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The data-driven management of real-life systems based on a trained model, which in turn is based on the data gathered from its
daily usage, has attracted a lot of attention because it realizes scalable control for large-scale and complex systems. To obtain a
model within an acceptable computational cost that is restricted by practical constraints, the learning algorithm may need to
identify essential data that carries important knowledge on the relation between the observed features representing the
measurement value and labels encoding the multiple target concepts. This results in an increased computational burden owing
to the concurrent learning of multiple labels. A straightforward approach to address this issue is feature selection; however, it
may be insufficient to satisfy the practical constraints because the computational cost for feature selection can be impractical
when the number of labels is large. In this study, we propose an efficient multilabel feature selection method to achieve scalable
multilabel learning when the number of labels is large. The empirical experiments on several multilabel datasets show that the
multilabel learning process can be boosted without deteriorating the discriminating power of the multilabel classifier.

1. Introduction

Nowadays, the data-driven management of real-life systems
based on a model obtained by analyzing data gathered from
its daily usage is attracting significant attention because it
realizes scalable control for large-scale and complex sys-
tems [1, 2]. Unfortunately, advances in the identification
of important knowledge on the relation between the observed
information and target concept are far from satisfactory for
real-life applications such as text categorization [3], protein
function prediction [4], emotion recognition [5], and assem-
bly line monitoring [6]. This is because the underlying com-
binatorial optimization problem is computationally difficult.
To deal with this complicated task in a scalable manner, the
algorithm may need to identify essential data that carries
important knowledge for building an acceptable model while
satisfying practical constraints such as real-time response,
limited data storage, and computational capability [7].
Although the majority of current machine learning
algorithms are designed to learn the relation between

information sources or features and a single concept or label,
recent complex applications require that the algorithm
extracts the relation to multiple concepts [8]. For example, a
document can be assigned to multiple categories simulta-
neously [9], and protein compounds can also have multiple
roles in a biological system [10]. Therefore, to identify
important knowledge in this scenario, the algorithm must
learn the complex relation between features and labels, for-
malized as the multilabel learning problem in this field. This
scenario differs from that of the single-label learning prob-
lem because the problem itself offers the opportunity to
improve learning accuracy by exploiting the dependency
between labels [11, 12]. However, the algorithm eventually
suffers as a result of the computational cost of the learning
process owing to the multiple labels.

To reduce the computational burden of the algorithm, a
straightforward approach is to ignore unimportant features
in the training process that do not influence the learning
quality [13, 14]. However, in the multilabel learning problem,
this approach may be insufficient to satisty the practical
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constraints because a large number of labels can be
involved in a related application. Moreover, the possible
combinations of features and labels that should be consid-
ered for scoring the importance of features increases expo-
nentially; ie., the feature selection process can become
computationally impractical. Additionally, the computa-
tional burden increases significantly because the number
of features in the dataset is typically large when feature
selection is considered. As a result, the number of possible
combinations can increase considerably [15]. This is a seri-
ous problem because conventional multilabel learning algo-
rithms with and without the feature selection process are
unable to finish the learning process owing to the presence
of too many features and the scoring process of the fea-
tures, respectively.

In this study, we devise a new multilabel feature selection
method that facilitates dimensionality reduction of labels
from the scoring process. Specifically, our algorithm first
analyzes the amount of information content in labels and
reduces the computational burden by discarding labels that
are unimportant to the scoring of the importance of features.
Our contribution to this study compared to our previous
works and the strategy to deal with the scalability issue can
be summarized as follows:

(i) We propose an efficient multilabel feature selection
method based on the simplest approximation of
mutual information (MI) that is scalable to the num-
ber of labels; it costs constant time computations in
terms of the number of labels

(ii) The computational cost of the feature selection pro-
cess can be controlled easily owing to its simple
form. This is an important property when the execu-
tion time is limited

(iii) The proposed method identifies a subset of labels
that carries the majority of the information content
compared to the original label set to preserve the
quality of the scoring process

(iv) According to the characteristics of labels in terms of
information content, we suggest that the size of
labels be considered in the feature scoring process
to preserve the majority of the information content

(v) In contrast to our previous works, the proposed
method explicitly discards unimportant labels from
the scoring process, resulting in a significant acceler-
ation of the multilabel feature selection process

2. Multilabel Feature Selection

One of the most common methods of multilabel feature
selection is the use of the conventional single-label feature
selection method after transforming label sets into one or
more labels [9, 16, 17]. In this regard, the simplest strategy
is known as binary relevance, in which each label is separated
and analyzed independently [18]. A statistical measure that
can be used as a score function to measure feature impor-
tance can be employed after separating the label set; these
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measures include the Pearson correlation coefficient [19]
and the odds ratio [20]. Thus, prohibitive computations
may be required to obtain the final feature score if a large
label set is involved. In contrast, efficient multilabel feature
selection may not be achieved if the transformation process
consumes excessive computational resources. For example,
ELA + CHI evaluates the importance of each feature using
x* statistics (CHI) between the feature and a single label
obtained by using entropy-based label assignment (ELA),
which separates multiple labels and assigns them to dupli-
cated patterns [9]. Thus, the label transformation process
can be the bottleneck that incurs a prohibitive execution time
if the multilabel dataset is composed of a large number of pat-
terns and labels.

Although the computational cost of the transformation
process can be reduced by applying a simple procedure such
as a label powerset that treats each distinct label set as a class
[17, 21], the feature selection process may be inefficient if the
scoring process incurs excessive computational costs during
the evaluation of the importance of the features [18, 22].
For example, PPT + RF identifies appropriate weight values
for the features based on a label that is transformed by the
pruned problem transformation (PPT) [21] and the conven-
tional ReliefF (RF) scheme [23] for single-label feature selec-
tion [24]. Although the ReliefF method can be extended to
handle multilabel problems directly [25], the execution time
to obtain the final feature subset can be excessively long if
the dataset is composed of a large number of patterns. This
is because ReliefF requires similarity calculations for pattern
pairs. Thus, the feature selection process itself should not
incur a complicated scoring process to achieve efficient mul-
tilabel learning.

