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This paper proposes a new 5D chaotic systemwith the flux-controlledmemristor.The dynamics analysis of the new system can also
demonstrate the hyperchaotic characteristics. The design and analysis of adaptive synchronization for the new memristor-based
chaotic system and its slave system are carried out. Furthermore, the modularized circuit designs method is used in the new chaotic
system circuit implementation.TheMultisim simulation and the physical experiments are conducted, compared, andmatchedwith
each other which can demonstrate the existence of the attractor for the new system.

1. Introduction

Memristors are the fourth kind of circuit elements except
for resistors, capacitors, and conductors and are conceived
by Chua in 1971 through the basic symmetric principle
[1]. Furthermore, the corresponding theory was applied to
memristive devices in 1976 [2]. It took a long time to develop
the hardware memristor model. Until 2008 HP labs first
realized the memristor of nanoscale in the form of crossbar
array [3]. Since memristors have the potential applications in
the wide range of fields, memristor study becomes hotter, and
a huge amount of researchers have paid immense attention on
memristor studies from industry and academics, respectively
[4, 5]. The typical examples include nonvolatile memories
of nanoscale [6], memristor-based synapse in neuromorphic
systems [7, 8], logic operations through material implication
[9–12], and nonlinear dynamics in chaotic system [13–17].

With rapid development of memristor models, some
studies combine thememristor and chaotic systems including
dynamics analysis, image encryption applications and circuit
implementations which have grown up quickly in recent
years [18–22]. One of the typical early memristor-based

chaotic systems was developed by Itoh and Chua in 2008
[19]. This paper developed some nonlinear oscillators by
using memristors based on Chua’s oscillators. Petráš derived
and investigated a fractional-order memristor-based Chua’s
circuit in [20]. Chua and Muthuswamy also discussed circuit
topology and developed the simplest memristor-based cir-
cuits [21].These papers demonstrate that thememristor oscil-
lators own the special nonlinear dynamics due tomemristors’
extinguished characteristics. One of these significant charac-
teristics is that the behaviors are dependent on initial states
and circuit parameters. Li et al. proposed a scroll chaotic
system circuit implementation by using HP memristor [22].
Ma et al. developed a four-wing hyperchaotic system by
using a memristor adding over a three-dimensional chaotic
system [16]. Dimitrios et al. found a new 4-D memristive
chaotic system and investigated the behavior with hidden
attractors of the system through numerical simulations [23].
Wang et al. proposed a flux-controlled memristor model
and established a 4-D chaotic system with this model. The
numerical analysis and circuit implementation simulation
verification were conducted [24]. Mou et al. discussed the
characteristics of dynamical behaviors of a fractional-order
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4D hyperchaotic memristive system and circuit simulation
verification [25]. Other memristor-based hyperchaotic sys-
tems were also investigated such as numerical analysis about
a four-dimensional hyperchaotic system with memristor and
conducted circuit simulation verifications [26–29]. There are
also some other chaotic systems developed by memristive
models and its applications [30–32].

The above memristor-based chaotic system literatures
focus on four or lower-dimensional chaotic systems and
investigate the detailed numerical analysis and the cor-
responding numerical and circuit implementation simu-
lation verifications. However, the higher-dimensional (5-
D or above) memristor-based hyperchaotic systems and
the corresponding physical hardware experiments are not
found. Therefore, the paper analyzes a new memristor-
based hyperchaotic system and develops a circuit physical
implementation method by using the modularized design
method. This method is used to design the circuit without
dimensions for chaotic circuit designs and is easy to be
implemented in the circuit by using less circuit parts [33–38].

The novelty of this paper is to develop a new memristor-
based 5D hyperchaotic system, design and analyze the
adaptive synchronization of this new system, implement
the physical experiment circuit hardware, and verify the
existence of system attractors. The improved modularized
design method is used to implement the circuit of the system
to verify the existence of attractors.

The rest of the paper is organized as follows. Sec-
tion 2 analyzes the fundamental characteristics of the new
memristor-based chaotic system. Section 3 investigates the
adaptive synchronization of the newmemristor-based hyper-
chaotic system. Section 4 discusses the circuit implementa-
tion of the new system and verifies the existence of attractors.
Conclusions are presented in Section 5.

