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We study the existence, uniqueness, and various kinds of Ulam–Hyers stability of the solutions to a nonlinear implicit type
dynamical problem of impulsive fractional differential equations with nonlocal boundary conditions involving Caputo derivative.
We develop conditions for uniqueness and existence by using the classical fixed point theorems such as Banach fixed point
theorem and Krasnoselskii’s fixed point theorem. For stability, we utilized classical functional analysis. Also, an example is given to
demonstrate our main theoretical results.

1. Introduction

Over the past few decades, differential equations of fractional
order have got considerable attention from the researchers
due to their significant applications in various disciplines
of science and technology. Fractional derivatives introduce
amazing instrument for the description of general properties
of different materials and processes. This is the primary
advantage of fractional derivatives in comparison with clas-
sical integer order models, in which such impacts are in
fact ignored.The advantages of fractional derivatives become
apparent in modeling mechanical and electrical properties
of real materials, as well as in the description of properties
of gases, liquids, rocks and in many other fields (see [1, 2]).
Since fractional order differential equations play important
roles in modeling real world problems related to biology,
viscoelasticity, physics, chemistry, control theory, economics,
signal and image processing phenomenon, bioengineering,
and so forth (for details, see [3–7]), it is investigated that
fractional order differential equations model real world
problems more accurately than differential equations of
integer order. The area devoted to the study of existence and
uniqueness of solutions to initial/boundary value problems

for fractional order differential equations has been studied
very well and plenty of papers are available on it in the
literature. We refer the reader to few of them in [8–14]
and the references therein. To model evolution process and
phenomena which are experienced from sudden changes
in their states, impulsive differential equations serve as a
powerful mathematical tool to model them. In daily life, we
observe several physical systems that suffer from impulsive
behavior such as the pendulum clock action, heart function,
mechanical systems subject to impacts, dynamic of system
with automatic regulation, the maintenance of a species
through periodic stocking or harvesting, the thrust impulse
maneuver of a spacecraft, control of the satellite orbit, distur-
bances in cellular neural networks, fluctuations of economical
systems, vibrations of percussive systems, and relaxational
oscillations of the electromechanical systems. For details, see
[15–23].

In some cases, nonlocal conditions are imposed instead
of local conditions. It is sometimes better to impose nonlocal
conditions since the measurements needed by a nonlocal
condition may be more precise than the measurement given
by a local condition in dynamical problems. Also, nonlocal
boundary value problems have become an expeditiously
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growing area of research. The study of this type of problems
is driven not only by a theoretical interest, but also by the
fact that several phenomena in physics, engineering, and
life sciences can be modeled in this manner, for example,
problems with feedback controls such as the steady-states of
a thermostat, where a controller at one of its ends adds or
removes heat. For more applications, see [24] and references
therein. Due to the aforesaid significant behavior, we prefer
to take nonlocal boundary conditions.

The definitions of the fractional order derivative are
not unique and there exist several definitions, including
Grunwald–Letnikov [7], Riemann–Liouville [25], Weyl–
Riesz [26], Erdlyi–Kober [27], and the Caputo [28] represen-
tation for fractional order derivative. In the Caputo case, the
derivative of a constant is zero and we can define, properly,
the initial conditions for the fractional differential equations
which can be handled by using an analogy with the classical
integer case. For these reasons, in this manuscript, we prefer
to use the Caputo fractional derivative.

Tian and Bai [29] studied the existence and uniqueness of
the following nonlinear impulsive boundary value problem:

𝑐𝐷𝜌𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) ,
𝑡 ∈ [0, 1] , 𝑡 ̸= 𝑡𝑗, 𝑗 = 1, 2, . . . , 𝑘,

Δ𝑦 (𝑡𝑗) = 𝐼𝑗 (𝑦 (𝑡𝑗)) ,
Δ𝑦󸀠 (𝑡𝑗) = 𝐼𝑗 (𝑦 (𝑡𝑗)) ,

𝑗 = 1, 2, . . . , 𝑘,
𝑦 (0) = 𝑔 (𝑦) ,
𝑦 (1) = ℎ (𝑦) ,

(1)

where 1 < 𝜌 ≤ 2, 𝑓 : [0, 1] × R → R is continuous, 𝐼𝑗, 𝐼𝑗 :
R → R are continuous, and

Δ (𝑦 (𝑡𝑗)) = 𝑦 (𝑡+𝑗 ) − 𝑦 (𝑡−𝑗 ) ,
Δ (𝑦󸀠 (𝑡𝑗)) = 𝑦󸀠 (𝑡+𝑗 ) − 𝑦󸀠 (𝑡−𝑗 )

(2)

with 𝑦(𝑡+𝑗 ), 𝑦󸀠(𝑡+𝑗 ), 𝑦(𝑡−𝑗 ), 𝑦󸀠(𝑡−𝑗 ) are the respective left and
right limits of 𝑦(𝑡𝑗) at 𝑡 = 𝑡𝑗.

In 1940, Ulam posed the following problem about the
stability of functional equations: “Under what conditions
does there exist an additive mapping near an approximately
additive mapping?” (see [30]). In the following year, Hyers
gave an answer to the problem of Ulam for additive functions
defined onBanach spaces [31]. LetB1,B2 be two real Banach
spaces and 𝜖 > 0. Then for each mapping 𝑓 : B1 → B2
satisfying

󵄩󵄩󵄩󵄩𝑓 (𝑦 + 𝑧) − 𝑓 (𝑦) − 𝑓 (𝑧)󵄩󵄩󵄩󵄩 ≤ 𝜖 (3)

for all 𝑦, 𝑧 ∈ B1, there is a unique additive mapping 𝑔 :
B1 → B2 with󵄩󵄩󵄩󵄩𝑓 (𝑦) − 𝑔 (𝑦)󵄩󵄩󵄩󵄩 ≤ 𝜖, ∀𝑦 ∈ B1. (4)

That is why the name of this stability is Ulam–Hyers stability.
Later on, Hyers results are extended by many mathemati-
cians; for details, reader may see [32–39] and the reference
therein. The mentioned stability analysis is extremely helpful
in numerous applications, for example, numerical analysis
and optimization, where it is very tough to find the exact
solution of a nonlinear problem. We notice that Ulam–Hyers
stability concept is quite significant in realistic problems in
numerical analysis, biology, and economics. The aforemen-
tioned stability has very recently attracted the attention of
researchers; we refer the reader to some papers in [40–
45]. Because fractional order system may have additional
attractive feature over the integer order system, let us suppose
the following example to showwhich one ismore stable in the
aforementioned (fractional order and integer order) systems.

Example (see [46]). We have the following two systems with
initial condition 𝑦(0) for V ∈ (0, 1),

𝑑𝑑𝑡𝑦 (𝑡) = V𝑡V−1, (5)

𝑐
0𝐷𝜌𝑡 𝑦 (𝑡) = V𝑡V−1, 0 < 𝜌 < 1. (6)

Then the analytical solutions of (5) and (6) are 𝑡V + 𝑦(0) and
VΓ(V)𝑡V+𝜌−1/Γ(V + 𝜌) + 𝑦(0), respectively. Clearly, the integer
order system (5) is unstable for any 0 < V < 1. But the
fractional dynamic system (6) is stable for each 0 < V ≤1−𝜌. So fractional order systemmay have better features than
integer order system.

Influenced from the above-mentioned work, we will
study the existence, uniqueness, and different types of
Ulam–Hyers stability of the following implicit impulsive frac-
tional order differential equations with nonlocal boundary
conditions, involving Caputo derivative

𝑐𝐷𝜌𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑐𝐷𝜌𝑦 (𝑡)) ,
𝑡 ∈ I = [0, 1] , 𝑡 ̸= 𝑡𝑗, 𝑗 = 1, 2, . . . , 𝑘,

Δ𝑦 (𝑡𝑗) = 𝐼𝑗 (𝑦 (𝑡𝑗)) ,
Δ𝑦󸀠 (𝑡𝑗) = 𝐼𝑗 (𝑦 (𝑡𝑗)) ,

𝑗 = 1, 2, . . . , 𝑘,
𝑦 (0) = 𝑔 (𝑦) ,
𝑦 (1) = ℎ (𝑦) ,

(7)

where 1 < 𝜌 ≤ 2, 𝑓 : I × R × R → R is continuous, 𝐼𝑗, 𝐼𝑗 :
R → R are continuous, and

Δ (𝑦 (𝑡𝑗)) = 𝑦 (𝑡+𝑗 ) − 𝑦 (𝑡−𝑗 ) ,
Δ (𝑦󸀠 (𝑡𝑗)) = 𝑦󸀠 (𝑡+𝑗 ) − 𝑦󸀠 (𝑡−𝑗 )

(8)

with 𝑦(𝑡+𝑗 ), 𝑦󸀠(𝑡+𝑗 ), 𝑦(𝑡−𝑗 ), 𝑦󸀠(𝑡−𝑗 ) are the respective left and
right limits of 𝑦(𝑡𝑗) at 𝑡 = 𝑡𝑗.
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The manuscript is structured as follows. In Section 2, we
give some definitions, theorems, lemmas, and remarks. In
Section 3, we built up some adequate conditions for the exis-
tence and uniqueness of solutions to the considered problem
(7) through using fixed point theorems of Krasnoselski’s and
Banach contraction type. In Section 4, we establish applicable
results under which the solution of the considered boundary
value problem (7) satisfies the conditions of different kinds of
Ulam–Hyers stability. The established results are illustrated
by an example in Section 5.

2. Background Materials and Auxiliary Results

This section is devoted to some basic definitions, theorems,
lemmas, and remarks which are useful in existence and
stability results.