Instead of a label set transformation approach that may
incur side effects [26], an algorithm adaptation approach that
attempts to handle the problem of multilabel feature selec-
tion directly is considered [15, 27-31]. In this approach, a
feature subset is obtained by optimizing a specific criterion
such as a joint learning criterion involving feature selection
and multilabel learning concurrently [32, 33], [, | -norm func-
tion optimization [31], a Hilbert-Schmidt independence
criterion [28], label ranking errors [27], F-statistics [34],
label-specific feature selection [12], and memetic feature selec-
tion based on mutual information (MI) [35]. However, if
multilabel feature selection methods based on this strategy
consider all features and labels simultaneously, the scoring
process can be computationally prohibitive or even fail
owing to the internal task of finding an appropriate hyper-
space using pairwise pattern comparisons [27], a depen-
dency matrix calculation [28], and iterative matrix inverse
operations [31].

In our previous work [29], we demonstrated that MI can
be decomposed into a sum of dependencies between variable
subsets, which is a very useful property for solving multilabel
learning problems [12, 15] because unnecessary computa-
tions can be determined prior to the actual computation
and be rejected [36]. More efficient score functions, special-
ized into an incremental search strategy [37] and a quadratic
programming framework [38], have also been considered.
These score functions were employed to improve the
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effectiveness of evolutionary searching [35, 39]. However,
these MI-based score functions commonly require the calcu-
lation of the dependencies between all variable pairs com-
posed of a feature and a label [14]. Thus, they share the
same drawback in terms of computational efficiency because
labels known to have no influence on the evaluation of fea-
ture importance are included in the calculations [15, 40]. In
contrast to our previous study, our method proposed in this
study discards unimportant labels explicitly prior to any mul-
tilabel learning process.

Although the characteristics of multilabel feature selec-
tion methods can vary according to the manner in which
the importance of features is modeled, conventional methods
create a feature subset by scoring the importance of fea-
tures either to all labels [9, 17, 28] or to all possible com-
binations drawn from the label set [15, 27, 29]. Thus,
these methods inherently suffer from prohibitive computa-
tional costs when the dataset is composed of a large number
of labels.

3. Proposed Method

In this section, a formal definition of the multilabel classifica-
tion and feature selection is provided. Based on our defini-
tion, the proposed label selection approach is described and
a discussion on the influences of label subset selection to
the feature selection is presented.

3.1. Problem Definition. Let 7 be a set of training examples
or patterns where each example w,e Z (1<i<|%]) is
described by a set of features 7 = {f, ... ’f\fi’l}; its associa-

tion to multiple concepts can be represented using a subset
of labels A; € %, where Z={I,,1,,..., 1] 4 }. In addition, let
T ={(t,A;) | 1<i<|T|} be a set of test patterns, where A,
is a true label set for t; and is unknown to the multilabel clas-
sifier, resulting in  =%#"UJ and #' N J =0. The task of
multilabel learning is to derive a family of |#| functions,
namely, hy, h,, ..., h 4 that are induced from the training

examples, where each function A, : t; = R outputs the class
membership of t; to [;. Thus, relevant labels of ¢; based on

each function can be denoted as ,)Ii ={l | h(t;) >, 1<k<|
2|}, where ¢ is a predefined threshold. For example, in the
work of [41], a mapping function h; for [, is induced using
%' Based on h,, the class membership value A (t;) for the
given test pattern ¢, is determined, where h(¢;) € [0, 1]. In
this work, the threshold ¢ is set to 0.5 according to the max-
imum a posteriori theorem. Although the algorithm outputs
I, as a relevant label for t; if the class membership value is
larger than 0.5 in their work, the range of class membership
value can be different according to the multilabel classifica-
tion algorithm. Although there are some trials to improve
the multilabel learning performance by adapting threshold
for each label [42], most conventional studies have employed
the same value for all the labels.

One of the problems of multilabel feature selection that
distinguishes it from classical single-label feature selection
is the computational cost for selecting a subset of features
with regard to the given multiple labels. The multilabel

feature selection can then be achieved through a ranking
process by assessing the importance of |7 | features based
on a score function and selecting the top-ranked n features
from % (n < |7]). To perform multilabel feature selection,
an algorithm must be able to measure the dependency,
i.e., importance score, between each feature and label set.
The dependency between a feature f € & and label set &
can be measured using MI [43].

M(f:£)=H(f) -H(f. ) + H(Z), (1)

where H( - ) of (1) represents a joint entropy that measures
the information content carried by given a set of variables,
defined as

H(X) =-) P(x) log,P(x), (2)

xeX

where x is a state represented by a variable X and P(-) is a
probability mass function. If the base of the log function, a
in (2), is two, this is known as Shannon entropy. When |Z|
is large, the calculation of H(f, #) and H(Z) becomes
unreliable because of too many joint states coming from
& with insufficient patterns. For example, to observe all
the possible associations between patterns and label subsets,
the dataset should contain at least 21/ patterns. Let X* be the
power set of X and X; = {e| e € X", |e| = k}. Equation (1) can
then be rewritten using the work of Lee and Kim [15].

|Z]+1

M(fs2)= Y (“D)Vilf xZ,), (3)

k=2

where X denotes the Cartesian product of two sets. Next,
Vi (+) is defined as

Vi(Y)= Y I(X), (4)

XeY;

where I(X) is the interaction information for a given variable
set X, defined as [44]

1X)== ) (-1)"H(Y). (5)

YeX*

Equation (3) indicates that M(f; %) can be approxi-
mated into interaction information terms involving a feature
and all the possible label subsets. With regard to (3), the most
efficient approximation of (1) is known as [36]

H(f5 2)=V,(f x 2})
= ) I
Xe(f<#}};
=Y ©)
le

= Y M(f;).

ley
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FIGURE 1: Score value calculation when label entropy values are uniform.
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FIGURE 2: Score value calculation when label entropy values are skewed.

Accordingly, the score function ] for evaluating the
importance of a given feature f is written as

J= Y M(f3D). (7)

les

Equation (7) indicates that the computational cost
increases linearly according to |#|. By assuming that the
computational cost for calculating a M( -;-) term is a unit
cost, the algorithm will consume |.#| unit costs to compute
the importance of a feature.