2. Analysis of a New Memristor-Based
Hyperchaotic System

In this section, numerical analyses are conducted for a flux-
controlled memristor-based new 5D hyperchaotic system
derived fromWang’s 4D hyperchaotic system.

As illustrated in [16], memristor model is based on the
fundamental characteristics of a flux-controlled memristor
described below.

𝑖 = 𝑊(𝜑) V (1)

where 𝑖 and V are the current and the voltage of the device
terminal, respectively.𝑊(𝜑) is the incremental memductance
defined as

𝑊(𝜑) = 𝑑𝑞 (𝜑)𝑑𝜑 (2)

This demonstrates that the characteristics of a memristor
are a nonlinear function reflecting the relationship among the
charge and flux across and through the device.

Furthermore, this paper consistently uses the smooth
cubic monotone-increasing continuous nonlinearity
described as follows [20–22, 33].

𝑑𝑞 (𝜑) = 𝑚𝜑 + 𝑛𝜑3 (3)

where𝑚, 𝑛 > 0.
Then the memductance is shown below

𝑊(𝜑) = 𝑑𝑞 (𝜑)𝑑𝜑 = 𝑚 + 3𝑛𝜑2 (4)

This paper develops a 5D memristor-based chaotic sys-
tem which is derived from four-wing autonomous chaotic
dynamics systems reported by Wang et al. [34, 37]

̇𝑥 = 𝑎 (𝑦 − 𝑥) + 4𝑦𝑧𝑦̇ = −𝑥 + 16𝑦 − 𝑥𝑧 + 𝑤𝑧̇ = −𝑏𝑧 + 𝑥𝑦𝑤̇ = −10𝑦 + 0.15𝑥𝑧𝑢̇ = −𝑥
(5)

This system has four state variables 𝑥, 𝑦, 𝑧, and 𝑤, and 𝑎, 𝑏 ∈
R+.

Substitute (4) into (5), a 5D memristor-based system is
obtained. 𝑥̇ = 𝑎 (𝑦 − 𝑥) + 4𝑦𝑧 − 𝑘𝑥𝑊 (𝑢)̇𝑦 = −𝑥 + 16𝑦 − 𝑥𝑧 + 𝑤𝑧̇ = −𝑏𝑧 + 𝑥𝑦 − 𝑥𝑢 − 𝑦𝑤𝑤̇ = −10𝑦 + 0.15𝑥𝑧 − 𝑔𝑧𝑢𝑢̇ = −𝑥

(6)

where

𝑊(𝑢) = 𝑚 + 3𝑛𝑢2, (7)

and 𝑘,𝑚, 𝑛, 𝑔 are positive parameters.

2.1. Equilibria and Stability. Theequilibriumpoints of System
(6) can be calculated by solving the equations as shown below

𝑎 (𝑦 − 𝑥) + 4𝑦𝑧 − 𝑘𝑥𝑊 (𝑢) = 0−𝑥 + 16𝑦 − 𝑥𝑧 + 𝑤 = 0−𝑏𝑧 + 𝑥𝑦 − 𝑥𝑢 − 𝑦𝑤 = 0−10𝑦 + 0.15𝑥𝑧 − 𝑔𝑧𝑢 = 0−𝑥 = 0
(8)

where𝑚 = 0.1, 𝑛 = 0.01, and 𝑔 = 0.3.
System (6) has only one real equilibrium point with (0, 0,

0, 0, 0) and has typical characteristics with a line equilibrium
in (0, 0, 0, 0, 𝛿), given 𝛿 a real constant.
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First, analyze the zero equilibrium point (0, 0, 0, 0, 0).The
Jacobian matrix of System (6) on the zero equilibrium point
is

𝐽0 = ((
(

−𝑎 − 0.1𝑘 𝑎 0 0 0−1 16 0 1 00 0 𝑏 0 00−1 −100 00 0 00 0
))
)(0,0,0,0,0)