Definition 1 (see [11]). For a function 𝑦 ∈ ((0,∞),R), the
Caputo derivative of fractional order 𝜌 ∈ R+ is defined as

𝑐𝐷𝜌𝑦 (𝑡) = 1Γ (𝑛 − 𝜌) ∫𝑡
0
(𝑡 − 𝜅)𝑛−𝜌−1 𝑦(𝑛) (𝜅) 𝑑𝜅,

𝑛 = [𝜌] + 1,
(9)

where [𝜌] denotes the integer part of 𝜌.
Definition 2 (see [11]). The fractional integral of order 𝜌 ∈ R+

of function 𝑦 ∈ 𝐿1(I,R+) is given by

𝐼𝜌𝑦 (𝑡) = 1Γ (𝜌) ∫𝑡
0
(𝑡 − 𝜅)𝜌−1 𝑦 (𝜅) 𝑑𝜅, (10)

where

Γ (𝜌) = ∫∞
0

𝑡𝜌−1𝑒−𝑡𝑑𝑡, 𝜌 > 0. (11)

Lemma 3 (see [11]). Let 𝜌 > 0, then the differential equations
𝑐𝐷𝜌𝑦 (𝑡) = 0 (12)

has solution given by

𝑦 (𝑡) = 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 + ⋅ ⋅ ⋅ + 𝑐𝑛−1𝑡𝑛−1,
𝑐𝑖 ∈ R, 𝑖 = 0, 1, 2, . . . , 𝑛 − 1, (13)

where 𝑛 = [𝜌] + 1.
Lemma 4 (see [11]). Let 𝜌 > 0, then the solution of the
differential equation

𝑐𝐷𝜌𝑦 (𝑡) = 𝑥 (𝑡) (14)

will be in the following form:

𝐼𝜌 [𝐷𝜌𝑦 (𝑡)] = 𝐼𝜌𝑥 (𝑡) + 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 + ⋅ ⋅ ⋅
+ 𝑐𝑛−1𝑡𝑛−1,

𝑐𝑖 ∈ R, 𝑖 = 0, 1, 2, . . . , 𝑛 − 1,
(15)

where 𝑛 = [𝜌] + 1.
Lemma 5. For 𝑡𝑗 ∈ (0, 1) such that 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑗, let
I󸀠 = I − {𝑡1, 𝑡2, . . . , 𝑡𝑗} define the space

X = {𝑦 : I 󳨀→ R : 𝑦 ∈ 𝐶 (I󸀠) 𝑎𝑛𝑑 𝑙𝑒𝑓𝑡 𝑦 (𝑡+𝑗 ) 𝑎𝑛𝑑 𝑟𝑖𝑔ℎ𝑡 𝑙𝑖𝑚𝑖𝑡 𝑦 (𝑡−𝑗 ) 𝑒𝑥𝑖𝑠𝑡 𝑎𝑛𝑑 𝑦 (𝑡−𝑗 ) = 𝑦 (𝑡𝑗) , 𝑗 ∈ [1, 𝑘]} . (16)

Then, clearly X = 𝐶2(I,R) is Banach space endowed with a
norm ‖𝑦‖ = max𝑡∈I|𝑦(𝑡)|.
Theorem 6 ((Krasnoselskii’s fixed point theorem) see [47]).
Consider U be a convex closed and nonempty subset of Banach
spaceX. SupposeF∗,G∗ be the operators such that

(i) F∗𝑥 + G∗𝑦 ∈ U whenever 𝑥, 𝑦 ∈ U;
(ii) F∗ is compact and continuous and G∗ is contraction

mapping.

Then there is 𝑤 ∈ U such that 𝑤 = F∗𝑤 + G∗𝑤.
Theorem 7 ((Banach fixed point theorem) see [47]). Suppose
S be a nonempty closed subset of a Banach spaceB. Then any
contraction mapping D from B into itself has a unique fixed
point.

Ulam Type Stability. Let 𝑧 ∈ X and 𝜖, ℘ be positive real
numbers and 𝜑 ∈ 𝐶(I,R+) a nondecreasing function. Then
the following inequalities exist:

󵄨󵄨󵄨󵄨󵄨𝑐𝐷𝜌𝑧 (𝑡) − 𝑓 (𝑡, 𝑧 (𝑡) , 𝑐𝐷𝜌𝑧 (𝑡))󵄨󵄨󵄨󵄨󵄨 ≤ 𝜖,
𝑡 ∈ I𝑗, 𝑗 = 1, 2, . . . , 𝑘;

󵄨󵄨󵄨󵄨󵄨Δ𝑧 (𝑡𝑗) − 𝐼𝑗 (𝑧 (𝑡𝑗))󵄨󵄨󵄨󵄨󵄨 ≤ 𝜖,
𝑗 = 1, 2, . . . , 𝑘;

󵄨󵄨󵄨󵄨󵄨Δ𝑧󸀠 (𝑡𝑗) − 𝐼𝑗 (𝑧 (𝑡𝑗))󵄨󵄨󵄨󵄨󵄨 ≤ 𝜖,
𝑗 = 1, 2, . . . , 𝑘,

(17)

󵄨󵄨󵄨󵄨󵄨𝑐𝐷𝜌𝑧 (𝑡) − 𝑓 (𝑡, 𝑧 (𝑡) , 𝑐𝐷𝜌𝑧 (𝑡))󵄨󵄨󵄨󵄨󵄨 ≤ 𝜑 (𝑡) ,
𝑡 ∈ I𝑗, 𝑗 = 1, 2, . . . , 𝑘;

󵄨󵄨󵄨󵄨󵄨Δ𝑧 (𝑡𝑗) − 𝐼𝑗 (𝑧 (𝑡𝑗))󵄨󵄨󵄨󵄨󵄨 ≤ ℘,
𝑗 = 1, 2, . . . , 𝑘;

󵄨󵄨󵄨󵄨󵄨Δ𝑧󸀠 (𝑡𝑗) − 𝐼𝑗 (𝑧 (𝑡𝑗))󵄨󵄨󵄨󵄨󵄨 ≤ ℘,
𝑗 = 1, 2, . . . , 𝑘,

(18)
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󵄨󵄨󵄨󵄨󵄨𝑐𝐷𝜌𝑧 (𝑡) − 𝑓 (𝑡, 𝑧 (𝑡) , 𝑐𝐷𝜌𝑧 (𝑡))󵄨󵄨󵄨󵄨󵄨 ≤ 𝜑 (𝑡) 𝜖,
𝑡 ∈ I𝑗, 𝑗 = 1, 2, . . . , 𝑘;

󵄨󵄨󵄨󵄨󵄨Δ𝑧 (𝑡𝑗) − 𝐼𝑗 (𝑧 (𝑡𝑗))󵄨󵄨󵄨󵄨󵄨 ≤ ℘𝜖,
𝑗 = 1, 2, . . . , 𝑘;

󵄨󵄨󵄨󵄨󵄨Δ𝑧󸀠 (𝑡𝑗) − 𝐼𝑗 (𝑧 (𝑡𝑗))󵄨󵄨󵄨󵄨󵄨 ≤ ℘𝜖,
𝑗 = 1, 2, . . . , 𝑘.

(19)

Definition 8 (see [48]). The considered problem (7) is
Ulam–Hyers stable, if there is a constant 𝑐𝑓,𝑘 ∈ R+ such that,
for every 𝜖 > 0 and for every solution 𝑧 ∈ X of inequality (17),
there is a unique solution 𝑦 ∈ X of the considered problem
(7) with

󵄨󵄨󵄨󵄨𝑧 (𝑡) − 𝑦 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑐𝑓,𝑘𝜖, 𝑡 ∈ I. (20)

Definition 9 (see [48]). The considered problem (7) is gen-
eralized Ulam–Hyers stable, if there is 𝜙𝑓,𝑘 ∈ 𝐶(R+,R+),𝜙𝑓,𝑘(0) = 0, such that, for every solution 𝑧 ∈ X of inequality
(17), there is a unique solution 𝑦 ∈ X of the considered
problem (7) with

󵄨󵄨󵄨󵄨𝑧 (𝑡) − 𝑦 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝜑𝑓,𝑘 (𝜖) , 𝑡 ∈ I. (21)

Definition 10 (see [48]). The considered problem (7) is
Ulam–Hyers–Rassias stable with respect to 𝜑 ∈ 𝐶(I,R+), if
there is a constant 𝑐𝑓,𝑘,𝜑 ∈ R+, such that, for every 𝜖 > 0 and
for every solution 𝑧 ∈ X of inequality (18), there is a unique
solution 𝑦 ∈ X of the considered problem (7) with

󵄨󵄨󵄨󵄨𝑧 (𝑡) − 𝑦 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑐𝑓,𝑘,𝜑𝜖𝜑 (𝑡) , 𝑡 ∈ I. (22)

Definition 11 (see [48]). The considered problem (7) is gen-
eralized Ulam–Hyers–Rassias stable with respect to 𝜑 ∈𝐶(I,R+), if there is a constant 𝑐𝑓,𝑘,𝜑 ∈ R+, such that, for every
solution 𝑧 ∈ X of inequality (19), there is a unique solution𝑦 ∈ X of the considered problem (7) with

󵄨󵄨󵄨󵄨𝑧 (𝑡) − 𝑦 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑐𝑓,𝑘,𝜑𝜑 (𝑡) , 𝑡 ∈ I. (23)

Remark 12. A function 𝑧 ∈ X is a solution of inequality (17),
if there is a function 𝜗 ∈ X and a sequence 𝜗𝑗, 𝑗 = 1, 2, . . . , 𝑘
(which depend on 𝑧 only), such that

(i) |𝜗(𝑡)| ≤ 𝜖, |𝜗𝑗| ≤ 𝜖, 𝑡 ∈ I𝑗, 𝑗 = 1, 2, . . . , 𝑘;
(ii) 𝑐𝐷𝜌𝑧(𝑡) = 𝑓(𝑡, 𝑧(𝑡), 𝑐𝐷𝜌𝑧(𝑡)) + 𝜗(𝑡), 𝑡 ∈ I𝑗, 𝑗 =1, 2, . . . , 𝑘;
(iii) Δ𝑦(𝑡𝑗) = 𝐼𝑗(𝑦(𝑡𝑗)) + 𝜗𝑗, 𝑡 ∈ I𝑗, 𝑗 = 1, 2, . . . , 𝑘;
(iv) Δ𝑦󸀠(𝑡𝑗) = 𝐼𝑗(𝑦(𝑡𝑗)) + 𝜗𝑗, 𝑡 ∈ I𝑗, 𝑗 = 1, 2, . . . , 𝑘.