3.2. Label Subset Selection. In our multilabel feature selection
problem, the rank of each feature is determined based on
importance score using (7). The bound of a MI term is
known as

0<M(f ;1) <min (H(f), H(])). (8)
Thus, the bound of (7) is

0<J< ) min(H

les

(), H(D)). ©)

Because H(f) is unknown before actually examining
input features and any importance score cannot exceed the
sum of entropy value of each label, (9) can be simplified as

0<J< Y H(). (10)

le®

Equation (10) indicates that the score value of each fea-
ture is influenced by the entropy value of each label, and this
fact implies Proposition 1 as follows [40].

Proposition 1 (upper bound of ]). If & is a given label set,
then the upper-bound of ] is

Y H(). (11)

leg

Figure 1 represents how the importance score of a feature
is determined with regard to Proposition 1; the height of the
blue bar indicates the entropy value of the corresponding
label, and height of the yellow bar indicates the MI between
f and each label. Figures 1 and 2 represent two sample cases
wherein each label carries the same amount of information
content, and a small subset of label set carries the majority
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FIGURE 3: Entropy of each label in BibTeX dataset.

information content, respectively. As shown in Figure 1, the
value of M(f;1,) can be varied according to [; € #; however,
its value is smaller than the entropy value of each label. When
the entropy values of labels are uniformly distributed, all the
MI terms between f and each label should be examined
because each M(f ;1;) term has same chance of giving signif-
icant contribution to the final score J. However, as shown in
Figure 2, if there is a set of labels having a small entropy, i.e.,
if the entropy values of the labels are skewed, there can be MI
terms that insignificantly contribute to the extent of J,
because all the M(f;1;) will inherently have a small value,

where [; is a label of small entropy. Although the characteris-

tics of label entropy values can vary between uniform and
skewed cases, it is observed from most real-world multilabel
datasets that the skewed case occurs more frequently than
uniform case [15]. Additionally, as shown in Figure 2,
because MI terms between a feature and labels with small
entropy will not much contribute to the final score of the fea-
ture, they can be excluded for accelerating multilabel feature
selection process.

Figure 3 shows the entropy value of each label in a
BibTeX dataset [3] composed of 153 labels; please refer
to Table 1 for details. The BibTeX dataset is created from
the transactions of user activity in a tag recommendation
system. For clarity, we represent the tool which is used
to describe and process lists of reference as BibTeX
whereas the name of the corresponding dataset is BibTeX
subsequently. In this system, users freely submit BibTeX
entries and assign relevant tags. The purpose of this sys-
tem is recommending a relevant tag for the new BibTeX
entries submitted by users. The system must identify the
relation between BibTeX entry and relevant tags based
on user transactions previously gathered, and hence, it can
be regarded as a real-life text categorization system. For clar-
ity, labels are sorted/ordered according to their entropy
value. Figure 3 shows that each label gives a different
entropy value; however, more importantly, approximately
half of the labels give small entropy values, indicating that
the MI terms with those labels will contribute weakly to the
final score. Therefore, these labels can be discarded to accel-
erate the multilabel feature selection process.

Suppose that an algorithm selects @ ¢ & for reducing
computational cost for multilabel feature selection. To pre-
vent possible degradation, i.e., a change in the upper bound
for ] because of label subset selection, it is preferable that @

implies a similar upper bound compared to J. In other words,
a subset of Z that minimizes

arg min ) H(l)= Y H(l)- Y H(]) (12)

CCL  lew le® le@
is preferable, where € = %\ @ is a set of discarded labels.

Proposition 2. The optimal € is composed of labels with the
lowest entropy.

Proof 1. Our goal is to identify a subset of labels & that influ-
ences the upper bound of J as insignificantly as possible,
when € is discarded from % for the feature scoring process.
Equation (11) indicates that the upper bound of J is the sum
of entropy values for each label and the entropy function
always gives positive value, therefore the optimal Z should
be composed of labels with the lowest entropy.

Proposition 2 indicates that the optimal € can be
obtained by iteratively discarding a label with the smallest
entropy until @ contains a desirable number of labels. After
obtaining @, the approximated score function for evaluating
a feature f is written as

J(f) =Y M(f51). (13)

le@

Finally, the difference between J and 7 can be exactly cal-
culated as

J~J= ) min(H(f), H(1)), (14)

where ] — ] is always positive because H(X) > 0. Algorithm 1
describes the procedure of the proposed method.

3.3. Number of Remaining Labels. A final issue related to label
subset selection has to do with the number of labels that
should be discarded. In fact, because the upper bound of
(12) gets larger when the number of discarded labels is
increased, there is a trade-oft between computational effi-
ciency and the accurate score of each feature. However, the
actual computational cost can also be easily predicted after
examining some features because the computational cost
for examining |7 | features based on (7) is easily calculated
s |7 |- |#|, and the computational cost based on (13) is |#
| - |@|. However, if there is no such constraint and a user only
wants to determine a reasonable value of |@| for a fast analy-
sis, then a simple and efficient way would be helpful.
Suppose that the algorithm attempts to preserve the
upper bound of the score function based on @, then the
upper bound should be greater than or equal to the error
because of label subset selection; i.e., the inequality (15)
should hold.

Y H(l)= ) H(l). (15)

le@ le®
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TaBLE 1: Standard characteristics of multilabel datasets.

Datasets (abbreviation) |%| |7 Feature type L] Card Den Distinct PDL Domain |S|
BibTeX 7395 1836 Nominal 159 2.402 0.015 2856 0.386 Text 86
Emotions 593 72 Numeric 6 1.868 0.311 27 0.046 Music 24
Enron 1702 1001 Nominal 53 3.378 0.064 753 0.442 Text 41
Genbase 662 1185 Nominal 27 1.252 0.046 32 0.048 Biology 26
Language Log (LLog) 1460 1004 Nominal 75 1.180 0.016 304 0.208 Text 38
Medical 978 1494 Nominal 45 1.245 0.028 94 0.096 Text 31
Slashdot 3782 1079 Nominal 22 1.181 0.054 156 0.041 Text 61
TMC2007 28,596 981 Nominal 22 2.158 0.098 1341 0.047 Text 169
Yeast 2417 103 Numeric 14 4.237 0.303 198 0.082 Biology 49
Arts 7484 1157 Numeric 26 1.654 0.064 599 0.080 Text 87
Business 11,214 1096 Numeric 30 1.599 0.053 233 0.021 Text 106
Computers 12,444 1705 Numeric 33 1.507 0.046 428 0.034 Text 112
Education 12,030 1377 Numeric 33 1.463 0.044 511 0.042 Text 110
Entertainment (entertain) 12,730 1600 Numeric 21 1.414 0.067 337 0.026 Text 113
Health 9205 1530 Numeric 32 1.644 0.051 335 0.036 Text 96
Recreation 12,828 1516 Numeric 22 1.429 0.065 530 0.041 Text 113
Reference 8027 1984 Numeric 33 1.174 0.036 275 0.034 Text 90
Science 6428 1859 Numeric 40 1.450 0.036 457 0.071 Text 80
Social 12,111 2618 Numeric 39 1.279 0.033 361 0.030 Text 110
Society 14,512 1590 Numeric 27 1.670 0.062 1054 0.073 Text 120