(9)

and the corresponding polynomial is

𝑓 (𝜆) = 𝜆 (𝜆 − 𝑏) 𝑓1 (𝜆) (10)

and

𝑓1 (𝜆) = 𝜆3 + (𝑎 − 16 + 0.1𝑘) 𝜆2 + (10 − 15𝑎 − 1.6𝑘) 𝜆+ 10𝑎 + 𝑘 (11)

It is obvious that 0 and −𝑏 are eigenvalues of System(6) for
the (0, 0, 0, 0, 0) equilibrium point. According to Routh-
Hurwitz condition, if and only if 𝑎 − 16 + 0.1𝑘 > 0, 10 −15𝑎 − 1.6𝑘 > 0, (10𝑎 + 𝑘) > 0, and (𝑎 − 16 + 0.1𝑘)(10 −15𝑎 − 1.6𝑘) − (10𝑎 + 𝑘) > 0 coexist, 𝑓1(𝜆) has the negative
real number. However, the above four inequalities are not
able to be realized simultaneously. Then not all real parts
of the eigenvalues are negative. Therefore, it is not a stable
equilibrium point.

Second, analyze the eigenvalues of Jacobian matrix of
System (6) on the line equilibrium in (0, 0, 0, 0, 𝛿).
𝐽1
= ((
(

−𝑎 − 𝑘 (0.1 + 0.03𝛿2) 𝑎 0 0 0−1 16 0 1 0−𝛿 0 −𝑏 0 00−1 −100 −0.3𝛿0 0 00 0
))
)

(12)

Typically, when 𝑎 = 14 and 𝑏 = 78, 𝐽1∗ is calculated as shown
below

𝐽1∗

= ((
(

−14 − 𝑘 (0.1 + 0.03𝛿2) 14 0 0 0−1 16 0 1 0−𝛿 0 −78 0 00−1 −100 −0.3𝛿0 0 00 0
))
)

(13)

Two of the five eigenvalues of 𝐽1∗ are complex conjugates;
therefore, it is difficult to determine the stability of the line
equilibria.

2.2. Symmetry. System (6) is symmetric with respect to𝑧 axis since it is invariant when applying the coordinate
transformations.(𝑥, 𝑦, 𝑧, 𝑤, 𝑢) ←→ (−𝑥, −𝑦, 𝑧, −𝑤, −𝑢) (14)

2.3. Dissipativity. Furthermore, dissipative characteristics
analysis of System (6) is shown below.The system divergence
is given by

∇𝑉 = 𝜕𝑥̇𝜕𝑥 + 𝜕 ̇𝑦𝜕𝑦 + 𝜕𝑧̇𝜕𝑧 + 𝜕𝑤̇𝜕𝑤 + 𝜕𝑢̇𝜕𝑢= −𝑎 − 𝑘𝑊 (𝑢) + 16 − 𝑏
= −𝑘 (𝑚 + 3𝑛𝑢2) + 16 − 𝑎 − 𝑏

(15)

when 𝑘 > 0,𝑚 > 0, 𝑛 > 0, 16− 𝑎− 𝑏 < 0, −𝑘(𝑚+3𝑛𝑢2) + 16−𝑎− 𝑏 < 0, System (6) is dissipative. The paper selects𝑚 = 0.1,𝑛 = 0.01 for equation (7), and 𝑘 = 0.02 for System (6).

2.4. Lyapunov Spectrum and Bifurcation Diagram. Fix
parameters 𝑎 = 14, 𝑏 = 78 and vary the parameter 𝑘, and the
graphs about the Lyapunov exponents versus 𝑘, bifurcation
diagram, and phase portraits are shown in Figure 1.

Figure 1 shows that the Lyapunov exponents vary with the
parameter 𝑘 changes. In the five Lyapunov exponents, three
of them are obviously negative when 𝑘 ∈ [0, 5.9]. The top
two lines in Figure 1(b) demonstrate that these two kinds of
Lyapunov exponents are bigger than zero, and systems are
hyperchaotic systems when 𝑘 lies in this range. In this paper,𝑘 will be selected in this range.

