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An improved model of the active suspension system is proposed. Compared with the existing model of active suspension
system, the dynamics of a hydraulic actuator in the active suspension system is fully considered in the proposed model.
Based on the proposed model, a sliding-mode control method is designed to control the active suspension system. Stability
proof and analysis of the closed-loop system of the active suspension is given by using Lyapunov stability theory. At last, the
reliability and feasibility of the proposed sliding-mode control method are evaluated by computer simulation. Simulation
research shows that the proposed sliding-mode control method can obtain good control performance for the active
suspension system.

1. Introduction

The main function of suspension system in the vehicle is to
improve the riding comfort and the road-holding ability. By
using the suspension system, acceleration amplitude of the
sprung mass in a vehicle can be suppressed and tire deflection
can be reduced. Therefore, the riding comfort and the road-
holding ability mentioned above can be enhanced effectively.
The suspension system includes the passive, semiactive, and
active suspension. Compared with the passive and semiactive
suspension, active suspension can regulate the suspension
force according to the operation state of the vehicle. There-
fore, in the research community and automotive industry,
the active suspension system has attracted more and more
attention of many researchers and engineers dedicated to
improving vehicle performance.

In the past few years, some control methods of the active
suspension system were proposed to improve the riding
comfort and the road-holding ability of the vehicle. In [1], a
quadratic-finite-horizon-optimal control method with the
robust stability of the uncertain active suspension system is

presented. In [2], a new exponential stabilization criterion
of the suspension system via the dynamic state feedback con-
trol is derived, and the optimization problem of exponential
stabilization is solved by using the PSO method. In [3], a
robust sampled-data H∞ control method of the active sus-
pension system is proposed. A Lyapunov functional approach
is employed to establish the H∞ performance. In [4, 5], a
finite frequency approach of the active suspension is
designed. The finite frequency approach can suppress the
vibration more effectively for the concerned frequency range.
In [6], the multiobjective H∞ optimal control method with
the actuator delay of the active suspension system is pro-
posed, and the effectiveness of the proposed control method
is demonstrated by using an actual example. In [7], an adap-
tive control method of the active suspension with unknown
nonlinearities is designed. By using the proposed control
method, the transient and steady-state suspension responses
are guaranteed. In [8], an adaptive control method with the
new robust adaptive law of the active suspension is proposed.
The mitigation of the vertical and pitch displacements can be
achieved with the proposed control to improve the ride
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comfort. In [9], a robust adaptive control method of an anti-
lock braking system with an active suspension is proposed,
where a Takagi-Sugeno (T-S) fuzzy-neural network is intro-
duced to estimate the unknown model. In [10], an indirect
adaptive interval type-2 fuzzy-neural network (FNN) control
method of the active suspension is designed to control the
quarter-car suspension system. Both riding comfort and
good handling can be achieved by using the proposed control
method. In [11], a sampled-data H∞ control method of the
active suspension system is developed, and the T-S fuzzy
model is introduced to estimate the uncertain unknown
function in the active suspension system.

Although these existing works have obtained acceptable
control performance for the active suspension in the vehicle,
there are some important issues that should be discussed fur-
ther. For example, the input control signal in the existing
works for the active suspension control system is always con-
sidered as the suspension force. However, in the actual prac-
tice, suspension force cannot directly act as the suspension
system. The suspension force is performed by using the
hydraulic actuator. Therefore, the dynamics of the hydraulic
actuator is an important factor that affects the operation per-
formance of the active suspension system. However, in the
existing works mentioned above for the active suspension
control, the dynamics of the hydraulic actuator is rarely con-
sidered. To improve the control performance of the active
suspension, an improved nonlinear model of the active sus-
pension system is proposed. Compared with the existing
model of the active suspension system, the dynamics of a
hydraulic actuator in the active suspension system is fully
considered in the proposed model. Based on the proposed
model, a sliding-mode control method is presented to control
the active suspension system.

The rest of this paper is organized as follows. The
dynamic model of quarter-car active suspension with the
dynamics of hydraulic actuator is described in Section 2.
The sliding-mode control method of the active suspension
is designed in Section 3. Section 4 is the presentation and
analysis of the simulation results. At last, some conclusions
are given in Section 5.

2. System Description and Dynamic Model of
the Active Suspension

A simplified quarter-car model of the active suspension
system is shown in Figure 1.

