulsive
switched systems. Based on the ADT approach, a guaranteed
cost finite-time controller is constructed to guarantee that the
closed-loop system is GCFTB. Finally, a numerical example is
given to illustrate the effectiveness of the proposed method.
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