1: Input: n, |@|;

> Number of features to be selected, n < d
> Number of labels to be considered, |G| < |Z|

2: Output: S} > Selected feature subset, &

3: Initialize & « 0

4:forall [ € & do

5: Calculate value of entropy for I;

6: end for

7: Create @ with |@| labels of highest entropy from %;

8: forall f € # do

9: J(f) < Assessing importance of f by using Eq. (13);

10: end for

11: Sort F based upon score values ] descendingly;

12: Set & « Top n features of high score in F;

ALGorITHM 1: Procedure of Proposed Method.

According to the characteristics of the given labels, the
number of labels to be discarded can then be identified as
Lemmas 1, 2, and 3.

Lemma 1. Skewed case.

|@| =1. (16)
Proof 2. For simplicity, suppose Z is sorted according to the
entropy value of each label, such that /; has the smallest
entropy and /|y has the largest entropy. Suppose that the
entropy values of the labels are skewed, as shown in

Figure 2. If [ is the only one label with a positive entropy

and the remaining labels have no entropy, then the algorithm
will move /g to @and [, ..., I 4, to €, and then terminate.

So far, we considered the uniform and skewed cases that
are the two extremes of the characteristics in the viewpoint of
information content carried by each label. Next, we consider
an intermediate between the uniform and skewed cases, in
which the information content of each label is proportional
to their sequence when they are ascendingly sorted according
to their entropy values. For this case, about 30% of labels with
the largest entropy should be included in @.
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Proportional case
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FIGURE 4: Score value calculation when label entropy values are proportional to their rank.

Lemma 2. Proportional case.

@] ~0.3|2]. (17)

Proof 3. For simplicity, suppose that % is sorted according to
the entropy value of each label, such that /; has the smallest
entropy value and [ | has the largest entropy value. Suppose
that the entropy values of the labels are proportional to the
sequence number of labels in &% as shown in Figure 4. In this
case, an entropy value can be represented as

H()=a-i, (18)

where i is the sequence number of label /; in &. Because the
actual entropy value is unnecessary for determining superior-
ity among labels, the term « in (18) can be ignored. Then the
entropy value of each label with regard to their sequence
can be represented as

L,2,...,|@..., |2 (19)

Because the sum of the integers from 1 to i is equal to
i(i+1)/2, (20) is obtained using (15).

[£1(21+1) _|el(e[+1) _ |@l(el+1)

. 20
2 2 2 (20)
Equation (20) can be simplified as
2|1@1 +2|@| - |2|(|%] +1) =0. (21)
The solution of (21) is given as
g = 242 (12 + )"
4 (22)
-2+ (4+8|2|(|Z) + 1)
- i .

Because |@| is always a positive integer, the negative
solution can be ignored. Therefore, we obtain

-2+ (4+8|2|(|2| + 1))

= 23
@ . (23)
For clarity, we approximate the solution as
2 12
-2+ (8|%)* +8|%| +4))
@)= :
2(172
-2+ (2\/§|L| + 2) v (24)
N 4
2+/2|L
= \/;| | =0.7|%|.

The approximated solution 0.7 & is slightly greater
than the exact solution for |@|. Therefore, (2) indicates that
approximately 70% of labels will be discarded, whereas 30%
of labels will remain in @.

Lemma 3. Uniform case.

2l
5 if | Z|is even,

@] = 2| (25)
——, if|#]isodd.
2+1

Proof 4. Suppose that the entropy values of the labels are uni-
formly distributed as shown in Figure 1. The figure indicates
that |@| should have corresponding labels with regard to each
discarded label. Therefore, for the even case, the number of
labels in @ and € must be the same for (15) to hold; thus, |
G| =|%|/2. For the odd case, @ must have one more label
than @; thus, |@| = |#|/2 + 1.

The proof indicates that the number of labels to be
selected is decreased as the entropy values of labels are
skewed. In addition, the proof guarantees that |@| must be
lesser than |#| and the computational cost for evaluating



the importance of each feature based on @ must be smaller
than |L|/2 + 1. Therefore, Theorem 1 can be obtained.

Theorem 1 |@| is always smaller than | Z)|.

Proof 5. Suppose that there are two label sets @ and € to
be considered and ignored for calculating the importance
of each feature, respectively. Because @ should carry the
majority information content than &, Y, ,H(I) should
be larger than ), H(I). As shown in Proposition 2, the
algorithm is able to achieve this goal by (1) including a
label with the largest entropy in @ and removing that label
from %, (2) including labels with the smallest entropy in
% and removing those labels from & iteratively until
YicoH() > Y ceH(]), and (3) repeating (1) to (2) until &
has no element. If the entropy values of all the labels are
the same, i.e., the largest entropy value and the smallest
entropy value are the same, one label can be included in
€ when a label is included in @ as Lemma 3. Thus, €
possibly has more labels than @ in the case when the
smallest entropy value is actually smaller than the largest
entropy value, indicating that the uniform case is the
worst case from the viewpoint of the number of labels in
@. Consequently, the number of labels in |@| cannot be
larger than |£|/2 +1.

Because |@| is always smaller than |#| and calculating
one MI term is regarded as the unit cost, the computational
cost for evaluating each feature using J is constant in the
viewpoint of the number of labels.