In this section, sprung mass ms is the mass of the
vehicle body. The unsprung mass mu is the assembled
mass of the axle and wheel. When the vehicle is traveling,
the tire is assured contact with the road surface. The tire
can be modeled as a linear spring, whose stiffness coefficient
is kt.

According to Newton’s second law, the dynamic equa-
tion of active suspension system is derived as

mszs + bs zs − zu + ks zs − zu = Fa, 1

muzu + bs zu − zs + ks zu − zs + kt zu − zr = −Fa 2

In many existing works for the active control strategy
of the suspension system, the hydraulic actuation force Fa
is often considered as the control command in the
closed-loop control system. However, hydraulic force is
not a direct control command. In fact, the hydraulic cylin-
der is an actuator. The hydraulic force Fa is regulated by
the servo-valve control current if in the hydraulic servo
system. That is, in the actual control process of the suspen-
sion system, the current if is controlled to regulate the
hydraulic actuation force, and the hydraulic force Fa is
acted on the suspension system. Therefore, the dynamic
characteristics between the if and Fa are an important fac-
tor to affect the operation performance of the active sus-
pension system.

In this paper, the dynamic characteristics between the if
and Fa are considered during the design process of the con-
trol method. The dynamic characteristics between if and Fa
can be modeled as

Fa = −k1Fa + k2 zs − zu + k3if , 3

where k1, k2, and k3 are positive constants. k1, k2, and k3 are
determined by the servo-valve flow gain, the cross-section
area of the cylinder, and some other parameters in the
hydraulic cylinder.

In this paper, the control signal is selected as

u = if 4

State variables are defined as

x1 = zs,
x2 = zs,
x3 = zu,
x4 = zu,
x5 = Fa

5
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Figure 1: Simplified model of a quarter-car active suspension
system.
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According to (1), (2), (3), (4), and (5), the system dynam-
ics are rewritten as the following state-space form model:

x1 = x2,

x2 = −
bs
ms

x2 +
bs
ms

x4 −
ks
ms

x1 +
ks
ms

x3 +
1
ms

x5,

x3 = x4,

x4 = −
bs
mu

x4 +
bs
mu

x2 −
ks
mu

x3 +
ks
mu

x1 −
kt
mu

x3 +
kt
mu

zr −
1
mu

x5,

x5 = −k1x5 + k2 x2 − x4 + k3u,

6

y = zs − zu = x1 − x3, 7

where y is the suspension displacement.

3. Sliding-Mode Control of the
Suspension System

3.1. Sliding-Mode Control Design. The control objective of the
active suspension system is to make the actual suspension
displacement y fast and accurately track its set point yd.

The tracking error of a suspension system is defined as

e = yd − y 8

s is the sliding-mode surface, which is described as

s = c1e + c2e + e, 9

where c1 and c2 are positive constants.
The sliding-mode control signal consists of two parts,

including the equivalent control signal and the switching
control signal [12]. The physical meaning of the equivalent
control signal is to keep the trajectories of the dynamical sys-
tem on the sliding-mode surface. It can be solved from s = 0.
The physical meaning of switching control is to make the tra-
jectories of the dynamical system move towards the sliding-
mode surface.

The sliding-mode control signal is

u = ueq + usw, 10

where ueq is the equivalent control signal and usw is the
switching control signal.

The derivative of s is given by

s = c1e + c2e +   ⃛e 11

From (7) and (8), the derivative of e is

e = yd − y = yd − x1 − x3 = yd − x2 + x4 12

Neglecting the external disturbance kt/mu zr, the second
derivative of e is

e = yd − x2 + x4 = yd +
ks
ms

+ ks
mu

x1 +
bs
ms

+ bs
mu

x2

+ −
ks
ms

−
ks
mu

−
kt
mu

x3 + −
bs
ms

−
bs
mu

x4 + −
1
ms

−
1
mu

x5

13

The third derivative of e is

   ⃛e =    ⃛yd +
ks
ms

+ ks
mu

x1 +
bs
ms

+ bs
mu
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ms
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ks
mu
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kt
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bs
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14

Substituting (7) and (8) into (14), the third derivative of e
can be rewritten as

   ⃛e =    ⃛yd + −
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ms
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ks
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15