When 𝑎 = 14, 𝑏 = 78, 𝑘 = 0.02, 𝑚 = 0.1, 𝑛 = 0.01, and𝑔 = 0.3, the Lyapunov exponents are calculated as L1 = 1.0241,
L2 = 0.0137, L3 = -0.1735, L4 = -2.3787, and L5 = -70.3244.This
system is a hyperchaotic system with two positive Lyapunov
exponents.Therefore, the Kaplan-Yorke dimension of System
(6) can be found below

𝐷�퐾�푌 = 4 + 𝐿1 + 𝐿2 + 𝐿3 + 𝐿4󵄨󵄨󵄨󵄨𝐿5󵄨󵄨󵄨󵄨 = 3.978466 (16)

3. Adaptive Synchronization of a New
Memristor-Based Hyperchaotic System

In this section, the adaptive controller was designed for
the new memristor-based hyperchaotic system which was
derived by Lyapunov stability theory inspired by [39].

First, consider the master System (6) with 𝑎 = 14, 𝑏 = 78,𝑘 = 0.02,𝑚 = 0.1, 𝑛 = 0.01, and 𝑔 = 0.3 shown as below

𝑥̇ = 14 (𝑦 − 𝑥) + 4𝑦𝑧 − 𝑘𝑥 (0.1 + 0.01𝑢2)
̇𝑦 = −𝑥 + 16𝑦 − 𝑥𝑧 + 𝑤𝑧̇ = −78𝑧 + 𝑥𝑦 − 𝑥𝑢 − 𝑦𝑤𝑤̇ = −10𝑦 + 0.15𝑥𝑧 − 0.3𝑧𝑢𝑢̇ = −𝑥

(17)
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Figure 1: Lyapunov exponents versus the parameter 𝑘: (a) the full five exponents, (b) Lyapunov exponents L1-L4 of System (6), (c) the
bifurcation diagram of 𝑥 vs. 𝑘 for System (6) when 𝑚 = 0.1, 𝑛 = 0.01, and 𝑔 = 0.3. (d)-(e) The phase portraits 𝑥-𝑦 and 𝑥-𝑧 for System (6)
when 𝑘 = 0.02,𝑚 = 0.1, 𝑛 = 0.01, and 𝑔 = 0.3.
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Figure 2: Synchronization of states for Systems (21) and (22).
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Figure 3:𝑊(𝑢) function-memristor channel.

Figure 4: The relationship between 𝑥 and 𝑊(𝑥) for the circuit as
shown in Figure 3.

Second, consider the slave system shown as below

̇𝑥�耠 = 14 (𝑦�耠 − 𝑥�耠) + 4𝑦�耠𝑧�耠 − 𝑘𝑥�耠 (0.1 + 0.01𝑢�耠2) + 𝑢1
̇𝑦�耠 = −𝑥�耠 + 16𝑦�耠 − 𝑥�耠𝑧�耠 + 𝑤�耠 + 𝑢2

𝑧̇�耠 = −78𝑧�耠 + 𝑥�耠𝑦�耠 − 𝑥�耠𝑢 − 𝑦�耠𝑤�耠 + 𝑢3
𝑤̇�耠 = −10𝑦�耠 + 0.15𝑥�耠𝑧�耠 − 0.3𝑧�耠𝑢�耠 + 𝑢4
𝑢̇�耠 = −𝑥�耠 + 𝑢5

(18)

where 𝑢�푖 (𝑖 = 1 ⋅ ⋅ ⋅ 5) are adaptive controller, and 𝑥�耠, 𝑦�耠, 𝑧�耠,𝑤�耠, 𝑢�耠 are the new state variables.
Therefore, the synchronization errors among the Systems

(17) and (18) are defined as follows.