Remark 13. A function 𝑧 ∈ X is a solution of inequality (18),
if there is a function 𝜗 ∈ X and a sequence 𝜗𝑗, 𝑗 = 1, 2, . . . , 𝑘
(which depend on 𝑧 only), such that

(i) |𝜗(𝑡)| ≤ 𝜑(𝑡), |𝜗𝑗| ≤ ℘, 𝑡 ∈ I𝑗, 𝑗 = 1, 2, . . . , 𝑘;
(ii) 𝑐𝐷𝜌𝑧(𝑡) = 𝑓(𝑡, 𝑧(𝑡), 𝑐𝐷𝜌𝑧(𝑡)) + 𝜗(𝑡), 𝑡 ∈ I𝑗, 𝑗 =1, 2, . . . , 𝑘;

(iii) Δ𝑦(𝑡𝑗) = 𝐼𝑗(𝑦(𝑡𝑗)) + 𝜗𝑗, 𝑡 ∈ I𝑗, 𝑗 = 1, 2, . . . , 𝑘;
(iv) Δ𝑦󸀠(𝑡𝑗) = 𝐼𝑗(𝑦(𝑡𝑗)) + 𝜗𝑗, 𝑡 ∈ I𝑗, 𝑗 = 1, 2, . . . , 𝑘.

Remark 14. A function 𝑧 ∈ X is a solution of inequality (19),
if there is a function 𝜗 ∈ X and a sequence 𝜗𝑗, 𝑗 = 1, 2, . . . , 𝑘
(which depend on 𝑧 only), such that

(i) |𝜗(𝑡)| ≤ 𝜑(𝑡)𝜖, |𝜗𝑗| ≤ ℘𝜖, 𝑡 ∈ I𝑗, 𝑗 = 1, 2, . . . , 𝑘;
(ii) 𝑐𝐷𝜌𝑧(𝑡) = 𝑓(𝑡, 𝑧(𝑡), 𝑐𝐷𝜌𝑧(𝑡)) + 𝜗(𝑡), 𝑡 ∈ I𝑗, 𝑗 =1, 2, . . . , 𝑘;
(iii) Δ𝑦(𝑡𝑗) = 𝐼𝑗(𝑦(𝑡𝑗)) + 𝜗𝑗, 𝑡 ∈ I𝑗, 𝑗 = 1, 2, . . . , 𝑘;
(iv) Δ𝑦󸀠(𝑡𝑗) = 𝐼𝑗(𝑦(𝑡𝑗)) + 𝜗𝑗, 𝑡 ∈ I𝑗, 𝑗 = 1, 2, . . . , 𝑘.

3. Main Results

Theorem 15. For 𝑥 ∈ 𝐶(I,R), the following linear boundary
value problem
𝑐𝐷𝜌𝑦 (𝑡) = 𝑥 (𝑡) ,

𝑡 ∈ I, 𝑡 ̸= 𝑡𝑗, 𝑗 = 1, 2, . . . , 𝑘, 𝜌 ∈ (1, 2] ,
Δ𝑦 (𝑡𝑗) = 𝐼𝑗 (𝑦 (𝑡𝑗)) ,
Δ𝑦󸀠 (𝑡𝑗) = 𝐼𝑗 (𝑦 (𝑡𝑗)) ,

𝑗 = 1, 2, . . . , 𝑘,
𝑦 (0) = ℎ (𝑦) ,
𝑦 (1) = 𝑔 (𝑦)

(24)

has a solution of the form

𝑦 (𝑡)
= 𝑡𝑔 (𝑦) + (1 − 𝑡) ℎ (𝑦) + 𝑘∑

𝑗=1

(𝑡 − 𝑡𝑗) 𝐼𝑗 (𝑦 (𝑡𝑗))

− 𝑘∑
𝑗=1

𝑡 (1 − 𝑡𝑗) 𝐼𝑗𝑦 (𝑡𝑗) + 𝑘∑
𝑗=1

𝐼𝑗 (𝑦 (𝑡𝑗))

− 𝑘∑
𝑗=1

𝑡𝐼𝑗𝑦 (𝑡𝑗) + 1Γ (𝜌) ∫𝑡
𝑡𝑗

(𝑡 − 𝜅)𝜌−1 𝑥 (𝜅) 𝑑𝜅

+ 1Γ (𝜌)
𝑘∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝑥 (𝜅) 𝑑𝜅

+ 1Γ (𝜌 − 1)
𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗)∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝑥 (𝜅) 𝑑𝜅

− 𝑡Γ (𝜌)
𝑘+1∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝑥 (𝜅) 𝑑𝜅

− 𝑡Γ (𝜌 − 1)
𝑘∑
𝑗=1

(1 − 𝑡𝑗)∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝑥 (𝜅) 𝑑𝜅.

(25)
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Proof. Apply Lemma 4 to the differential equation (24) with
using constants 𝑐0, 𝑐1 ∈ R, such that

𝑦 (𝑡) = 𝐼𝜌𝑥 (𝑡) − 𝑐0 − 𝑐1𝑡
= 1Γ (𝜌) ∫𝑡

0
(𝑡 − 𝜅)𝜌−1 𝑥 (𝜅) 𝑑𝜅 − 𝑐0 − 𝑐1𝑡,

𝑡 ∈ [0, 𝑡1] ,
(26)

and also
𝑦󸀠 (𝑡) = 𝐼𝜌−1𝑥 (𝑡) − 𝑐1

= 1Γ (𝜌 − 1) ∫𝑡
0
(𝑡 − 𝜅)𝜌−2 𝑥 (𝜅) 𝑑𝜅 − 𝑐1,

𝑡 ∈ [0, 𝑡1] .
(27)

Likewise, for 𝑡 ∈ (𝑡1, 𝑡2], there are 𝑑0, 𝑑1 ∈ R, such that

𝑦 (𝑡) = 1Γ (𝜌) ∫𝑡
𝑡1

(𝑡 − 𝜅)𝜌−1 𝑥 (𝜅) 𝑑𝜅 − 𝑑0
− 𝑑1 (𝑡 − 𝑡1) ,

𝑦󸀠 (𝑡) = 1Γ (𝜌 − 1) ∫𝑡
𝑡1

(𝑡 − 𝜅)𝜌−2 𝑥 (𝜅) 𝑑𝜅 − 𝑑1.
(28)

Hence, it follows that

𝑦 (𝑡−1 ) = 1Γ (𝜌) ∫𝑡1
0

(𝑡1 − 𝜅)𝜌−1 𝑥 (𝜅) 𝑑𝜅 − 𝑐0 − 𝑐1𝑡1,
𝑦 (𝑡+1 ) = −𝑑0,
𝑦󸀠 (𝑡−1 ) = 1Γ (𝜌 − 1) ∫𝑡1

0
(𝑡1 − 𝜅)𝜌−2 𝑥 (𝜅) 𝑑𝜅 − 𝑐1,

𝑦󸀠 (𝑡+1 ) = −𝑑1.

(29)

Using the following impulsive conditions

Δ𝑦 (𝑡1) = 𝑦 (𝑡+1 ) − 𝑦 (𝑡−1 ) = 𝐼1 (𝑦 (𝑡1)) ,
Δ𝑦󸀠 (𝑡1) = 𝑦󸀠 (𝑡+1 ) − 𝑦󸀠 (𝑡−1 ) = 𝐼1 (𝑦 (𝑡1)) . (30)

We obtain

−𝑑0 = 1Γ (𝜌) ∫𝑡1
0

(𝑡1 − 𝜅)𝜌−1 𝑥 (𝜅) 𝑑𝜅 − 𝑐0 − 𝑐1𝑡1
+ 𝐼1 (𝑦 (𝑡1)) ,

−𝑑1 = 1Γ (𝜌 − 1) ∫𝑡1
0

(𝑡1 − 𝜅)𝜌−2 𝑥 (𝜅) 𝑑𝜅 − 𝑐1
+ 𝐼1 (𝑦 (𝑡1)) .

(31)

Hence, we get

𝑦 (𝑡) = 1Γ (𝜌) ∫𝑡
𝑡1

(𝑡 − 𝜅)𝜌−1 𝑥 (𝜅) 𝑑𝜅
+ 1Γ (𝜌) ∫𝑡1

0
(𝑡1 − 𝜅)𝜌−1 𝑥 (𝜅) 𝑑𝜅

+ 𝑡 − 𝑡1Γ (𝜌 − 1) ∫𝑡1
0

(𝑡1 − 𝜅)𝜌−2 𝑥 (𝜅) 𝑑𝜅
+ (𝑡 − 𝑡1) 𝐼1 (𝑦 (𝑡1)) + 𝐼1 (𝑦 (𝑡1)) − 𝑐0 − 𝑐1𝑡,

𝑡 ∈ (𝑡1, 𝑡2] .
(32)

Going on the similar way, we get the following expression for
the solution 𝑦(𝑡) for 𝑡 ∈ (𝑡𝑗, 𝑡𝑗+1]:

𝑦 (𝑡)
= 1Γ (𝜌) ∫𝑡

𝑡𝑗

(𝑡 − 𝜅)𝜌−1 𝑥 (𝜅) 𝑑𝜅

+ 1Γ (𝜌)
𝑘∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝑥 (𝜅) 𝑑𝜅

+ 1Γ (𝜌 − 1)
𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗)∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝑥 (𝜅) 𝑑𝜅

+ 𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗) 𝐼𝑗 (𝑦 (𝑡𝑗)) + 𝑘∑
𝑗=1

𝐼𝑗 (𝑦 (𝑡𝑗)) − 𝑐0
− 𝑐1𝑡, 𝑡 ∈ (𝑡𝑗, 𝑡𝑗+1] , 𝑗 = 1, 2, . . . , 𝑘.

(33)

Now, by applying the nonlocal boundary conditions 𝑦(0) =𝑔(𝑦), 𝑦(1) = ℎ(𝑦) on (33) and calculating the values of 𝑐0, 𝑐1,
(25) can be obtained.

Conversely, if𝑦(𝑡) is the solution of integral equation (25),
then it is obvious that 𝑐𝐷𝜌𝑦(𝑡) = 𝑥(𝑡) and 𝑦(0) = 𝑔(𝑦), 𝑦(1) =ℎ(𝑦), Δ𝑦(𝑡𝑗) = 𝐼𝑗(𝑦(𝑡𝑗)), Δ𝑦󸀠(𝑡𝑗) = 𝐼𝑗(𝑦(𝑡𝑗)), 𝑗 = 1, 2, . . . , 𝑘.
Hence proof is completed.