3.4. Influence to Feature Ranking. The multilabel feature
selection is done by ranking each feature according to its
importance value. After label subset selection is conducted,
the importance score of each feature will be calculated by
summing M(f;1,) terms, where I, € @. However, when the
entropy values of labels are skewed, the rank based on ]
and that based on J are unlikely to change. To demonstrate
this aspect, we illustrate how the importance score is calcu-
lated under the skewed case in Figure 5. In the figure, there
are three labels, namely [, [,, and I;; /; has the highest
entropy, whereas [, and I; have insignificant entropies. The
MI between each feature and each label is represented as yel-
low bars, and the final score of each feature is represented on
the right hand side of the figure. The figure indicates that (1)
the MI between each feature and each label is bound by the
entropy of each label and (2) the MI between each feature
and the labels of high entropy mostly determines the final
score of each feature. In other words, (3) the influence of
MIs between each feature and [, and [; is insignificant to
the final score.

With regard to the process of feature selection,
Figure 5 implies three more indications. The first indica-
tion is related to the influence of labels with high entropy
to the final score. Because the final score is determined by
summing MI terms between a feature and all the labels, a
feature that is dependent on labels with high entropy is
likely to have a high importance score. Therefore, those
features will be included to the final feature subset &
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because of their higher rank, and they show promise as
potential members of &. The second indication is related
to the change among similarly ranked features. However,
because the goal of feature selection is to select a feature
subset that is composed of n features, the specific rank
of each feature is unimportant. For example, suppose that
the algorithm tries to choose ten features from & because
F is set to ten by users or there is a limitation on the
storage. The label subset selection may change the rank
of the second- and the third-ranked features; however,
these two features will be included in the final feature sub-
set & because the algorithm is allowed to select ten fea-
tures. The final indication is related to the rank among
unimportant features. Although there may be a set of fea-
tures that are dependent on labels with small entropy,
these features will have low importance scores and hence
will be discarded from .

Although the example of Figure 6 indicates that the rank
of each feature will be unlikely to change or may be changed
meaninglessly, empirical experiments should be followed to
investigate the availability of label subset selection.
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4. Experimental Results

A description of the multilabel datasets, algorithms, statisti-
cal tests, and other settings used in the experimental study
is provided in this section. Next, the experimental results
based on different multilabel learning methods, the datasets,
and the analysis are presented subsequently.

4.1. Experimental Settings. Twenty real multilabel datasets
were employed in our experiments [12, 25, 35], where the
number of relevant and irrelevant features is unknown.
Table 1 shows the standard statistics of the multilabel data-
sets and the meaning of each notation is described as follows:

(i) |%|: number of patterns in the dataset
(ii)
(iii) Feature type: type of feature
(iv) |Z|: number of labels

Z |: number of features

(v) Card: average number of labels for each instance
(label cardinality)

(vi) Den: label cardinality divided by the total number
of labels (label density)

(vii) Distinct: number of unique label subsets in %
(distinct label set)

(viii) PDL: number of distinct label sets divided by the
total number of patterns (portion of distinct labels)

(ix) Domain: applications to which each dataset
corresponds

(x) |S§|: number of features to be selected (v/|7])

These statistics show that the 20 datasets cover a broad
range of cases with diversified multilabel properties. In the
case where the feature type is numeric, we discretized the
features using the LAIM discretization method [45]. In
addition, datasets that are composed of more than 10,000
features are preprocessed to contain the top 2% and 5% fea-
tures with the highest document frequency [12, 46]. We
conducted an 8:2 hold-out cross-validation, and each
experiment was repeated ten times. The average value was
taken to represent the classification performance. A wide
variety of multilabel classifiers can be considered to conduct
multilabel classification [8]. In this study, we chose the
multilabel naive Bayes classifier [41] because the learning
process can be conducted quickly, owing to the well-
known naive Bayes assumption, without incurring an addi-
tional tuning process, and because our primary concern in
this study is efficient multilabel learning. Finally, we consid-
ered four evaluation measures, which are employed in
many multilabel learning studies: execution time for the
training and test process, Hamming loss, multilabel accu-
racy, and subset accuracy [8, 29].

The Friedman test was employed to analyze the per-
formance of the multilabel feature selection methods; it
is a widely used statistical test for comparing multiple

methods over a number of datasets [47]. The null hypoth-
esis of the equal performance of the compared algorithms
is rejected in terms of each evaluation measure if the
Friedman statistic F is greater than the critical value at
significance level «. In this case, we need to proceed with
certain post hoc tests to analyze the relative performance
of the comparison methods. The Bonferroni-Dunn test is
employed because we are interested in determining whether
the proposed method achieves a performance similar to
that of the feature selection process considering all of the
labels and to that of the multilabel learning without the
feature selection process [48]. For the Bonferroni-Dunn
test, the performances of the proposed method and
another method are deemed to be statistically similar if
their average ranks over all datasets are within one CD.
For our experiments, the critical value at the significance
level & =0.05 is 2.492, and the CD with a=0.05 is 1.249
because g s =2.498 [48].

4.2. Comparative Studies. In this section, we compare the
proposed feature selection method based on the label subset
selection strategy to the conventional multilabel learning
without the feature selection process and the conventional
feature selection method without the label subset selection.
The detail of each method, besides the proposed method, is
described as follows:

(i) No: conventional multilabel learning the without
feature selection process. Here, & is used as the
input features for the multilabel classifier

(if) SL: multilabel learning with the proposed feature
selection process. Here, S is used as the input fea-
tures. In the feature selection process, only one label
with the highest entropy is considered to measure
the importance of each feature

(iii) 3L: multilabel learning with the proposed feature
selection process. Here, S is used as the input fea-
tures. In the feature selection process, 30% of labels
with the highest entropy are chosen by the label
selection strategy to compose Q

(iv) 5L: multilabel learning with the proposed feature
selection process. Here, S is used as the input fea-
tures. In the feature selection process, 50% of labels
with the highest entropy are chosen by the label
selection strategy to compose Q

(v) AL: multilabel learning with the conventional fea-
ture selection process. Here, S is used as the input
features. The same feature subset can be obtained
by setting Q = L for the proposed method

All methods were carefully implemented in a MATLAB
8.2 programming environment and tested on an Intel Core
i7-3930K (3.2 GHz) with 64 GB memory.

Tables 2-5 report the detailed experimental results of
each method under comparison on 20 multilabel datasets.
For each evaluation measure, | means the smaller the
better whereas T means the larger the better. The best
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TaBLE 2: Execution time (|) for training and testing process of each comparing method (mean + std. deviation) on 20 multilabel datasets.

