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Lambda parameter and information features

Relation to Lambda parameter. The Lambda parameter is a well-known ‘local’
characterization of a CA rule which correlates with Wolfram’s complexity classes. It is
local in the sense that it is computed from the state transition table, so effectively it can
be seen as a prediction of the Wolfram class at t = 0. Here we demonstrate that our
information features includes part of the predictive power of the Lambda parameter by
relating the two.

Let us first consider a dynamical system with N random variables Xi(t), whose
values are denoted xi(t), evolves in time according to a given rule, depending on the
state of the neighborhood of agent i, denoted ni (we shall always assume the
neighborhood of a node includes the node itself). We assume a probabilistic description
so as to write this rule as a transition matrix

W{xj}→xi
= Pr(xi, t|{xj}, t− 1) (1)

∀j ∈ ni. This gives the probability that agent i takes value xi at time t knowing that
the neighbors of i take value xjk for k ∈ {1, ..., |ni|}. With the W matrix we can express
two-steps joint probabilities as

Pr(xi, t; {xj}, t− 1) = Pr({xj}, t− 1)W{xj}→xi
. (2)

We can now define and compute the total information Itot as

Itot := I(Xi, t : {Xj}, t− 1)

=
∑
{xj},xi

Pr(xi, t; {xj}, t− 1) ln
Pr(xi, t; {xj}, t− 1)

Pr(xi, t) Pr({xj}, t− 1)

=
∑
{xj},xi

Pr({xj}, t− 1)W{xj}→xi
ln
W{xj}→xi

Pr(xi, t)
(3)

Note that Itot is the first term needed to compute information synergy, as defined in the
main text.

Now comes a crucial assumption: we shall assume that the agents are randomly
initialized, namely that Pr({xk}, t− 1) = 2−|nk| for any configuration of the
neighborhood. In the case of cellular automata one is also allowed to write ni = n ∀i, so
that
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Itot = 2−n
∑
{xj},xi

W{xj}→xi
ln

W{xj}→xi

2−n
∑
{xj}W{xj}→xi

= 2−n
∑
{xj},xi

W{xj}→xi
lnW{xj}→xi

− 2−n
∑
{xj},xi

W{xj}→xi
ln

2−n
∑
{xj}

W{xj}→xi


= −2−n

∑
{xj},xi

W{xj}→xi
ln

2−n
∑
{xj}

W{xj}→xi


= −λ lnλ− (1− λ) ln(1− λ) (4)

where λ is the Langton parameter, namely the fraction of ones in the lookup table
characterizing the dynamics. The last equality arises from the fact that∑

{xj}

W{xj}→xi
=

{
2nλ if xi = 1

2n(1− λ) if xi = 0
(5)

while the penultimate is because for a deterministic dynamics transition elements take
either value 0 or 1.

The next piece of information we consider is memory, which we define as

Imem := I(Xi, t : Xi, t− 1). (6)

It can be computed as

Imem =
∑
xi,a′i

Pr(xi, t; a
′
i, t− 1) ln

Pr(xi, t; a
′
i, t− 1)

Pr(xi, t) Pr(a′i, t− 1)

=
∑

xi,{a′j}

Pr(xi, t; {a′j}, t− 1) ln

∑
{a′j 6=i}

Pr(xi, t; {a′j}, t− 1)

Pr(xi, t) Pr(a′i, t− 1)

= 2−n
∑

xi,{a′j}

W{a′j}→xi
ln

∑
{a′j 6=i}

W{a′j}→xi

2−1
∑
{a′j}

W{a′j}→xi

(7)

We now refine the previous analysis by defining two quantities λ0 and λ1 as Langton
parameters restricted to the case when the central site is 0 or 1 respectively. In other
words we have

∑
a′m,m 6=i

W{a′m,a′i}→xi
=


2n(1/2− λ0) if xi = 0 and a′i = 0

2nλ0 if xi = 1 and a′i = 0
2n(1/2− λ1) if xi = 0 and a′i = 1

2nλ1 if xi = 1 and a′i = 1

(8)

so that λ0 + λ1 = λ. This allows to rewrite Imem as
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Imem = 2−n
∑

xi,x′i,{a′j 6=i}

Wx′i,{a′j}→xi
ln

∑
{a′j 6=i}

Wx′i,{a′j}→xi

2−1
∑

x′i,{a′j 6=i}
Wx′i,{a′j}→xi

= 2−n
∑
{a′j 6=i}

W0,{a′j}→0 ln
1/2− λ0

2−1
∑

x′i,{a′j 6=i}
Wx′i,{a′j}→0

+ 2−n
∑
{a′j 6=i}

W0,{a′j}→1 ln
λ0

2−1
∑

x′i,{a′j 6=i}
Wx′i,{a′j}→1

+ 2−n
∑
{a′j 6=i}

W1,{a′j}→0 ln
1/2− λ1

2−1
∑

x′i,{a′j 6=i}
Wx′i,{a′j}→0

+ 2−n
∑
{a′j 6=i}

W1,{a′j}→1 ln
λ1

2−1
∑

x′i,{a′j 6=i}
Wx′i,{a′j}→1

= (1/2− λ0) ln
1− 2λ0

1− λ
+ λ0 ln

2λ0

λ
+ (1/2− λ1) ln

1− 2λ1

1− λ
+ λ1 ln

2λ1

λ
(9)