Substituting (12), (13), and (15) into (11), we have

s = c1yd + c2yd +   ⃛yd

+ c2
ks
ms
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ms

+ bs
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ks
ms

−
bs
ms

+ bs
mu

ks
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16
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Letting
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17

then (16) can be rewritten as

s = c1yd + c2yd +   ⃛yd + α1x1 + α2x2 + α3x3 + α4x4 + α5x5 − βu

18

Letting s = 0, u in (18) is the equivalent of control signal
ueq. From (18), ueq is

ueq =
1
β

c1yd + c2yd +   ⃛yd + α1x1 + α2x2 + α3x3 + α4x4 + α5x5

19

Letting zr = kt/mu zr satisfies the following inequation:

zr ≤D 20

According to the designing principle of the sliding-mode
control, the switching control signal usw is designed as

usw = 1
β
Ksgn s , 21

where K is a positive constant. K satisfies the following
condition:

zr ≤D < K 22

Therefore, sliding-mode control is designed as

u = 1
β

c1yd + c2yd +   ⃛yd + α1x1 + α2x2 + α3x3 + α4x4 + α5x5

+ 1
β
Ksgn s

23

Remark 1. For stability, K is usually chosen to be conserva-
tively large. This is not very desirable due to the chattering
introduced. To improve the response time, c1 and c2 should
be chosen to be conservatively large.

3.2. Stability Proof of the Closed-Loop System. The Lyapunov
function candidate v is given as

v = 1
2 s

2 24

The time derivative of v is

v = ss 25

Substituting (18) into (25), and considering the external
disturbance kt/mu zr, we have

v = ss = s c1yd + c2yd +   ⃛yd + α1x1 + α2x2 + α3x3

+ α4x4 + α5x5 − βu + kt
mu

zr

26

Substituting the controller (23) into (26), we have

v = ss = s c1yd + c2yd +   ⃛yd + α1x1 + α2x2 + α3x3 + α4x4

+ α5x5 − c1yd + c2yd +   ⃛yd + α1x1 + α2x2 + α3x3 + α4x4

+ α5x5 − Ksgn s + kt
mu

zr ,

v = ss = s −Ksgn s + kt
mu

zr = −kssgn s + s
kt
mu

zr

= −k s + s
kt
mu

zr

27

Considering the inequation (20), we have

v ≤ 0 28

Therefore, according to the Lyapunov stability theory
[13–15], the closed-loop control system is stable from (28).

4. Simulation Results

In this section, a simulation analysis case is given to evaluate
the effectiveness and applicability of the controller design
method described above.
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A sinusoidal roadway is introduced as the input distur-
bance signal in the suspension system, which is assumed as
zr = 0 1 sin t . The vertical road profile is shown in Figure 2.

Some main parameters of active suspension in the simu-
lation are shown in Table 1.

With the active suspension control, the vibration of the
suspension displacement can be effectively suppressed. This
effective suppression can avoid damage to the vehicle struc-
ture safety. Meanwhile, the service life of the suspension
system is also extended with the effective suppression of
the vibration of the suspension displacement. In this sec-
tion, the proposed sliding-mode control method is applied
to control the suspension system, which is as the active con-
trol. In Figure 3, the control performances of the active
control and the passive control are shown for comparison.
Suspension passive control means that the suspension force
is fixed.

InFigure 3, the solid line is the suspensiondisplacement by
using the proposed sliding-mode control method as the active
control. The dashed line denotes the suspension displacement
response with the passive control. It can be observed that the
vibration of the suspension displacement is suppressed to
within a small range with the active control.

The control input signal, that is, the servo-valve control
current if in the hydraulic servo system, is shown in Figure 4.

5. Conclusions

The dynamical model of the active suspension system is pro-
posed in this paper. The dynamics of the hydraulic system is
introduced in the proposed model. Based on the improved
model, the sliding-mode control method is designed as
the active control for the suspension system. Stability of
the closed-loop control system is proven via the Lyapunov
stability theory. From the simulation case results, we know
that the proposed sliding-mode control method can obtain
the satisfactory operation performance for the active sus-
pension system.

Nomenclature

ms: Sprung mass
mu: Unsprung mass
kt: Equivalent stiffness coefficient of the tire
bs: Equivalent damping coefficient of the damper
ks: Equivalent stiffness coefficient of the spring: hydraulic

force
zs: Vertical displacement of the sprung mass
zu: Vertical displacements of the unsprung mass
zr: Vertical road profile.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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Figure 2: Vertical road profile, that is, zr = 0 1 sin t

Table 1: Parameter values.

ms = 275 mu = 50 kt = 157,750
ks = 12,015 bs = 1200 c1 = 10
c2 = 5
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Figure 3: Suspension displacement of the active control and passive
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Figure 4: The servo-valve control current if in the hydraulic servo
system.
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