Method BibTeX Emotions Enron Genbase LLog Medical Slashdot
No 141.852 £ 0.386  0.091 £ 0.001  12.819 £ 0.028  4.713 £ 0.032 17.053 + 0.057 12.996 + 0.090 7.796 = 0.020
SL 9.326 + 0.322 - 0.069 + 0.050 1.039+0.198 - 0.541+0.233 - 1.164+0.201 - 0.870+0.281 - 1.279+0.209 -
3L 17.820 + 1.838 0.058 + 0.018 1.846 + 0.592 0.980 + 0.560 2.194 £ 0.719 1.846 = 0.925 2.241 = 0.502
5L 20.686 + 2.355 0.070 + 0.028 2.118 + 0.734 1.206 + 0.740 2.455 + 0.859 2.176 + 1.149 2.239 + 0.503
AL 201.458 + 41.405 0.038 £0.007 - 3.112 + 1.768 1.071 = 0.903 4.027 + 2.622 3.353 £ 2.561 3.742 £ 1.166
Method TMC2007 Yeast Arts Business Computers Education Entertain
No 28.134 + 0.033 0.450 + 0.004  15.814 £ 0.094 20.921 £ 0.166  38.178 £ 0.369 29.887 £ 0.320  23.983 + 0.324
SL 8.962 + 0.258 - 0.291 £ 0.056 2.750+0.182 - 4.158+0.291 - 6.140+0.318 - 5.093+0.350 - 5.269 +0.280 -
3L 13.903 + 0.662 0.314 + 0.039 4.697 + 0.508 6.755 = 0.609 10.701 + 0.805 8.440 + 0.910 9.568 + 0.729
5L 13.908 + 0.665 0.347 = 0.054 5.688 + 0.664 8.047 £ 0.783 12.995 + 1.066 10.115 + 1.213 9.572 £ 0.724
AL 84.744 + 7584 0.238+£0.012 - 15.074 + 2.802 32.428 + 8.005 97.128 + 12.655 55.539 + 10.467  63.178 + 6.986
Method Health Recreation Reference Science Social Society Avg. rank
No 28.702 £ 0.206  24.032 £ 0.025 34.620 £ 0.293  34.302 + 0.050  67.920 + 0.128 34.704 + 0.032 4.40

SL 4.258 +0.267 - 5.165+0.286 - 4.246+0.354 - 3.828+0.414 - 8.281+£0.691 -  6.655+0.337 - 1.15 -

3L 7.272 £ 0.689 9.310 = 0.721 7.495 £ 0.885 6.709 + 1.133 15.099 + 1.944 11.544 + 0.820 2.10

5L 8.780 £ 0.915 9.311 = 0.720 9.137 £ 1.168 8.154 = 1.507 18.516 + 2.596 13.989 + 1.075 3.10

AL 44.589 £ 6.295  59.392 + 7.450 54.074 £ 11.295 49.855 + 12.972 263.023 + 51.640 107.083 + 14.488 4.25

TaBLE 3: Hamming loss (|) performance of each comparing method (mean =+ std. deviation) on 20 multilabel datasets.

Method BibTeX Emotions Enron Genbase LLog Medical Slashdot
No 0.082 + 0.002  0.240 +0.028 - 0.214 + 0.009  0.007 £0.001 - 0.340 + 0.024 0.019 + 0.001  0.041 £0.001 -
SL 0.067 £ 0.002 - 0.268 £ 0.020 0.144 £ 0.005 0.008 + 0.001  0.201£0.013 - 0.032 £ 0.003 0.047 = 0.002
3L 0.071 = 0.003 0.266 + 0.023  0.139+0.005 - 0.007 = 0.001 0.250 + 0.010  0.014+0.002 - 0.044 = 0.001
5L 0.080 + 0.002 0.266 £ 0.025 0.140 £ 0.004 0.008 + 0.002 0.254 £ 0.011 0.015 £ 0.002 0.043 = 0.002
AL 0.086 = 0.001 0.265 £+ 0.023 0.140 £+ 0.003 0.010 = 0.003 0.253 £ 0.010 0.018 + 0.002 0.043 = 0.002
Method TMC2007 Yeast Arts Business Computers Education Entertain
No 0.139 + 0.001 0.272 £ 0.007 0.109 £ 0.004 0.090 + 0.002 0.117 £ 0.003 0.079 £ 0.002 0.123 + 0.004
SL 0.107 £ 0.001 - 0.271 £ 0.007 0.072 £ 0.002  0.050 +0.002 - 0.080 + 0.003  0.055+0.002 - 0.111 = 0.003
3L 0.125 + 0.002  0.270 +£0.005 - 0.072 £ 0.002 0.067 + 0.002  0.064 +0.003 - 0.058 + 0.002  0.078 £0.002 -
5L 0.126 + 0.001 0.273 + 0.007  0.071+0.002 - 0.069 + 0.003 0.068 = 0.003 0.058 + 0.002 0.081 + 0.002
AL 0.123 £ 0.001 0.276 £ 0.007 0.072 £ 0.002 0.070 = 0.003 0.070 £ 0.003 0.059 £ 0.002 0.081 = 0.002
Method Health Recreation Reference Science Social Society Avg. rank
No 0.073 + 0.002 0.129 + 0.005 0.097 = 0.003 0.132 + 0.004 0.077 = 0.002 0.197 + 0.003 4.20

SL 0.055 + 0.002  0.063 +0.001 - 0.079 £ 0.004 0.056 + 0.003  0.040 +0.002 - 0.173 £ 0.005 2.80

3L 0.056 = 0.001 0.073 £ 0.002  0.066 £0.003 - 0.054 +0.004 - 0.045 + 0.002 0.144 = 0.007 2.25 -

5L 0.053 +0.001 - 0.071 £ 0.002 0.070 = 0.004 0.055 = 0.003 0.051 £+ 0.002 0.135 = 0.007 2.60

AL 0.053 = 0.002 0.073 £ 0.003 0.071 £+ 0.004 0.057 = 0.003 0.052 + 0.002  0.134£0.007 - 3.15

performance among the five methods under comparison
is shown in boldface with a bullet mark. In addition,
the average rank of each method under comparison over
all the multilabel datasets is presented in the last column
of each table. Table 6 represents the Friedman statistics
Fp and the corresponding critical values on each evaluation

measure. As shown in Table 6, at significance level a=0.05,
the null hypothesis of equal performance among the methods
under comparison is clearly rejected in terms of each evalua-
tion measure.