𝑒1 = 𝑥�耠 − 𝑥
𝑒2 = 𝑦�耠 − 𝑦
𝑒3 = 𝑧�耠 − 𝑧
𝑒4 = 𝑤�耠 − 𝑤
𝑒5 = 𝑢�耠 − 𝑢

(19)

Then the dynamics of the error can be calculated by
substituting the master and slave systems as shown below

̇𝑒1 = 𝑎 (𝑒2 − 𝑒1) − 0.1𝑘𝑒1 + 4 (𝑦�耠𝑧�耠 − 𝑦𝑧)
− 0.03𝑘 (𝑥�耠𝑢�耠2 − 𝑥𝑢2) + 𝑢1̇𝑒2 = −𝑒1 + 16𝑒2 + 𝑒4 − 𝑥�耠𝑧�耠 + 𝑥𝑧 + 𝑢2̇𝑒3 = −𝑏𝑒3 + 𝑥�耠𝑦�耠 − 𝑥�耠𝑢�耠 − 𝑦�耠𝑤�耠 − 𝑥𝑦 + 𝑥𝑢 + 𝑦𝑤 + 𝑢3̇𝑒4 = −10𝑒2 + 0.15𝑥�耠𝑧�耠 − 0.15𝑥𝑧 − 0.3𝑧�耠𝑢�耠 + 0.3𝑧𝑢+ 𝑢4̇𝑒5 = −𝑒1 + 𝑢5

(20)

where the adaptive controller 𝑢�푖 are defined by

𝑢1 = −𝑎 (𝑡) (𝑒2 − 𝑒1) + 0.1𝑘𝑒1 − 4 (𝑦�耠𝑧�耠 − 𝑦𝑧)
+ 0.03𝑘 (𝑥�耠𝑢�耠2 − 𝑥𝑢2) − 𝑘1𝑒1𝑢2 = 𝑒1 − 16𝑒2 − 𝑒4 + 𝑥�耠𝑧�耠 − 𝑥𝑧 − 𝑘2𝑒2𝑢3 = 𝑏̂ (𝑡) 𝑒3 − 𝑥�耠𝑦�耠 + 𝑥�耠𝑢�耠 + 𝑦�耠𝑤�耠 + 𝑥𝑦 − 𝑥𝑢 − 𝑦𝑤− 𝑘3𝑒3𝑢4 = 10𝑒2 − 0.15𝑥�耠𝑧�耠 + 0.15𝑥𝑧 + 0.3𝑧�耠𝑢�耠 − 0.3𝑧𝑢− 𝑘4𝑒4𝑢5 = 𝑒1 − 𝑘5𝑒5

(21)

where 𝑘�푖 (𝑖 = 1, . . . , 5) are the positive gains and 𝑎(𝑡), 𝑏̂(𝑡)
are the estimations of the corresponding parameters 𝑎 and 𝑏,
respectively.

Correspondingly, the dynamics of the error is changed
into

̇𝑒1 = (𝑎 − 𝑎 (𝑡)) (𝑒2 − 𝑒1) − 𝑘1𝑒1̇𝑒2 = −𝑘2𝑒2̇𝑒3 = (𝑏 − 𝑏̂ (𝑡)) 𝑒3 − 𝑘3𝑒3̇𝑒4 = −𝑘4𝑒4̇𝑒5 = −𝑘5𝑒5
(22)
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(a) �푥 channel (b) �푦 channel

(c) �푧 channel (d) �푤 channel

Figure 5: Modularized circuit channels for circuit implementation of the new memristor-based 5D hyperchaotic system.

Define the parameters for estimating errors as

𝑒�푎 (𝑡) = 𝑎 − 𝑎 (𝑡)
𝑒�푏 (𝑡) = 𝑏 − 𝑏̂ (𝑡) (23)

Substitute (23) into the dynamics (22), the simplified error
dynamics is described as

̇𝑒1 = 𝑒�푎 (𝑡) (𝑒2 − 𝑒1) − 𝑘1𝑒1̇𝑒2 = −𝑘2𝑒2̇𝑒3 = −𝑒�푏 (𝑡) 𝑒3 − 𝑘3𝑒3̇𝑒4 = −𝑘4𝑒4̇𝑒5 = −𝑘5𝑒5
(24)

Correspondingly,

̇𝑒�푎 (𝑡) = −𝑎 (𝑡)
̇𝑒�푏 (𝑡) = −𝑏̂ (𝑡) (25)

Depending on the master and slave systems definitions and
error dynamics transformations mentioned above, consider
a Lyapunov function defined by

𝑉 = 12 (𝑒21 + 𝑒22 + 𝑒23 + 𝑒24 + 𝑒25 + 𝑒2�푎 + 𝑒2�푏) (26)