We defineD : X → X by

D𝑦 (𝑡)
= 𝑡𝑔 (𝑦) + (1 − 𝑡) ℎ (𝑦) + 𝑘∑

𝑗=1

(𝑡 − 𝑡𝑗) 𝐼𝑗 (𝑦 (𝑡𝑗))

− 𝑘∑
𝑗=1

𝑡 (1 − 𝑡𝑗) 𝐼𝑗𝑦 (𝑡𝑗) + 𝑘∑
𝑗=1

𝐼𝑗 (𝑦 (𝑡𝑗))

− 𝑘∑
𝑗=1

𝑡𝐼𝑗𝑦 (𝑡𝑗) + 1Γ (𝜌) ∫𝑡
𝑡𝑗

(𝑡 − 𝜅)𝜌−1 𝑢 (𝜅) 𝑑𝜅

+ 1Γ (𝜌)
𝑘∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝑢 (𝜅) 𝑑𝜅

+ 1Γ (𝜌 − 1)
𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗)∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝑢 (𝜅) 𝑑𝜅
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− 𝑡Γ (𝜌)
𝑘+1∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝑢 (𝜅) 𝑑𝜅

− 𝑡Γ (𝜌 − 1)
𝑘∑
𝑗=1

(1 − 𝑡𝑗) ∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝑢 (𝜅) 𝑑𝜅,
(34)

where

𝑢 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑢 (𝑡)) ,
𝑢 (𝑡) = 𝑐𝐷𝜌𝑦 (𝑡) . (35)

Suppose that the following hold.

(𝐴1) For any 𝑦, 𝑧 ∈ X, there exist 𝐾𝑔, 𝐾ℎ, such that

󵄩󵄩󵄩󵄩𝑔 (𝑦) − 𝑔 (𝑧)󵄩󵄩󵄩󵄩 ≤ 𝐾𝑔 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩ℎ (𝑦) − ℎ (𝑧)󵄩󵄩󵄩󵄩 ≤ 𝐾ℎ 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩 . (36)

(𝐴2) For any 𝑦, 𝑧, 𝑥, 𝑤 ∈ R and for each 𝑡 ∈ I, there exist𝐿𝑓 > 0, 0 < 𝐾𝑓 < 1 such that

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑦, 𝑥) − 𝑓 (𝑡, 𝑧, 𝑤)󵄨󵄨󵄨󵄨 ≤ 𝐿𝑓 󵄨󵄨󵄨󵄨𝑦 − 𝑧󵄨󵄨󵄨󵄨 + 𝐾𝑓 |𝑥 − 𝑤| . (37)

(𝐴3) For 𝑦, 𝑧 ∈ R, there exist constants A,B > 0 such that
󵄨󵄨󵄨󵄨󵄨𝐼𝑗 (𝑦) − 𝐼𝑗 (𝑧)󵄨󵄨󵄨󵄨󵄨 ≤ A

󵄨󵄨󵄨󵄨𝑦 − 𝑧󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨𝐼𝑗 (𝑦) − 𝐼𝑗 (𝑧)󵄨󵄨󵄨󵄨󵄨 ≤ B
󵄨󵄨󵄨󵄨𝑦 − 𝑧󵄨󵄨󵄨󵄨 ,

𝑗 = 1, 2, . . . , 𝑘.
(38)

The following result is based on Banach contraction theorem.

Theorem 16. Under the assumptions (𝐴1)–(𝐴3) and if
(4𝑘 + 2) 𝐿𝑓

(1 − 𝐾𝑓) Γ (𝜌) + 𝐾𝑔 + 𝐾ℎ + 𝑘 (A + B) < 1, (39)

the considered problem (7) has a unique positive solution.

Proof. Suppose 𝑦, 𝑧 ∈ X and for every 𝑡 ∈ I, consider
󵄨󵄨󵄨󵄨D𝑦 (𝑡) − D𝑧 (𝑡)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨𝑦 (𝑡) − 𝑧 (𝑡)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑡𝑔 (𝑦) − 𝑡𝑔 (𝑧)󵄨󵄨󵄨󵄨

+ 󵄨󵄨󵄨󵄨(1 − 𝑡) [ℎ (𝑦) − ℎ (𝑧)]󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑘∑
𝑗=1

[(𝑡 − 𝑡𝑗) + 𝑡 (1 − 𝑡𝑗)]

⋅ [𝐼𝑗 (𝑦 (𝑡𝑗)) − 𝐼𝑗 (𝑧 (𝑡𝑗))]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑘∑
𝑗=1

(1 − 𝑡)

⋅ [𝐼𝑗 (𝑦 (𝑡𝑗)) − 𝐼𝑗𝑧 (𝑡𝑗)]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1Γ (𝜌) ∫𝑡
𝑡𝑗

(𝑡 − 𝜅)𝜌−1

⋅ [𝑢 (𝜅) − 𝑢 (𝜅)] 𝑑𝜅󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1Γ (𝜌)
⋅ 𝑘∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 [𝑢 (𝜅) − 𝑢 (𝜅)] 𝑑𝜅
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑡Γ (𝜌)

⋅ 𝑘+1∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 [𝑢 (𝜅) − 𝑢 (𝜅)] 𝑑𝜅
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1Γ (𝜌 − 1)
𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗)∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2

⋅ [𝑢 (𝜅) − 𝑢 (𝜅)] 𝑑𝜅
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑡Γ (𝜌 − 1)

𝑘∑
𝑗=1

(1 − 𝑡𝑗)

⋅ ∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 [𝑢 (𝜅) − 𝑢 (𝜅)] 𝑑𝜅
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

(40)

where
𝑢 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑢 (𝑡)) ,
𝑢 (𝑡) = 𝑓 (𝑡, 𝑧 (𝑡) , 𝑢 (𝑡)) . (41)

So 󵄩󵄩󵄩󵄩D𝑦 − D𝑧󵄩󵄩󵄩󵄩 ≤ 𝐾𝑔 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩 + 𝐾ℎ 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩
+ 𝑘 (A + B) 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩
+ 𝐿𝑓

(1 − 𝐾𝑓) Γ (𝜌 + 1) 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩
+ 𝑘𝐿𝑓

(1 − 𝐾𝑓) Γ (𝜌 + 1) 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩
+ 𝑘𝐿𝑓

(1 − 𝐾𝑓) Γ (𝜌) 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩
+ (𝑘 + 1) 𝐿𝑓

(1 − 𝐾𝑓) Γ (𝜌 + 1) 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩
+ 𝑘𝐿𝑓

(1 − 𝐾𝑓) Γ (𝜌) 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩 ,

(42)

which implies that󵄩󵄩󵄩󵄩D𝑦 − D𝑧󵄩󵄩󵄩󵄩
≤ [ (4𝑘 + 2) 𝐿𝑓

(1 − 𝐾𝑓) Γ (𝜌) + 𝐾𝑔 + 𝐾ℎ + 𝑘 (A + B)]
⋅ 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩 ,

(43)

which implies that D is contraction. Hence, the considered
problem (7) has a unique positive solution.



Complexity 7

The following result is based onKrasnoselskii’s fixed point
theorem.

Theorem 17. In addition to assumptions (𝐴1)–(𝐴3), let the
following hold.

(𝐴4) There exist constants 𝜛, 𝜇 such that
󵄨󵄨󵄨󵄨𝑔 (𝑦)󵄨󵄨󵄨󵄨 ≤ 𝜛,
󵄨󵄨󵄨󵄨ℎ (𝑦)󵄨󵄨󵄨󵄨 ≤ 𝜇

∀𝑦 ∈ X.
(44)

(𝐴5) For 𝑡 ∈ I, there exist 𝑛, 𝑜, 𝑝 ∈ 𝐶(I,R+), such that
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑦 (𝑡) , 𝑢 (𝑡))󵄨󵄨󵄨󵄨 ≤ 𝑛 (𝑡) + 𝑜 (𝑡) 󵄨󵄨󵄨󵄨𝑦 (𝑡)󵄨󵄨󵄨󵄨 + 𝑝 (𝑡) |𝑢 (𝑡)|

𝑓𝑜𝑟 𝑦, 𝑤 ∈ R. (45)

with 𝑛∗ = sup𝑡∈I𝑛(𝑡), 𝑜∗ = sup𝑡∈I𝑜(𝑡), and 𝑝∗ =
sup𝑡∈I𝑝(𝑡) < 1.

(𝐴6) The function 𝐼𝑗 : R → R is continuous and there exist
constants C∗,D∗ > 0 such that 𝑗 = 1, 2, . . . , 𝑘,

󵄨󵄨󵄨󵄨󵄨𝐼𝑗 (𝑦𝑗)󵄨󵄨󵄨󵄨󵄨 ≤ C
∗ 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨 + D

∗ 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑦 ∈ (I, 𝑅) , (46)

(𝐴7) The function 𝐼𝑗 : R → R is continuous and there exist
constants E∗, F∗ > 0 such that 𝑗 = 1, 2, . . . , 𝑘,

󵄨󵄨󵄨󵄨󵄨𝐼𝑗 (𝑦𝑗)󵄨󵄨󵄨󵄨󵄨 ≤ E
∗ 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨 + F

∗ 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑦 ∈ (I, 𝑅) . (47)

If

𝐾𝑔 + 𝐾ℎ + 𝑘 (A + B) < 1, (48)

then the considered problem (7) has at least one positive
solution.