To show the relative performance of the proposed
method and conventional multilabel learning methods,
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TaBLE 4: Multilabel accuracy (T) performance of each comparing method (mean + std. deviation) on 20 multilabel datasets.

Method BibTeX Emotions Enron Genbase LLog Medical Slashdot
No 0.191+0.006 - 0.543+0.043 - 0.196 = 0.008 0.904 + 0.019 0.037 = 0.001 0.335+0.029  0.445+0.014 -
SL 0.115 + 0.006 0.486 + 0.030 0.229 £ 0.011 0.917 £ 0.018  0.053 +0.004 - 0.517 £ 0.041 0.265 = 0.019
3L 0.171 = 0.008 0.488 + 0.036  0.236+0.009 - 0.924+0.019 - 0.044 + 0.002  0.705+0.029 - 0.345 = 0.012
5L 0.166 + 0.007 0.490 = 0.037 0.235 + 0.009 0.919 + 0.017 0.043 = 0.002 0.690 = 0.030 0.364 + 0.014
AL 0.162 £ 0.008 0.489 £ 0.036 0.235 = 0.008 0.919 = 0.019 0.043 £ 0.002 0.667 = 0.042 0.362 = 0.014
Method TMC2007 Yeast Arts Business Computers Education Entertain
No 0.395 + 0.004 0.425+0.010 - 0.328 +0.007 - 0.627 + 0.006 0.338 + 0.006  0.319+0.008 - 0.348 + 0.008
SL 0.410 = 0.005 0.414 £ 0.011 0.225 +0.018  0.666 £ 0.009 - 0.399 £ 0.013 0.233 £ 0.008 0.294 = 0.004
3L 0.417 + 0.005 0.422 = 0.010 0.281 + 0.011 0.649 + 0.008  0.434+0.007 - 0.267 + 0.008  0.405+0.004 -
5L 0.416 = 0.004 0.419 £ 0.010 0.296 + 0.009 0.648 + 0.007 0.434 + 0.008 0.269 + 0.009 0.391 = 0.009
AL 0.430 = 0.004 - 0.416 £+ 0.009 0.300 £ 0.011 0.644 = 0.008 0.431 £+ 0.009 0.268 = 0.007 0.393 + 0.010
Method Health Recreation Reference Science Social Society Avg. rank
No 0.476 = 0.006 0.343 £ 0.011 0.388 = 0.020 0.215 + 0.006 0.516 + 0.009  0.202+0.004 - 3.40

SL 0.514 + 0.004 0.294 £ 0.005 0.410 £ 0.009 0.163 = 0.016 0.480 £ 0.009 0.168 + 0.005 4.25

3L 0.516 + 0.008 0.352 £ 0.018  0.432+0.006 - 0.223 + 0.016 0.542 £ 0.011 0.185 + 0.007 2.40

5L 0.518+0.004 - 0.369 +0.006 - 0.432 + 0.008  0.229+0.010 - 0.544 +0.009 - 0.191 + 0.006 2.25 -

AL 0.516 + 0.003 0.362 = 0.010 0.431 = 0.008 0.223 + 0.014 0.544 = 0.009 0.192 + 0.006 2.70

TaBLE 5: Subset accuracy (T) performance of each comparing method (mean =+ std. deviation) on 20 multilabel datasets.

Method BibTeX Emotions Enron Genbase LLog Medical Slashdot
No 0.063 + 0.005  0.242+0.049 - 0.001 + 0.001  0.863 +0.027 - 0.000 = 0.000 0.301 + 0.027  0.357£0.016 -
SL 0.048 + 0.006 0.181 £ 0.041 0.003 £ 0.003 0.833 +0.032  0.002 +0.002 - 0.319 £ 0.042 0.233 £ 0.017
3L 0.062 + 0.006 0.186 = 0.031 0.004 = 0.004 0.842 + 0.034 0.000 + 0.000  0.551+0.041 - 0.298 + 0.015
5L 0.063 + 0.006 0.181 £ 0.035  0.005+0.005 - 0.835 + 0.030 0.000 = 0.000 0.531 + 0.038 0.311 + 0.014
AL 0.064 = 0.006 - 0.181 + 0.037  0.005+0.005 - 0.835 = 0.033 0.000 £ 0.000 0.510 £ 0.052 0.311 = 0.015
Method TMC2007 Yeast Arts Business Computers Education Entertain
No 0.086 + 0.005 0.098 = 0.007 0.164 + 0.008 0.469 + 0.014 0.138 = 0.007 0.179 + 0.008 0.171 + 0.008
SL 0.119 +0.003 - 0.093 + 0.009 0.146 + 0.018  0.504+0.013 - 0.275 £ 0.019 0.176 = 0.007 0.150 £ 0.004
3L 0.106 + 0.005  0.098 +0.010 - 0.195 + 0.011 0.490 + 0.011  0.335+0.008 - 0.192 + 0.007  0.283+0.012 -
5L 0.107 = 0.003 0.096 £ 0.009 0.203 = 0.010 0.489 = 0.011 0.332 + 0.009  0.193+£0.007 - 0.250 = 0.020
AL 0.115 + 0.004 0.093 + 0.008  0.206 £0.012 - 0.486 = 0.012 0.328 £ 0.010 0.191 £ 0.006 0.249 = 0.020
Method Health Recreation Reference Science Social Society Avg. rank
No 0.227 = 0.008 0.140 £ 0.009 0.240 £+ 0.035 0.072 = 0.006 0.402 + 0.014  0.069 +0.003 - 3.68

SL 0.336 + 0.008 - 0.223 £ 0.004 0.355 = 0.009 0.104 + 0.016 0.389 = 0.013 0.038 = 0.006 3.78

3L 0.329 = 0.009 0.269 £ 0.016 0.375 = 0.006 0.148 = 0.009 0.456 = 0.013 0.055 = 0.008 2.63

5L 0.336 = 0.006  0.285+0.008 - 0.376+0.008 - 0.158+£0.008 - 0.460 +0.012 - 0.055 £ 0.008 2.23 -

AL 0.333 + 0.006 0.284 = 0.010 0.374 + 0.008 0.151 + 0.010 0.456 + 0.011 0.055 + 0.007 2.70

the thick line indicates the extent of CD on a diagram.
Otherwise, any method not connected with the best method
is considered to have a significantly different performance
from the latter.