Differentiate 𝑉 along the trajectories for equations (24)-(25),𝑉̇ can be obtained as𝑉̇ = 𝑒1 ̇𝑒1 + 𝑒2 ̇𝑒2 + 𝑒3 ̇𝑒3 + 𝑒4 ̇𝑒4 + 𝑒5 ̇𝑒5 + 𝑒�푎 ̇𝑒�푎 + 𝑒�푏 ̇𝑒�푏= −𝑘1𝑒21 − 𝑘2𝑒22 − 𝑘3𝑒23 − 𝑘4𝑒24 − 𝑘5𝑒25
+ 𝑒�푎 [−𝑒21 − 𝑒1𝑒2 − ̇̂𝑎 (𝑡)] − 𝑒�푏 (𝑡) [𝑒23 + ̇̂𝑏 (𝑡)]

(27)

Then, the parameter update law iṡ̂𝑎 (𝑡) = −𝑒21 − 𝑒1𝑒2̇̂𝑏 (𝑡) = −𝑒23 (28)

Theorem 1. The master and slave Systems (17)-(18) for a new
memristor-based hyperchaotic system along with unknown
parameters and positive gains 𝑘�푖 (𝑖 = 1 ⋅ ⋅ ⋅ 5) synchronize
exponentially by using the adaptive controller (21) and the
parameter update law (28).

Proof. Substitute the parameter update law (28) into the
adaptive controller (21), then𝑉̇ = −𝑘1𝑒21 − 𝑘2𝑒22 − 𝑘3𝑒23 − 𝑘4𝑒24 − 𝑘5𝑒25 ≤ −𝑘�耠 ‖𝑒‖2≤ 0 (29)

where 𝑘�耠 = min{𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5 | 𝑘�푖 ∈ R+, 𝑖 = 1 ⋅ ⋅ ⋅ 5}.
It is obvious that 𝑒(𝑡) 󳨀→ 0 exponentially as time goes

to infinite for all initial conditions of 𝑒(0). According to
Lyapunov stability theory, two systems are synchronized.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Multisim implementation of the chaotic System (17): (a) x-y plane with scales 5V/div and 2 V/div, (b) x-z plane with scales 2 V/div
and 1 V/div, (c) x-w plane with scales 2 V/div and 1 V/div, (d) z-w plane with scales 2 V/div and 1 V/div, (e) y-w plane with scales 2 V/div and
1 V/div, and (f) y-u plane with scales 2 V/div and 2 V/div.

Figure 2 is the simulation verification of synchronization
for the master and the slave memristor-based hyperchaotic
Systems (21) and (22) when selecting 𝑘�耠 = 𝑘�푖 = 4 (𝑖 =1 ⋅ ⋅ ⋅ 5), and the systems choose the initial conditions for both
systems, respectively, such that 𝑥(0) = 4, 𝑦(0) = 1.2, 𝑧(0) =0.5, 𝑤(0) = −3.6, 𝑢(0) = 6 and 𝑥�耠(0) = −5, 𝑦�耠(0) = 2,𝑧�耠(0) = 1, 𝑤�耠(0) = −0.8, 𝑢�耠(0) = 5.These figures demonstrate
the synchronization of the master and slave Systems (21) and
(22).

4. A New Memristor-Based Hyperchaotic
System Circuit Implementation

In this section, modularized design methods will be imple-
mented in the new memristor-based hyperchaotic systems

mentioned above. Multisim software is used to generate the
circuit simulation results, and the corresponding physical
circuit experiments are conducted to verify the hyperchaotic
attractor existences of this hyperchaotic system.

(A1) Memristors Circuit Implementation. Figure 3 shows the
circuit configuration of memristor inspired by [16].