Proof. Take |𝑓(𝑡, 𝑦(𝑡), 𝑢(𝑡))| ≤ 𝑛(𝑡)+𝑜(𝑡)|𝑦(𝑡)| +𝑝(𝑡)|𝑢(𝑡)| for𝑦, 𝑢 ∈ R, with ‖𝑦‖ ≤ 𝜉∗, where 𝜉∗ > 0, such that

R ≥ 𝜛 + 𝜇 + 𝑘 ((E∗ + C
∗) 𝜉∗ + (F∗ + D

∗))
+ (4𝑘 + 2)N0Γ (𝜌) . (49)

Construct a closed ball S ⊂ X, such that

𝑦 ∈ S = {𝑦 ∈ X : 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩 ≤ R} . (50)

Split the operatorD into two parts asD = F∗ + G∗, where

F
∗𝑦 (𝑡) = 1Γ (𝜌) ∫𝑡

𝑡𝑗

(𝑡 − 𝜅)𝜌−1 𝑓 (𝜅, 𝑦 (𝜅) , 𝑢 (𝜅)) 𝑑𝜅

+ 1Γ (𝜌)
𝑘∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝑓 (𝜅, 𝑦 (𝜅) , 𝑢 (𝜅)) 𝑑𝜅

+ 1Γ (𝜌 − 1)
𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗)

⋅ ∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝑓 (𝜅, 𝑦 (𝜅) , 𝑢 (𝜅)) 𝑑𝜅 − 𝑡Γ (𝜌)
⋅ 𝑘+1∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝑓 (𝜅, 𝑦 (𝜅) , 𝑢 (𝜅)) 𝑑𝜅

− 𝑡Γ (𝜌 − 1)
𝑘∑
𝑗=1

(1 − 𝑡𝑗)

⋅ ∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝑓 (𝜅, 𝑦 (𝜅) , 𝑢 (𝜅)) 𝑑𝜅,
G
∗𝑦 (𝑡) = 𝑡𝑔 (𝑦) + (1 − 𝑡) ℎ (𝑦)
+ 𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗) 𝐼𝑗 (𝑦 (𝑡𝑗)) − 𝑘∑
𝑗=1

𝑡 (1 − 𝑡𝑗) 𝐼𝑗𝑦 (𝑡𝑗)

+ 𝑘∑
𝑗=1

𝐼𝑗 (𝑦 (𝑡𝑗)) − 𝑘∑
𝑗=1

𝑡𝐼𝑗𝑦 (𝑡𝑗) .
(51)

ClearlyD = F∗+G∗.Nowwe show thatD𝑦 = F∗𝑦+G∗𝑦 ∈
S, for all 𝑦 ∈ S. For any 𝑦 ∈ S, we have

󵄨󵄨󵄨󵄨D𝑦 (𝑡)󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1Γ (𝜌) ∫𝑡
𝑡𝑗

(𝑡 − 𝜅)𝜌−1 𝑢 (𝜅) 𝑑𝜅

+ 1Γ (𝜌)
𝑘∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝑢 (𝜅) 𝑑𝜅

+ 1Γ (𝜌 − 1)
𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗)∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝑢 (𝜅) 𝑑𝜅

− 𝑡Γ (𝜌)
𝑘+1∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝑢 (𝜅) 𝑑𝜅

− 𝑡Γ (𝜌 − 1)
𝑘∑
𝑗=1

(1 − 𝑡𝑗)∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝑢 (𝜅) 𝑑𝜅

+ 𝑡𝑔 (𝑦) + (1 − 𝑡) ℎ (𝑦) + 𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗) 𝐼𝑗 (𝑦 (𝑡𝑗))

− 𝑘∑
𝑗=1

𝑡 (1 − 𝑡𝑗) 𝐼𝑗𝑦 (𝑡𝑗) + 𝑘∑
𝑗=1

𝐼𝑗 (𝑦 (𝑡𝑗))

− 𝑘∑
𝑗=1

𝑡𝐼𝑗𝑦 (𝑡𝑗)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

(52)

where

𝑢 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑢 (𝑡)) . (53)
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Now by (𝐴5), we have
|𝑢 (𝑡)| = 󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑦 (𝑡) , 𝑢 (𝑡))󵄨󵄨󵄨󵄨

≤ 𝑛 (𝑡) + 𝑜 (𝑡) 󵄨󵄨󵄨󵄨𝑦 (𝑡)󵄨󵄨󵄨󵄨 + 𝑝 (𝑡) |𝑢 (𝑡)|
≤ 𝑛 (𝑡) + 𝑜 (𝑡) 𝜉∗ + 𝑝 (𝑡) |𝑢 (𝑡)|
≤ 𝑛∗ + 𝑜∗𝜉∗ + 𝑝∗ ‖𝑢‖ .

(54)

Therefore, we get

‖𝑢‖ ≤ 𝑛∗ + 𝑜∗𝜉∗1 − 𝑝∗ = N0. (55)

Using (𝐴4), (𝐴6), (𝐴7) and (55) in (52), we get
󵄩󵄩󵄩󵄩D𝑦󵄩󵄩󵄩󵄩 ≤ 𝜛 + 𝜇 + 𝑘 ((E∗ + C

∗) 𝜉∗ + (F∗ + D
∗))

+ (4𝑘 + 2)N0Γ (𝜌) ≤ R. (56)

Hence, we get that |D𝑦(𝑡)| ≤ R which implies that D(S) ⊆
S. Now, for the contraction of G∗, using (𝐴1) and (𝐴3) for
any 𝑦, 𝑧 ∈ S, we have

󵄨󵄨󵄨󵄨G∗ (𝑦) − G
∗ (𝑧)󵄨󵄨󵄨󵄨

≤ 󵄨󵄨󵄨󵄨𝑔 (𝑦) − 𝑔 (𝑧)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨ℎ (𝑦) − ℎ (𝑧)󵄨󵄨󵄨󵄨
+ 𝑘∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨(𝑡 − 1) 𝑡𝑗 [𝐼𝑗 (𝑦 (𝑡𝑗)) − 𝐼𝑗𝑧 (𝑡𝑗)]󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑘∑
𝑗=1

(1 − 𝑡) [𝐼𝑗 (𝑦 (𝑡𝑗)) − 𝐼𝑗𝑧 (𝑡𝑗)]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐾𝑔 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩 + 𝐾ℎ 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩 + 𝑘 (A + B) 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩
≤ (𝐾𝑔 + 𝐾ℎ + 𝑘 (A + B)) 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩 .

(57)

Thus, G∗ will be contraction if the following assumption
holds:

𝐾𝑔 + 𝐾ℎ + 𝑘 (A + B) < 1. (58)

Next F∗ is compact. The continuity of 𝑓 implies that F∗ is
continuous. For 𝑦, 𝑢 ∈ S

󵄨󵄨󵄨󵄨F∗𝑦 (𝑡)󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1Γ (𝜌) ∫𝑡
𝑡𝑗

(𝑡 − 𝜅)𝜌−1 𝑢 (𝜅) 𝑑𝜅

+ 1Γ (𝜌)
𝑘∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝑢 (𝜅) 𝑑𝜅
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1Γ (𝜌 − 1)
𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗)∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝑢 (𝜅) 𝑑𝜅

− 𝑡Γ (𝜌)
𝑘+1∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝑢 (𝜅) 𝑑𝜅
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡Γ (𝜌 − 1)
𝑘∑
𝑗=1

(1 − 𝑡𝑗)∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝑢 (𝜅) 𝑑𝜅
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1Γ (𝜌) ∫𝑡
𝑡𝑗

(𝑡 − 𝜅)𝜌−1 𝑢 (𝜅) 𝑑𝜅

+ 1Γ (𝜌)
𝑘∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝑢 (𝜅) 𝑑𝜅
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1Γ (𝜌 − 1)
𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗)∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝑢 (𝜅) 𝑑𝜅
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡Γ (𝜌 − 1)
𝑘∑
𝑗=1

(1 − 𝑡𝑗)∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝑢 (𝜅) 𝑑𝜅
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .
(59)

By using (55), we get

󵄩󵄩󵄩󵄩F∗𝑦󵄩󵄩󵄩󵄩 ≤ (3𝑘 + 1)N0Γ (𝜌) , (60)

which indicates that F∗ is uniformly bounded on S. Let us
take a bounded subsetU of S and 𝑦 ∈ U. Then for 𝑡, 𝑡0 ∈ I

with 0 ≤ 𝑡 ≤ 𝑡0 ≤ 1, we have
󵄨󵄨󵄨󵄨F∗𝑦 (𝑡) − F

∗𝑦 (𝑡0)󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1Γ (𝜌) ∫𝑡
𝑡𝑗

(𝑡 − 𝜅)𝜌−1 𝑢 (𝜅) 𝑑𝜅

− 1Γ (𝜌) ∫𝑡0
𝑡𝑗

(𝑡0 − 𝜅)𝜌−1 𝑢 (𝜅) 𝑑𝜅

+ 1Γ (𝜌 − 1)
𝑘∑
𝑗=1

(𝑡 − 𝑡0) ∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝑢 (𝜅) 𝑑𝜅

+ (𝑡 − 𝑡0)Γ (𝜌 − 1)
𝑘∑
𝑗=1

(1 − 𝑡𝑗) ∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝑢 (𝜅) 𝑑𝜅

+ (𝑡 − 𝑡0)Γ (𝜌)
𝑘+1∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝑢 (𝜅) 𝑑𝜅
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ N0Γ (𝜌 + 1)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

𝑡𝑗

(𝑡 − 𝜅)𝜌−1 𝑑𝜅 − ∫𝑡0
𝑡𝑗

(𝑡0 − 𝜅)𝜌−1 𝑑𝜅󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ N0 (𝑡 − 𝑡0)Γ (𝜌 − 1)

𝑘∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡𝑗

𝑡𝑗−1
(𝑡𝑗 − 𝜅)𝜌−1 𝑑𝜅󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ N0 (𝑡 − 𝑡0)Γ (𝜌 − 1)
𝑘∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(1 − 𝑡𝑗)∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝑑𝜅󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ N0 (𝑡 − 𝑡0)Γ (𝜌)

𝑘+1∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡j

𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝑑𝜅󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

(61)
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where

‖𝑢‖ ≤ 𝑛∗ + 𝑜∗𝜉∗1 − 𝑝∗ = N0. (62)

Therefore, the right hand side is󵄩󵄩󵄩󵄩F∗ (𝑦 (𝑡)) − F
∗ (𝑦 (𝑡0))󵄩󵄩󵄩󵄩 󳨀→ 0 as 𝑡 󳨀→ 𝑡0. (63)

Thus,F∗ is equicontinuous and by Arzela–Ascoli’s Theorem
[49], F∗ is compact. By using Theorem 6, the considered
problem (7) has at least one positive solution.

4. Ulam Stability Results

In this section, we built up some sufficient conditions under
which problem (7) satisfies the assumptions of various kinds
of Ulam–Hyers stability.