The third and last piece of information we consider is transfer, defined as

Itrans := I(Xi, t : Xk, t− 1). (10)

where j is any neighbor of i different from i itself. Its computation is quite similar to
that of memory and we get

Itrans =
∑
xi,a′k

Pr(xi, t; a
′
k, t− 1) ln

Pr(xi, t; a
′
k, t− 1)

Pr(xi, t) Pr(a′k, t− 1)

=
∑

xi,{a′j}

Pr(xi, t; {a′j}, t− 1) ln

∑
{a′j 6=k}

Pr(xi, t; {a′j}, t− 1)

Pr(xi, t) Pr(a′k, t− 1)

= 2−n
∑

xi,{a′j}

W{x′j}→xi
ln

∑
{a′j 6=k}

W{x′j}→xi

2−1
∑
{x′j}

W{x′j}→xi

(11)

We can follow the same way as previously by defining a set of parameters

(λ
(L)
0 , λ

(L)
1 , λ

(R)
0 , λ

(R)
1 ) where the superscript index L or R refers to the left of right

neighbor respectively. In other words, λ
(L)
0 is the fraction of ones in the lookup table

when the left neighbor is zero, etc. As for memory we obviously have λ
(L)
0 + λ

(L)
1 = λ

and λ
(R)
0 + λ

(R)
1 = λ. The reasoning exposed for the memory information may be

carried over without modification so as to get finally

I
(L)
trans = (1/2− λ(L)

0 ) ln
1− 2λ

(L)
0

1− λ
+ λ

(L)
0 ln

2λ
(L)
0

λ

+ (1/2− λ(L)
1 ) ln

1− 2λ
(L)
1

1− λ
+ λ

(L)
1 ln

2λ
(L)
1

λ
(12)

I
(R)
trans = (1/2− λ(R)

0 ) ln
1− 2λ

(R)
0

1− λ
+ λ

(R)
0 ln

2λ
(R)
0

λ

+ (1/2− λ(R)
1 ) ln

1− 2λ
(R)
1

1− λ
+ λ

(R)
1 ln

2λ
(R)
1

λ
(13)
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The case of Rule 110 As an example consider Rule 110, which is an elementary
cellular automaton which is well known for its complex behavior. The lookup table of
this dynamics is given by

Wx′i−1x
′
ix
′
i+1→xi

=

0 1
000 1 0
001 0 1
010 0 1
011 0 1
100 1 0
101 0 1
110 0 1
111 1 0

(14)

One immediately gets λ = 5/8, λ0 = λ
(L)
1 = λ

(R)
0 = 1/4 and λ1 = λ

(L)
0 = λ

(R)
1 = 3/8. It

results that

I110
tot = −5

8
ln

5

8
− 3

8
ln

3

8
≈ 0.66156 (15)

Imem = (1/2− λ0) ln
1− 2λ0

1− λ
+ λ0 ln

2λ0

λ
+ (1/2− λ1) ln

1− 2λ1

1− λ
+ λ1 ln

2λ1

λ

=
1

4
ln

4

3
+

1

4
ln

4

5
+

1

8
ln

2

3
+

3

8
ln

6

5
≈ 0.03382 (16)

I
(L)
trans = (1/2− λ(L)

0 ) ln
1− 2λ

(L)
0

1− λ
+ λ

(L)
0 ln

2λ
(L)
0

λ

+ (1/2− λ(L)
1 ) ln

1− 2λ
(L)
1

1− λ
+ λ

(L)
1 ln

2λ
(L)
1

λ

=
1

8
ln

2

3
+

3

8
ln

6

5
+

1

4
ln

4

3
+

1

4
ln

4

5
≈ 0.03382 (17)

I
(R)
trans = (1/2− λ(R)

0 ) ln
1− 2λ

(R)
0

1− λ
+ λ

(R)
0 ln

2λ
(R)
0

λ

+ (1/2− λ(R)
1 ) ln

1− 2λ
(R)
1

1− λ
+ λ

(R)
1 ln

2λ
(R)
1

λ

=
1

4
ln

4

3
+

1

4
ln

4

5
+

1

8
ln

2

3
+

3

8
ln

6

5
≈ 0.03382 (18)