In this memristor circuit, a factor 0.1/V multiplier
AD633JN is used. Therefore, 𝑚 = 𝑅�푓/𝑅�푚 = 0.1, 𝑛 =(100𝑅�푓/𝑅�푛)(0.01/𝑉) = 0.01, and

𝑊 = 𝑅�푓𝑅�푚 + 3 ⋅ 100𝑅�푓𝑅�푛 (0.01𝑉 ) ⋅ 𝑢2 (30)

where 𝑅�푓 is the feedback resistor of the amplifier.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Physical circuit implementation hardware and digital oscilloscope diagrams of the chaotic System (17): (a) x-y plane with scales
2 V/div and 1 V/div, (b) x-z plane with scales 2 V/div and 1 V/div, (c) x-w plane with scales 2 V/div and 1 V/div, (d) z-w plane with scales 1
V/div and 1 V/div, (e) y-w plane with scales 1 V/div and 1 V/div, and (f) y-u plane with scales 1 V/div and 2 V/div.

Parameter 𝑘 represents the strength of a memristor.

𝑘 = 𝑅�푓𝑚𝑅�푚 = 𝑅�푓300𝑛𝑅�푛 (31)

In Figure 4, select the following resistors and the capacitor,𝑅�푓 = 2𝑘Ω, 𝑅�푚 = 1𝑀Ω, 𝑅�푛 = 66𝑘Ω, 𝑅15 = 200𝑘Ω, 𝑅�푐 = 1𝑘Ω,𝐶4 = 10𝑛𝐹.

Figure 4 is theMultisim simulation for the flux-controlled
memristor with 𝑥 input with sinusoid signal. This demon-
strates the typical closed loop characteristics of thememristor
developed by equation (7) and part of equation (6).

(A2) Memristor-Based Chaotic System Circuit Analysis. The
implementation of memristor-based chaotic system uses the
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modularized design method applied on System (17). After the
time-scale transformation method is applied on System (17),
System (17) becomes System (32).

𝑑𝑥𝑑𝑡 = − 1𝜏0𝑅1𝐶1 𝑥 − 1𝜏0𝑅2𝐶1 (−𝑦)
− 110𝜏0𝑅3𝐶1 (−𝑦) 𝑧 − 110𝜏0𝑅4𝐶1 𝑘𝑥𝑊 (𝑢)

𝑑𝑦𝑑𝑡 = − 1𝜏0𝑅5𝐶2 𝑥 − 1𝜏0𝑅6𝐶2 (−𝑦) − 110𝜏0𝑅7𝐶2𝑥𝑧
− 1𝜏0𝑅8𝐶2 (−𝑤)

𝑑𝑧𝑑𝑡 = − 1𝜏0𝑅9𝐶3 𝑧 − 110𝜏0𝑅10𝐶3 𝑥 (−𝑦)
− 110𝜏0𝑅11𝐶3 𝑥𝑢 − 110𝜏0𝑅12𝐶3𝑦𝑤𝑑𝑤𝑑𝑡 = − 1𝜏0𝑅13𝐶4𝑦 − 110𝜏0𝑅14𝐶4 𝑥 (−𝑧)
− 110𝜏0𝑅15𝐶4 𝑧𝑢𝑑𝑢𝑑𝑡 = − 1𝜏0𝑅16𝐶5𝑥

(32)

where 𝜏0 = 100.
Therefore,

𝑑𝑥𝑑𝑡 = −1400𝑥 − 1400 (−𝑦) − 400 (−𝑦) 𝑧
− 100𝑘𝑥𝑊 (𝑢)𝑑𝑦𝑑𝑡 = −100𝑥 − 1600 (−𝑦) − 100𝑥𝑧 − 100 (−𝑤)

𝑑𝑧𝑑𝑡 = −7800𝑧 − 100𝑥 (−𝑦) − 100𝑥𝑢 − 100𝑦𝑤
𝑑𝑤𝑑𝑡 = −1000𝑦 − 15𝑥 (−𝑧) − 30𝑧𝑢
𝑑𝑢𝑑𝑡 = −100𝑥

(33)

Furthermore, the paper employs the unified compression
coefficient, 𝑠 = 1/20, for each variable in order not to exceed
the range of the oscilloscope used to the circuit. Then

𝑠𝑥 󳨀→ 𝑥𝑠𝑦 󳨀→ 𝑦𝑠𝑧 󳨀→ 𝑧𝑠𝑤 󳨀→ 𝑤
(34)