Lemma 18. If 𝑧 ∈ X is the solution of inequality (17) and 1 <𝜌 ≤ 2, then 𝑧 is the solution of the following inequality:

|𝑧 (𝑡) − ] (𝑡)| ≤ (4𝑘 + 2𝑘Γ (𝜌) + 2
Γ (𝜌) ) 𝜖. (64)

Proof. Since 𝑧 is the solution of inequality (17), so in view of
Remark 13, we have
𝑐𝐷𝜌𝑧 (𝑡) = 𝑓 (𝑡, 𝑧 (𝑡) , 𝑐𝐷𝜌𝑧 (𝑡)) + 𝜗 (𝑡) ,

𝑡 ∈ I, 𝑡 ̸= 𝑡𝑗, 𝑗 = 1, 2, . . . , 𝑘,
Δ𝑧 (𝑡𝑗) = 𝐼𝑗 (𝑧 (𝑡𝑗)) + 𝜗𝑗, 𝑗 = 1, 2, . . . , 𝑘,
Δ𝑧󸀠 (𝑡𝑗) = 𝐼𝑗 (𝑧 (𝑡𝑗)) + 𝜗𝑗, 𝑗 = 1, 2, . . . , 𝑘,

𝑧 (0) = 𝑔 (𝑧) ,
𝑧 (1) = ℎ (𝑧) .

(65)

So the solution of (65) will be in the following form:

𝑧 (𝑡)
= 1Γ (𝜌) ∫𝑡

𝑡𝑗

(𝑡 − 𝜅)𝜌−1 𝑢 (𝜅) 𝑑𝜅
+ 1Γ (𝜌) ∫𝑡

𝑡𝑗

(𝑡 − 𝜅)𝜌−1 𝜗 (𝜅) 𝑑𝜅

+ 1Γ (𝜌)
𝑘∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝑢 (𝜅) 𝑑𝜅

+ 1Γ (𝜌)
𝑘∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝜗 (𝜅) 𝑑𝜅

+ 1Γ (𝜌 − 1)
𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗) ∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝑢 (𝜅) 𝑑𝜅

+ 1Γ (𝜌 − 1)
𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗) ∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝜗 (𝜅) 𝑑𝜅

− 𝑡Γ (𝜌)
𝑘+1∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝑢 (𝜅) 𝑑𝜅

− 𝑡Γ (𝜌)
𝑘+1∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝜗 (𝜅) 𝑑𝜅

− 𝑡Γ (𝜌 − 1)
𝑘∑
𝑗=1

(1 − 𝑡𝑗) ∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝑢 (𝜅) 𝑑𝜅

− 𝑡Γ (𝜌 − 1)
𝑘∑
𝑗=1

(1 − 𝑡𝑗) ∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝜗 (𝜅) 𝑑𝜅

+ 𝑡𝑔 (𝑧) + (1 − 𝑡) ℎ (𝑧) + 𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗) 𝐼𝑗 (𝑧 (𝑡𝑗))

+ 𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗) 𝜗𝑗 − 𝑘∑
𝑗=1

𝑡 (1 − 𝑡𝑗) 𝐼𝑗𝑧 (𝑡𝑗)

− 𝑘∑
𝑗=1

𝑡 (1 − 𝑡𝑗) 𝜗𝑗 + 𝑘∑
𝑗=1

𝐼𝑗 (𝑧 (𝑡𝑗)) + 𝑘∑
𝑗=1

𝜗𝑗

− 𝑘∑
𝑗=1

𝑡𝐼𝑗𝑧 (𝑡𝑗) − 𝑘∑
𝑗=1

𝑡𝜗𝑗,
(66)

where

𝑢 (𝑡) = 𝑓 (𝑡, 𝑧 (𝑡) , 𝑢 (𝑡)) . (67)

For convenience, we denote the sum of terms free of 𝜗 by ](𝑡),
that is,

] (𝑡)
= 1Γ (𝜌) ∫𝑡

𝑡𝑗

(𝑡 − 𝜅)𝜌−1 𝑢 (𝜅) 𝑑𝜅

+ 1Γ (𝜌)
𝑘∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝑢 (𝜅) 𝑑𝜅

+ 1Γ (𝜌 − 1)
𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗)∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝑢 (𝜅) 𝑑𝜅

+ 𝑡Γ (𝜌)
𝑘+1∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝑢 (𝜅) 𝑑𝜅

+ 𝑡Γ (𝜌 − 1)
𝑘∑
𝑗=1

(1 − 𝑡𝑗) ∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝑢 (𝜅) 𝑑𝜅

+ 𝑡𝑔 (𝑧) + (1 − 𝑡) ℎ (𝑧) + 𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗) 𝐼𝑗 (𝑧 (𝑡𝑗))
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+ 𝑘∑
𝑗=1

𝑡 (1 − 𝑡𝑗) 𝐼𝑗𝑧 (𝑡𝑗) + 𝑘∑
𝑗=1

𝐼𝑗 (𝑧 (𝑡𝑗))

+ 𝑘∑
𝑗=1

𝑡𝐼𝑗𝑧 (𝑡𝑗) .
(68)

Therefore, (66) becomes

|𝑧 (𝑡) − ] (𝑡)| ≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1Γ (𝜌) ∫𝑡
𝑡𝑗

(𝑡 − 𝜅)𝜌−1 𝜗 (𝜅) 𝑑𝜅

+ 1Γ (𝜌)
𝑘∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝜗 (𝜅) 𝑑𝜅

+ 1Γ (𝜌 − 1)
𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗)∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝜗 (𝜅) 𝑑𝜅

− 𝑡Γ (𝜌)
𝑘+1∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝜗 (𝜅) 𝑑𝜅

− 𝑡Γ (𝜌 − 1)
𝑘∑
𝑗=1

(1 − 𝑡𝑗)∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝜗 (𝜅) 𝑑𝜅

+ 𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗) 𝜗𝑗 − 𝑘∑
𝑗=1

𝑡 (1 − 𝑡𝑗) 𝜗𝑗 + 𝑘∑
𝑗=1

𝜗𝑗 − 𝑘∑
𝑗=1

𝑡𝜗𝑗
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .

(69)

By using (i) of Remark 13, we get

|𝑧 (𝑡) − ] (𝑡)| ≤ (4𝑘 + 2𝑘Γ (𝜌) + 2
Γ (𝜌) ) 𝜖. (70)

Theorem 19. Let assumptions (𝐴1)–(𝐴3) hold along with the
condition (4𝑘 + 2) 𝐿𝑓

(1 − 𝐾𝑓) Γ (𝜌) + 𝐾𝑔 + 𝐾ℎ + 𝑘 (A + B) ̸= 1. (71)

Then problem (7) will be Ulam–Hyers stable.

Proof. Suppose 𝑧 ∈ X be any solution of inequality (17) and
let 𝑦 be the unique solution of the considered problem (7),
then
𝑐𝐷𝜌𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑐𝐷𝜌𝑦 (𝑡)) ,

𝑡 ∈ I, 𝑡 ̸= 𝑡𝑗, 𝑗 = 1, 2, . . . , 𝑘,
Δ𝑦 (𝑡𝑗) = 𝐼𝑗 (𝑦 (𝑡𝑗)) ,
Δ𝑦󸀠 (𝑡𝑗) = 𝐼𝑗 (𝑦 (𝑡𝑗)) ,

𝑗 = 1, 2, . . . , 𝑘,
𝑦 (0) = 𝑔 (𝑦) ,
𝑦 (1) = ℎ (𝑦) .

(72)

Now 󵄨󵄨󵄨󵄨𝑧 (𝑡) − 𝑦 (𝑡)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨𝑧 (𝑡) − ] (𝑡) + ] (𝑡) − 𝑦 (𝑡)󵄨󵄨󵄨󵄨
≤ |𝑧 (𝑡) − ] (𝑡)| + 󵄨󵄨󵄨󵄨] (𝑡) − 𝑦 (𝑡)󵄨󵄨󵄨󵄨 . (73)

Using Lemma 18 in (73), we have

󵄨󵄨󵄨󵄨𝑧 (𝑡) − 𝑦 (𝑡)󵄨󵄨󵄨󵄨 ≤ (4𝑘 + 2𝑘Γ (𝜌) + 2
Γ (𝜌) ) 𝜖 + 1Γ (𝜌)

⋅ ∫𝑡
𝑡𝑗

(𝑡 − 𝜅)𝜌−1 󵄨󵄨󵄨󵄨𝑢 (𝜅) − 𝑞 (𝜅)󵄨󵄨󵄨󵄨 𝑑𝜅 + 1Γ (𝜌)
⋅ 𝑘∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 󵄨󵄨󵄨󵄨𝑢 (𝜅) − 𝑞 (𝜅)󵄨󵄨󵄨󵄨 𝑑𝜅 + 1Γ (𝜌 − 1)
⋅ 𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗)∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 󵄨󵄨󵄨󵄨𝑢 (𝜅) − 𝑞 (𝜅)󵄨󵄨󵄨󵄨 𝑑𝜅

+ 𝑡Γ (𝜌)
𝑘+1∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 󵄨󵄨󵄨󵄨𝑢 (𝜅) − 𝑞 (𝜅)󵄨󵄨󵄨󵄨 𝑑𝜅

+ 𝑡Γ (𝜌 − 1)
𝑘∑
𝑗=1

(1 − 𝑡𝑗)

⋅ ∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 󵄨󵄨󵄨󵄨𝑢 (𝜅) − 𝑞 (𝜅)󵄨󵄨󵄨󵄨 𝑑𝜅 + |𝑡|
⋅ 󵄨󵄨󵄨󵄨𝑔 (𝑧) − 𝑔 (𝑦)󵄨󵄨󵄨󵄨 + |(1 − 𝑡)| 󵄨󵄨󵄨󵄨ℎ (𝑧) − ℎ (𝑦)󵄨󵄨󵄨󵄨
+ 𝑘∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨(𝑡 − 𝑡𝑗)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝐼𝑗 (𝑧 (𝑡𝑗)) − 𝐼𝑗 (𝑦 (𝑡𝑗))󵄨󵄨󵄨󵄨󵄨

+ 𝑘∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑡 (1 − 𝑡𝑗)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝐼𝑗 (𝑧 (𝑡𝑗)) − 𝐼𝑗 (𝑦 (𝑡𝑗))󵄨󵄨󵄨󵄨󵄨

+ 𝑘∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝐼𝑗 (𝑧 (𝑡𝑗)) − 𝐼𝑗 (𝑦 (𝑡𝑗))󵄨󵄨󵄨󵄨󵄨