Discussion about the Langton parameter relation So far we have proved that
the basic quantities of information processing could be expressed in terms of generalized
Langton parameters. This is nevertheless true only when in the initial state the nodes
are completely uncorrelated. When the nodes are initially correlated, the values are
significantly shifted. Figs. 1, 2, 3 and 4 show the behavior of the total, memory and left-
and right-transfer information respectively after the nodes have become correlated. The
dotted line pictures the value of each information quantity in the uncorrelated state,
highlighting the shift between this value and the corresponding value in the stationary
regime.
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Figure 1: Total information evaluated for rule 110 over 50 time steps, starting from an
uncorrelated initial state.
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Figure 2: Memory information evaluated for rule 110 over 50 time steps, starting from an
uncorrelated initial state.
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Figure 3: Left-transfer information evaluated for rule 110 over 50 time steps, starting from an
uncorrelated initial state.
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Figure 4: Right-transfer information evaluated for rule 110 over 50 time steps, starting from
an uncorrelated initial state.

Robustness of financial cube plots

Different sliding window size for computing mutual information. Here we
show information feature plots for the financial time series (Fig. 4 and Fig. 5 in the
main text) for varying sliding window size (w = 1400 data points in main text). The
lower the sliding window size, the fewer datapoints and thus the more difficult it is to
accurately estimate mutual information, but the higher temporal resolution is obtained.
A larger sliding window leads to a coarser temporal resolution but to a better estimate.
We show here w = 1000 and w = 2000 in Figs. 5 through 8.

Alternative calculation of the instability indicator

An alternative calculation of the instability indicator ω would be to project all points to
the ‘trend’ vector ~xt − ~xt−∆t and computing the average perpendicular distance of the
points to their projections. This results in almost indistinguishable indicator curves, as
shown in Fig. 9.
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Figure 5: 200 time points showing the progression of the three information features
memory (M), transfer (T), and synergy (S) computed with a time delay of 1 day (similar
to t = 1 for ECA). The color indicates the time difference with September 15, 2008
(big black dot), which we consider the starting point of the 2008 crisis, from dark blue
(long before) to dark red (long after) and white at the crisis date. The data spans from
1999-01-01 through 2017-04-21; the large green dot is the last time point also present in
the IRS data in 2011. Mutual information is calculated using a sliding window size of
w = 1000 days; the 200 windows partially overlap and are placed uniformly over the
dataset, where the first and last window include the first and last day of the dataset,
resp.
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Figure 6: 200 time points showing the progression of the three information features
memory (M), transfer (T), and synergy (S) computed with a time delay of 1 day (similar
to t = 1 for ECA). The color indicates the time difference with September 15, 2008
(big black dot), which we consider the starting point of the 2008 crisis, from dark blue
(long before) to dark red (long after) and white at the crisis date. The data spans more
than twelve years: the EUR data from 1998-01-12 to 2011-08-12 and the USD data from
1999-29-04 to 2011-06-06. Mutual information is calculated using a sliding window of
w = 1000 days; the 200 windows partially overlap and are placed uniformly over the
dataset, where the first and last window include the first and last day of the dataset,
resp.
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Figure 7: 200 time points showing the progression of the three information features
memory (M), transfer (T), and synergy (S) computed with a time delay of 1 day (similar
to t = 1 for ECA). The color indicates the time difference with September 15, 2008
(big black dot), which we consider the starting point of the 2008 crisis, from dark blue
(long before) to dark red (long after) and white at the crisis date. The data spans from
1999-01-01 through 2017-04-21; the large green dot is the last time point also present
in the IRS data in 2011. Mutual information is calculated using a sliding window of
w = 2000 days; the 200 windows partially overlap and are placed uniformly over the
dataset, where the first and last window include the first and last day of the dataset,
resp.
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Figure 8: 200 time points showing the progression of the three information features
memory (M), transfer (T), and synergy (S) computed with a time delay of 1 day (similar
to t = 1 for ECA). The color indicates the time difference with September 15, 2008
(big black dot), which we consider the starting point of the 2008 crisis, from dark blue
(long before) to dark red (long after) and white at the crisis date. The data spans more
than twelve years: the EUR data from 1998-01-12 to 2011-08-12 and the USD data from
1999-29-04 to 2011-06-06. Mutual information is calculated using a sliding window of
w = 2000 days; the 200 windows partially overlap and are placed uniformly over the
dataset, where the first and last window include the first and last day of the dataset,
resp.
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Figure 9: Indicator curves as in main text’s Fig. 6 but using perpendicular distances to
the trend vector as alternative to Eq. 9.
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