Substituting (34) into (33), we can obtain

𝑑𝑥𝑑𝑡 = −1400𝑥 − 1400 (−𝑦) − 8000 (−𝑦) 𝑧
− 100𝑘𝑥𝑊 (𝑢)𝑑𝑦𝑑𝑡 = −100𝑥 − 1600 (−𝑦) − 2000𝑥𝑧 − 100 (−𝑤)

𝑑𝑧𝑑𝑡 = −7800𝑧 − 100𝑥 (−𝑦) − 2000𝑥𝑢 − 2000𝑦𝑤
𝑑𝑤𝑑𝑡 = −1000𝑦 − 300𝑥 (−𝑧) − 600𝑧𝑢
𝑑𝑢𝑑𝑡 = −100𝑥

(35)

Comparing equations (35) to (32), parameters R and C
in the circuit can be calculated when using the factor of
0.1 multiplier. R1=R2=75kΩ, R3= 1kΩ, R4=1MΩ, R5=1MΩ,
R6=68kΩ, R7=5.1kΩ, R8=1MΩ, R9=13kΩ, R10=5.1kΩ, R11=
R12=1MΩ, R13= 100kΩ, R14= 33.3kΩ, R15= 330kΩ, R16=
220kΩ.

In the modularized circuit design for System (17), there
are five channels for each variable. The circuit implementa-
tion uses analog amplifiers LF347N andAD633JNmultipliers
to implement the addition and the integral operations. Some
additional R and C components are also selected in the circuit
implementation. R17 = R18 = R19 = R20=10kΩ, R21 = R22 = R23
= R24 = 20kΩ, C1 = C2 = C3 = C4 = C5 = 10nF, Rf=2.2kΩ,
Rc=1kΩ, Rm=1MΩ, Rn=68kΩ.

The circuit channels for first four variables are shown in
Figure 5, and the fifth one is shown in Figure 3.

(A3) Circuit Implementation for the New 5D Chaotic Systems.
According to the circuit design, the Multisim simulation
implementation for the memristor-based hyperchaotic Sys-
tem (17) is demonstrated in Figure 6.That shows the attractor
phases graphs of different planes for System (17).

Attractor phases of System (17) as shown in Figure 6
own similar hyperchaotic characteristics with those of System
(5) which are elaborated in [37]. It is known that practical
analog devices are not ideal. Therefore, in reality, the voltages
added on the amplifiers are not exceeding ±13.5V in order
to guarantee the system variable outputs do not exceed the
amplifier linear region. This paper employs ±12.5V across
the amplifier in the physical circuits hardware, and the
corresponding attractor phases graphs are shown in Figure 7.

Comparing Figure 6 to Figure 7, it is shown that the physi-
cal experiment attractor phase results match those conducted
byMultisim and demonstrate the existence of the memristor-
based hyperchaotic attractor for System (17). Furthermore,
the memristor-based Wang hyperchaotic system has similar
characteristics with those of the original Wang hyperchaotic
system which is verified by the Multisim simulation and
physical experimental results. The improved modularized
method with compression coefficients is flexible, reliable,
and straightforward to realize the physical implementation.
The memristor-based hyperchaotic system has potential and
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bright application physically. For example, it can realize
the physical communication encryptions more reliably and
easily. Future works will focus on the physical applications for
communication encryptions by using the memristor-based
hyperchaotic system.

5. Conclusions

The paper developed a new 5D memristor-based chaotic
system with a flux-controlled memristor. The dynamics
analysis of the system showed that the new system is a
hyperchaotic system.The adaptive controller and update laws
for the synchronization of the new system were designed and
conducted. Furthermore, the modularized designmethod for
the physical circuit experiment implementation is applied
to realize the circuit by Multisim and physical experiments
hardware. After the implementation of these circuits, then
the comparisons between Multisim simulation and results
from the physical experiments showed that these two kinds
of results matched with each other and verified the existence
of the attractors from the phase plane graphs. Furthermore,
this new higher-dimensional chaotic system with memristor
owns more complex dynamics and can be applied in a wide
range of applications such as encryptions. This is also the
future work for this work.
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