+ 𝑘∑
𝑗=1

|𝑡| 󵄨󵄨󵄨󵄨󵄨𝐼𝑗 (𝑧 (𝑡𝑗)) − 𝐼𝑗 (𝑦 (𝑡𝑗))󵄨󵄨󵄨󵄨󵄨 ,

(74)

for 𝑢, 𝑞 ∈ X, where

𝑢 (𝑡) = 𝑓 (𝑡, 𝑧 (𝑡) , 𝑢 (𝑡)) ,
𝑞 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑞 (𝑡)) . (75)

Now by (𝐴2), we have󵄨󵄨󵄨󵄨𝑢 (𝑡) − 𝑞 (𝑡)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑧 (𝑡) , 𝑢 (𝑡)) − 𝑓 (𝑡, 𝑦 (𝑡) , 𝑞 (𝑡))󵄨󵄨󵄨󵄨
≤ 𝐿𝑓 󵄨󵄨󵄨󵄨𝑧 (𝑡) − 𝑦 (𝑡)󵄨󵄨󵄨󵄨 + 𝐾𝑓 󵄨󵄨󵄨󵄨𝑢 (𝑡) − 𝑞 (𝑡)󵄨󵄨󵄨󵄨 . (76)

So, we obtain

󵄨󵄨󵄨󵄨𝑢 (𝑡) − 𝑞 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝐾𝑓1 − 𝐿𝑓
󵄨󵄨󵄨󵄨𝑧 (𝑡) − 𝑦 (𝑡)󵄨󵄨󵄨󵄨 . (77)
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Using (𝐴1), (𝐴3) and (77) in (74), so for every 𝑡 ∈ I, we get
the following:

󵄩󵄩󵄩󵄩𝑧 − 𝑦󵄩󵄩󵄩󵄩 ≤ (4𝑘 + 2𝑘Γ (𝜌) + 2
Γ (𝜌) ) 𝜖

+ 𝐿𝑓
(1 − 𝐾𝑓) Γ (𝜌 + 1) 󵄩󵄩󵄩󵄩𝑧 − 𝑦󵄩󵄩󵄩󵄩

+ 𝑘𝐿𝑓
(1 − 𝐾𝑓) Γ (𝜌 + 1) 󵄩󵄩󵄩󵄩𝑧 − 𝑦󵄩󵄩󵄩󵄩

+ 𝑘𝐿𝑓
(1 − 𝐾𝑓) Γ (𝜌) 󵄩󵄩󵄩󵄩𝑧 − 𝑦󵄩󵄩󵄩󵄩

+ (𝑘 + 1) 𝐿𝑓
(1 − 𝐾𝑓) Γ (𝜌 + 1) 󵄩󵄩󵄩󵄩𝑧 − 𝑦󵄩󵄩󵄩󵄩

+ 𝑘𝐿𝑓
(1 − 𝐾𝑓) Γ (𝜌) 󵄩󵄩󵄩󵄩𝑧 − 𝑦󵄩󵄩󵄩󵄩 + 𝐾𝑔 󵄩󵄩󵄩󵄩𝑧 − 𝑦󵄩󵄩󵄩󵄩

+ 𝐾ℎ 󵄩󵄩󵄩󵄩𝑧 − 𝑦󵄩󵄩󵄩󵄩 + 𝑘 (A + B) 󵄩󵄩󵄩󵄩𝑧 − 𝑦󵄩󵄩󵄩󵄩 .
(78)

After simplification, we obtain

󵄩󵄩󵄩󵄩𝑧 − 𝑦󵄩󵄩󵄩󵄩 ≤ [ (4𝑘 + 2𝑘Γ (𝜌) + 2) /Γ (𝜌)
1 − ((4𝑘 + 2) 𝐿𝑓/ (1 − 𝐾𝑓) Γ (𝜌) + 𝐾𝑔 + 𝐾ℎ + 𝑘 (A + B))] 𝜖. (79)

Hence, we have 󵄨󵄨󵄨󵄨𝑧 (𝑡) − 𝑦 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑐𝑓,𝑘𝜖, (80)
where
𝑐𝑓,𝑘
= (4𝑘 + 2𝑘Γ (𝜌) + 2) /Γ (𝜌)

1 − ((4𝑘 + 2) 𝐿𝑓/ (1 − 𝐾𝑓) Γ (𝜌) + 𝐾𝑔 + 𝐾ℎ + 𝑘 (A + B)) , (81)

with (4𝑘 + 2) 𝐿𝑓
(1 − 𝐾𝑓) Γ (𝜌) + 𝐾𝑔 + 𝐾ℎ + 𝑘 (A + B) ̸= 1. (82)

Thus, problem (7) is Ulam–Hyers stable.

Remark 20. By setting 𝜙𝑓,𝑘(𝜖) = 𝑐𝑓,𝑘𝜖, 𝜙𝑓,𝑘(0) = 0 in (80),
then byDefinition 9 the considered problem (7) is generalized
Ulam–Hyers stable.

(𝐴8) Suppose a function 𝜑 ∈ (I,R+), which is increasing.
Then there is 𝜂𝜑 > 0, such that, for every 𝑡 ∈ I, the
following integral inequality

𝐼𝜌𝜑 (𝑡) ≤ 𝜂𝜑𝜑 (𝑡) accordingly 𝐼𝜌−1𝜑 (𝑡) ≤ 𝜂𝜑𝜑 (𝑡) (83)

holds.

Lemma 21. Let assumption (𝐴8) hold and suppose 𝑧 ∈ X is
the solution of inequality (18), then 𝑧 will be the solution of the
following integral inequality:

|𝑧 (𝑡) − ] (𝑡)| ≤ ((4𝑘 + 2) 𝜂𝜑 + 2𝑘℘) 𝜑 (𝑡) 𝜖. (84)

Proof. From Lemma 18, we have

|𝑧 (𝑡) − ] (𝑡)| ≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1Γ (𝜌) ∫𝑡
𝑡𝑗

(𝑡 − 𝜅)𝜌−1 𝜗 (𝜅) 𝑑𝜅

+ 1Γ (𝜌)
𝑘∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝜗 (𝜅) 𝑑𝜅

+ 1Γ (𝜌 − 1)
𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗) ∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝜗 (𝜅) 𝑑𝜅

− 𝑡Γ (𝜌)
𝑘+1∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 𝜗 (𝜅) 𝑑𝜅

− 𝑡Γ (𝜌 − 1)
𝑘∑
𝑗=1

(1 − 𝑡𝑗)∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 𝜗 (𝜅) 𝑑𝜅

+ 𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗) 𝜗𝑗 − 𝑘∑
𝑗=1

𝑡 (1 − 𝑡𝑗) 𝜗𝑗 + 𝑘∑
𝑗=1

𝜗𝑗 − 𝑘∑
𝑗=1

𝑡𝜗𝑗
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .
(85)

By Remark 14 and (𝐴8), we obtain
|𝑧 (𝑡) − ] (𝑡)| ≤ 𝜂𝜑𝜑 (𝑡) 𝜖 + 𝑘𝜂𝜑𝜑 (𝑡) 𝜖 + 𝑘𝜂𝜑𝜑 (𝑡) 𝜖

+ (𝑘 + 1) 𝜂𝜑𝜑 (𝑡) 𝜖 + 𝑘𝜂𝜑𝜑 (𝑡) 𝜖
+ 2𝑘℘𝜖.

(86)

Hence, we have

|𝑧 (𝑡) − ] (𝑡)| ≤ ((4𝑘 + 2) 𝜂𝜑 + 2𝑘℘) 𝜑 (𝑡) 𝜖. (87)

Theorem 22. Suppose assumptions (𝐴1)–(𝐴3), (𝐴5), and
(𝐴8) with

(4𝑘 + 2) 𝐿𝑓
(1 − 𝐾𝑓) Γ (𝜌) + 𝐾𝑔 + 𝐾ℎ + 𝑘 (A + B) ̸= 1 (88)

hold. Then the considered problem (7) will be Ulam–Hyers–
Rassias stable.
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Proof. Suppose 𝑧 ∈ X be any solution of inequality (17) and𝑦 be the unique solution of the considered problem (7), then
from (73)

󵄨󵄨󵄨󵄨𝑧 (𝑡) − 𝑦 (𝑡)󵄨󵄨󵄨󵄨 ≤ |𝑧 (𝑡) − ] (𝑡)| + 󵄨󵄨󵄨󵄨] (𝑡) − 𝑦 (𝑡)󵄨󵄨󵄨󵄨 . (89)

Now using Lemma 21 in (89), we obtain

󵄨󵄨󵄨󵄨𝑧 (𝑡) − 𝑦 (𝑡)󵄨󵄨󵄨󵄨 ≤ ((4𝑘 + 2) 𝜂𝜑 + 2𝑘℘) 𝜑 (𝑡) 𝜖 + 1Γ (𝜌)
⋅ ∫𝑡
𝑡𝑗

(𝑡 − 𝜅)𝜌−1 󵄨󵄨󵄨󵄨𝑢 (𝜅) − 𝑞 (𝜅)󵄨󵄨󵄨󵄨 𝑑𝜅 + 1Γ (𝜌)
⋅ 𝑘∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 󵄨󵄨󵄨󵄨𝑢 (𝜅) − 𝑞 (𝜅)󵄨󵄨󵄨󵄨 𝑑𝜅 + 1Γ (𝜌 − 1)
⋅ 𝑘∑
𝑗=1

(𝑡 − 𝑡𝑗)∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 󵄨󵄨󵄨󵄨𝑢 (𝜅) − 𝑞 (𝜅)󵄨󵄨󵄨󵄨 𝑑𝜅

+ 𝑡Γ (𝜌)
𝑘+1∑
𝑗=1

∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−1 󵄨󵄨󵄨󵄨𝑢 (𝜅) − 𝑞 (𝜅)󵄨󵄨󵄨󵄨 𝑑𝜅

+ 𝑡Γ (𝜌 − 1)
𝑘∑
𝑗=1

(1 − 𝑡𝑗)