Based on the empirical experiments and statistical analy-
sis, the following indications can be observed:

Figure 7 illustrates the CD diagrams on each evaluation mea-
sure, where the average rank of each method is marked along
the axis with better ranks placed on the right hand side of
each figure [47]. In each figure, any comparison method
whose average rank is within one CD to that of the best
method is interconnected with a thick line; the length of
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TaBLE 6: Summary of the Friedman statistics F (k=5, N =20) and
the critical value in terms of each evaluation measure.

Evaluation measure Fp Critical value (a =0.05)
Execution time 66.011
Hamming loss 5.437

, 2.492
Multilabel accuracy 7.153
Subset accuracy 4.421

(1) AsFigure 7 shows, the multilabel learning and classifi-
cation process is significantly accelerated by the fea-
ture selection process. In particular, the multilabel
classification with SL and 3L is completed signifi-
cantly faster than No, indicating the superiority of
the proposed approach

(2) Focusing on the average rank of AL and No in
Figure 7, the advantage of multilabel feature selection
from the viewpoint of the execution time is insignifi-
cant, indicating that the merit given by feature selec-
tion process on the execution time can disappear
owing to a large number of labels

(3) As Figure 7 shows, the feature subset selected by
AL is able to deliver a statistically similar classifica-
tion performance to the baseline performance No.
This means that the dimensionality of the input
space can be reduced to accelerate the multilabel
learning process without degrading the predictive
performance

(4) The feature subset selected by the proposed
methods based on the label subset selection such
as 3L and 5L is able to deliver a comparable classi-
fication performance to the classifier if a moderate
number of labels are considered for evaluating the
importance of features

(5) A notable exception can be observed from the exper-
imental results of SL, which considers only one label
for the feature scoring process. However, it also gives
a statistically better performance than No in the
experiments involving Hamming loss and a compa-
rable performance in the experiments involving mul-
tilabel accuracy and subset accuracy

(6) Surprisingly, if a moderate number of labels are con-
sidered from the feature scoring process like 3L or 5L,
the feature subset gives statistically better discrimi-
nating power than the baseline performance given
by No. For example, in the experiments involving
Hamming loss, as shown in Table 3, 3L gives a better
Hamming loss performance than No on 85% of mul-
tilabel datasets

(7) Furthermore, based on the comparison to the
multilabel classification performance given by No,
the feature subset selected by 3L gives a better

Complexity

Hamming loss performance on 70% of multilabel
datasets. This tendency can be observed again
from the experiments involving multilabel accu-
racy based on 5L as it gives a better performance
on 80% of datasets

In summary, the experimental results show that the
proposed method based on the label subset selection strat-
egy achieves a significantly better execution time than the
baseline multilabel setting No and conventional multilabel
learning with feature selection AL, indicating that the pro-
posed method is able to accelerate the multilabel learning
process. Furthermore, the feature subset selected by the
proposed method, such as 3L and 5L, yields a similar clas-
sification performance compared to the other methods.
Because the proposed method has a lower execution time
compared to the other methods, this means that the pro-
posed method is able to quickly identify the important
feature subset, without degrading the multilabel classifica-
tion performance.

Finally, we conducted additional experiments to vali-
date the scalability and efficiency of the proposed method.
For this purpose, we employed the Delicious dataset,
which is composed of a large number of patterns and
labels [3]. Specifically, the Delicious dataset was extracted
from the del.icio.us social bookmarking site where textual
patterns and associated labels represent web pages and rel-
evant tags. This dataset is composed of 16,105 patterns,
500 features, and 983 labels from 15,806 unique label subsets.
To demonstrate the superiority of the proposed method, we
employed MLCFS [19] and PPT +RF [24]. In this experi-
ment, we regard 3L as the proposed method because it per-
forms better than SL, 5L, and AL, as shown in Figure 7.
Table 7 represents the experimental results of three multila-
bel feature selection methods, including the proposed
method. The experimental results indicate that the proposed
method outputs the final feature subset much faster than the
compared methods with similar multilabel classification per-
formances in terms of Hamming loss, multilabel accuracy,
and subset accuracy.

5. Conclusion

In this study, we proposed an efficient multilabel feature
selection method to achieve scalable multilabel learning
when the number of labels is large. Because the computa-
tional load of the multilabel learning process increases with
the increasing number of features in the input data, the
proposed method accelerates the multilabel learning pro-
cess by selecting important features to reduce the dimension-
ality of features. In addition, with regard to the multiple
labels considered for the feature scoring process, we demon-
strated that the feature selection process itself can be acceler-
ated for further acceleration of the multilabel learning
process. Furthermore, empirical experiments on 20 multila-
bel datasets showed that the multilabel learning process can
be boosted without deteriorating the discriminating power
of the multilabel classifier.
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FIGURE 7: Bonferroni-Dunn test results of five comparing methods with four evaluation measures. Methods not connected with the best
method in the CD diagram are considered to have significantly different performance (significance level o= 0.05). This is reproduced
from Lee et al. (2017) (under the Creative Commons Attribution License/public domain).

TasLE 7: Comparison results of proposed method, MLCES, and PPT + RF on the Delicious dataset.

Methods Execution time Hamming loss Multilabel accuracy Subset accuracy
Proposed method (3L) 26.6326 +0.9547 - 0.0201 # 0.0002 0.0301 + 0.0002 0.0001 * 0.0001
MLCES 144.0414 + 13.3807 0.0201 + 0.0002 0.0304 + 0.0043 0.0001 + 0.0002
PPT +RF 1556.1397 + 30.1202 0.0201 % 0.0002 0.0301 + 0.0054 0.0002 + 0.0003

Future research directions include scalability against a
large number of training examples. Although this can be
achieved by a multilabel classification approach using dis-
tributed computing [49], the performance should be tested
empirically to validate the potential. In addition, we will
investigate the multilabel learning performance with respect
to the label selection strategy. Our experiments indicate
that the feature subset selected by the proposed method
can possibly deliver a better discriminating capability,
despite only a part of the labels in a given label set being
considered for the feature scoring process. Because this
was an unexpected result, as the primary goal of this
study was the acceleration of the multilabel learning pro-
cess, we would like to investigate this issue more thor-
oughly in the future.
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