⋅ ∫𝑡𝑗
𝑡𝑗−1

(𝑡𝑗 − 𝜅)𝜌−2 󵄨󵄨󵄨󵄨𝑢 (𝜅) − 𝑞 (𝜅)󵄨󵄨󵄨󵄨 𝑑𝜅 + |𝑡|
⋅ 󵄨󵄨󵄨󵄨𝑔 (𝑧) − 𝑔 (𝑦)󵄨󵄨󵄨󵄨 + |(1 − 𝑡)| 󵄨󵄨󵄨󵄨ℎ (𝑧) − ℎ (𝑦)󵄨󵄨󵄨󵄨
+ 𝑘∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨(𝑡 − 𝑡𝑗)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝐼𝑗 (𝑧 (𝑡𝑗)) − 𝐼𝑗 (𝑦 (𝑡𝑗))󵄨󵄨󵄨󵄨󵄨

+ 𝑘∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑡 (1 − 𝑡𝑗)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝐼𝑗 (𝑧 (𝑡𝑗)) − 𝐼𝑗 (𝑦 (𝑡𝑗))󵄨󵄨󵄨󵄨󵄨

+ 𝑘∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝐼𝑗 (𝑧 (𝑡𝑗)) − 𝐼𝑗 (𝑦 (𝑡𝑗))󵄨󵄨󵄨󵄨󵄨

+ 𝑘∑
𝑗=1

|𝑡| 󵄨󵄨󵄨󵄨󵄨𝐼𝑗 (𝑧 (𝑡𝑗)) − 𝐼𝑗 (𝑦 (𝑡𝑗))󵄨󵄨󵄨󵄨󵄨 ,
(90)

for 𝑢, 𝑞 ∈ X, where

𝑢 (𝑡) = 𝑓 (𝑡, 𝑧 (𝑡) , 𝑢 (𝑡)) ,
𝑞 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑞 (𝑡)) . (91)

Using (𝐴1)–(𝐴3) and (𝐴5) likewise inTheorem 19, so (90)
becomes

󵄩󵄩󵄩󵄩𝑧 − 𝑦󵄩󵄩󵄩󵄩 ≤ ((4𝑘 + 2) 𝜂𝜑 + 2𝑘℘) 𝜑 (𝑡) 𝜖
+ 𝐿𝑓

(1 − 𝐾𝑓) Γ (𝜌 + 1) 󵄩󵄩󵄩󵄩𝑧 − 𝑦󵄩󵄩󵄩󵄩

+ 𝑘𝐿𝑓
(1 − 𝐾𝑓) Γ (𝜌 + 1) 󵄩󵄩󵄩󵄩𝑧 − 𝑦󵄩󵄩󵄩󵄩

+ 𝑘𝐿𝑓
(1 − 𝐾𝑓) Γ (𝜌) 󵄩󵄩󵄩󵄩𝑧 − 𝑦󵄩󵄩󵄩󵄩

+ (𝑘 + 1) 𝐿𝑓
(1 − 𝐾𝑓) Γ (𝜌 + 1) 󵄩󵄩󵄩󵄩𝑧 − 𝑦󵄩󵄩󵄩󵄩

+ 𝑘𝐿𝑓
(1 − 𝐾𝑓) Γ (𝜌) 󵄩󵄩󵄩󵄩𝑧 − 𝑦󵄩󵄩󵄩󵄩 + 𝐾𝑔 󵄩󵄩󵄩󵄩𝑧 − 𝑦󵄩󵄩󵄩󵄩

+ 𝐾ℎ 󵄩󵄩󵄩󵄩𝑧 − 𝑦󵄩󵄩󵄩󵄩 + 𝑘 (A + B) 󵄩󵄩󵄩󵄩𝑧 − 𝑦󵄩󵄩󵄩󵄩 .

(92)

After arrangement, we obtain the following:

󵄩󵄩󵄩󵄩𝑧 − 𝑦󵄩󵄩󵄩󵄩 ≤ [ (4𝑘 + 2) 𝜂𝜑 + 2𝑘℘
1 − ((4𝑘 + 2) 𝐿𝑓/ (1 − 𝐾𝑓) Γ (𝜌) + 𝐾𝑔 + 𝐾ℎ + 𝑘 (A + B))] 𝜑 (𝑡) 𝜖. (93)

Hence, we have 󵄨󵄨󵄨󵄨𝑧 (𝑡) − 𝑦 (𝑡)󵄨󵄨󵄨󵄨 ≤ 𝑐𝑓,𝑘,𝜑𝜑 (𝑡) 𝜖, (94)

where
𝑐𝑓,𝑘,𝜑
= (4𝑘 + 2) 𝜂𝜑 + 2𝑘℘

1 − ((4𝑘 + 2) 𝐿𝑓/ (1 − 𝐾𝑓) Γ (𝜌) + 𝐾𝑔 + 𝐾ℎ + 𝑘 (A + B)) ,
(4𝑘 + 2) 𝐿𝑓

(1 − 𝐾𝑓) Γ (𝜌) + 𝐾𝑔 + 𝐾ℎ + 𝑘 (A + B) ̸= 1.
(95)

Hence, the considered problem (7) is Ulam–Hyers–Rassias
stable.

Remark 23. If we plug 𝜖 = 1 in (94), then by Defi-
nition 11 the considered problem (7) will be generalized
Ulam–Hyers–Rassias stable.

5. Example

Consider the following implicit impulsive fractional differen-
tial equations with nonlocal boundary conditions.
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Example 1.

𝑐𝐷4/3𝑦 (𝑡) = 󵄨󵄨󵄨󵄨𝑦 (𝑡)󵄨󵄨󵄨󵄨30 (𝑡 + 2) (1 + 󵄨󵄨󵄨󵄨𝑦 (𝑡)󵄨󵄨󵄨󵄨)
+ cos 󵄨󵄨󵄨󵄨󵄨𝑐𝐷4/3𝑦 (𝑡)󵄨󵄨󵄨󵄨󵄨30 + 𝑡2 , 𝑡 ∈ [0, 1] , 𝑡 ̸= 12 ,

𝑦 (0) = 𝑔 (𝑦) = 𝑘∑
𝑗=1

𝑎𝑗𝑦 (𝜉𝑗) ,

𝑢 (1) = ℎ (𝑢) = 𝑘∑
𝑗=1

𝑏𝑗𝑦 (𝜂𝑗) ,

Δ𝑦 (12) = 𝐼𝑦 (12) = 󵄨󵄨󵄨󵄨𝑦 (1/2)󵄨󵄨󵄨󵄨60 + 󵄨󵄨󵄨󵄨𝑦 (1/2)󵄨󵄨󵄨󵄨 ,
Δ𝑦󸀠 (12) = 𝐼𝑦 (12) = 󵄨󵄨󵄨󵄨𝑦 (1/2)󵄨󵄨󵄨󵄨30 + 󵄨󵄨󵄨󵄨𝑦 (1/2)󵄨󵄨󵄨󵄨 ,

(96)

where ∑𝑘𝑗=1 𝑎𝑗 < 10−1, ∑𝑘𝑗=1 𝑏𝑗 < 10−1, and 𝜉𝑗, 𝜂𝑗 ∈ (0, 1),𝜉, 𝜂 ̸= 1/2.
For 𝑦, 𝑧 ∈ 𝑋, we have

󵄨󵄨󵄨󵄨𝑔 (𝑦) − 𝑔 (𝑧)󵄨󵄨󵄨󵄨 ≤ 110 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩 ,
󵄨󵄨󵄨󵄨ℎ (𝑦) − ℎ (𝑧)󵄨󵄨󵄨󵄨 ≤ 110 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩 .

(97)

Hence, (𝐴1) is satisfied with 𝐾𝑔 = 1/10 and 𝐾ℎ = 1/10.
Now for any 𝑦, 𝑦, 𝑧, 𝑧 ∈ R, 𝑡 ∈ I, we get

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑦, 𝑧) − 𝑓 (𝑡, 𝑦, 𝑧)󵄨󵄨󵄨󵄨 ≤ 130 󵄩󵄩󵄩󵄩𝑦 − 𝑦󵄩󵄩󵄩󵄩 + 130 ‖𝑧 − 𝑧‖ , (98)

so (𝐴2) is satisfied with 𝐿𝑓 = 𝐾𝑓 = 1/30.
Also, for 𝑦, 𝑧 ∈ R, we have

󵄨󵄨󵄨󵄨𝐼 (𝑦) − 𝐼 (𝑧)󵄨󵄨󵄨󵄨 ≤ 160 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩 ,
󵄨󵄨󵄨󵄨󵄨𝐼 (𝑦) − 𝐼 (𝑧)󵄨󵄨󵄨󵄨󵄨 ≤ 130 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩 .

(99)

Hence, (𝐴3) is also satisfied with A = 1/60 and B = 1/30.
Therefore, we can see for 𝐾𝑔 = 1/10, 𝐾ℎ = 1/10, A =1/60, B = 1/30, 𝑘 = 1, 𝜌 = 4/3, and 𝐿𝑓 = 𝐾𝑓 = 1/30
(4𝑘 + 2) 𝐿𝑓

(1 − 𝐾𝑓) Γ (𝜌) + 𝑘 (A + B) + 𝐾𝑔 + 𝐾ℎ ≈ 0.44308
< 1.

(100)

Thus, condition (39) is satisfied. So problem (96) has a unique
positive solution.

Furthermore, 𝑐𝑓,𝑘 > 0 with condition (17) holds and

(4𝑘 + 2) 𝐿𝑓
(1 − 𝐾𝑓) Γ (𝜌) + 𝑘 (A + B) + 𝐾𝑔 + 𝐾ℎ ≈ 0.44308

̸= 1.
(101)

So by Theorem 19 problem (96) is Ulam–Hyers stable and
by Remark 20, it will be generalized Ulam–Hyers stable.
Also by demonstrating the conditions of Theorem 22 and
Remark 23, it can be easily seen that the considered prob-
lem (96) is Ulam–Hyers–Rassias stable and generalized
Ulam–Hyers–Rassias stable.

6. Conclusion

We have successfully built up some proper conditions for
existence theory of implicit impulsive fractional order dif-
ferential equations with nonlocal boundary conditions, by
using different kinds of fixed point theorems which are
stated in Section 2. The concerned theorems ensure the
existence and uniqueness of solution. Further, we did settle
some adequate conditions for different kinds of Ulam–Hyers
stability (see Theorems 19 and 22 with Remarks 20 and
23, respectively) by using Definitions 8–11. The mentioned
stability is rarely investigated for implicit impulsive fractional
differential equations and also very important. Finally, we
illustrated the main results by giving a suitable example.
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