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A fractal tiling or f -tiling is a tiling which possesses self-similarity and the boundary of which is a fractal. f -tilings have complicated
structures and strong visual appeal. However, so far, the discovered f -tilings are very limited since constructing such f -tilings needs
special talent. Based on the idea of hierarchically subdividing adjacent tiles, this paper presents a general method to generate
f -tilings. Penrose tilings are utilized as illustrators to show how to achieve it in detail. This method can be extended to treat a
large number of tilings that can be constructed by substitution rule (such as chair and sphinx tilings and Amman tilings).
Thus, the proposed method can be used to create a great many of f -tilings.

1. Introduction

In many ways, the investigation of tilings is one of the most
ancient parts of mathematics. They were considered by
ancient Greeks and Muslim states to create decorative arts.
In fact, the trace of tilings can be found in almost all ancient
countries [1]. However, the rigorous mathematical study of
tilings is comparatively recent, and many aspects of them
remain unexplored [2]. With the deepening of research, the
subject of tilings has become a vibrant branch of mathemat-
ics which shows a close relationship with algebra, combina-
torics, cohomology, dynamical system, and so on [2–4].

The traditional tiling is defined as a countable family of
closed tiles which cover the Euclidean plane without gaps
or overlaps. Compared conventional tilings, several families
of tilings discovered by Fathauer are visually attractive
[5–9]. Those tilings possess self-similarity and the boundary
of which are fractals. Therefore, there exists an essential
difference between this kind of tilings and conventional
tilings. To avoid confusion with the standard definition of
tilings that use standard fractals as tiles [10–14], such
tilings are referred to as “f -tilings.”

The combination of fractals and tilings has strong visual
appeal. A glance of f -tilings exhibited in Figure 1 might
explain the reason very well. Moreover, arts based on
f -tilings look more visually pleasing (see two designs

demonstrated in Figure 2) [15]. Due to their aesthetic attrac-
tion, f -tilings have attracted much attention. For example,
using matrix tool, Ouyang et al. developed a general way to
derive the analytical expression of f -tilings’ dimension [16].
According to f -tilings’ symmetrical structures, [17, 18] estab-
lished automatic algorithms to produce aesthetic patterns on
two families of f -tilings (see examples shown in Figure 3).

Though f -tilings have apparent aesthetic value, so far,
the discovered f -tilings are very limited. It can be under-
stood that constructing f -tilings needs special talent. Does
there exist a general method to create f -tilings. Well, we
believe it is a quite attractive question. Here, we present a
simple method that can be used to create a large number
of f -tilings. We will use Penrose tilings to illustrate how
to achieve it.

The subject of Penrose tilings has attracted much
attention since Roger Penrose discovered them [19] and has
been investigated extensively [20]. It is a simple but remark-
able tiling used in demonstrating aperiodicity. Refs. [21, 22]
summarize the key progress and discovery related to
aperiodic tilings. Through efforts of nearly half a century,
an exciting progress of aperiodic tilings is the discovery of
an aperiodic tiling which contains only one tile [21]. On the
other hand, the aesthetic value of Penrose tilings has long
been appreciated and remains a source of interest [15, 23].
In this paper, we propose a new method to explore its beauty.
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(a) (b) (c) (d)

Figure 1: (a–c) Three examples f -tilings. (d) Boundary details of (c).

Figure 2: Two drawings based on f -tilings. Pictures are courtesy of Robert Fathauer.

(a) (b)

Figure 3: Two computer-generated aesthetic patterns based on f -tilings. The upper picture courtesy of H.M. Ma.
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The rest of this paper is organized as follows. Section 2
reviews the substitution rule of Penrose tilings. Based on
the rule, Section 3 establishes a recursive algorithm to
construct f -tilings. For tilings that can be generated by sub-
stitution rule (such as chair and sphinx tilings and Amman
tilings), our method can be easily extended to them and
create a great many of f -tilings. Section 4 attempts several
ways to yield f -tilings and presents a gallery of the rich
variety of f -tilings. Finally, conclusions are summarized
in Section 5.

2. Substitution Rules of Penrose Tilings

There are several popular methods used in constructing
Penrose tilings, such as substitution [2, 20, 24], projection
[25, 26], and grid methods [26, 27]. For later application,
we only introduce the substitution method. It works by
taking a tile, or patch, expanding it, and then replacing the
larger tiles by copies of the original tiles. The tiles are always
replaced in the same way.

Penrose tilings include three types: the original Penrose
pentagonal tiling (P1), kite and dart tiling (P2), and rhombus
tiling (P3). They have many common features. For example,
in each case, the tiles are constructed from shapes related to
the pentagon; in order to tile Euclidean plane aperiodically,
the basic tiles need to be supplemented by matching rules.
In particularly, P2 and P3 tilings have significant aesthetic
appearance. For this reason, we only focus on the substitu-
tion method of P2 and P3 tilings. We start by recalling some
basic terminologies.

A tilingT in the Euclidean plane ℝ2 is a set of interior-
closed tiles T1, T2,… such that tiles only intersect at
boundaries and the union of all tiles constitutes the entire
Euclidean plane ℝ2. A set S of tiles is called the protoset for
T if any tile of T is congruent to a tile of S. Assume T is a
tiling of protoset S, then we say SadmitsT . A tiling is called
edge to edge if corners and sides of the tiles coincide with
the vertices and edges of the tiling. A tiling T is said to be
nonperiodic if it admits no translations. A protoset is said to
be aperiodic if it admits only nonperiodic tilings. A tiling with
aperiodic protoset is called aperiodic tiling.

Penrose tilings are the best-known examples of aperiodic
tilings. It could be easily constructed by means of substitution
rule. A substitution rule is defined by three components:
first, a protoset S; second, an expansion constant ϑ > 1; last,

partition rules with respect to the inflated prototiles of S so
that the subdivided smaller tiles congruent to the tiles of S.

For clarity, the substitution rules of P2 and P3 tilings are
described separately in Subsection 2.1 and Subsection 2.2.

2.1. Substitution Rules of P2 Tiling Admitted by Kite and Dart
Tiles. The protoset of P2 tiling has the following two kinds
of tiles:

(i) Kite: a quadrilateral with four interior angles which
are 2π/5, 2π/5, 2π/5, and 4π/5. Two sides of length
τ = 5 + 1 /2 and two sides of length 1, as shown
in the left of Figure 4(a).

(ii) Dart: a nonconvex quadrilateral with four interior
angles which are π/5, 2π/5, π/5, and 6π/5, as shown
in the right of Figure 4(a).

The kite and dart tiles may be bisected along their sym-
metrical axes to form two pairs of triangles. The larger acute
triangle is called A-tile, in which there are two sides of length
τ and one side of length 1, referring to the left of Figure 4(a).
The smaller obtuse triangle is called B-tile, in which there are
two sides of length 1 and one side of length τ, referring to the
right of Figure 4(a). Each vertex of A-tile or B-tile is marked
with either a small solid or an open circle. A monochromatic
edge is an oriented edge connecting two vertices of the same
kind of circle.

To construct P2 tiling, kite and dart tiles must be
arranged by the following matching rules: (1) the circle type
of a vertex must be the same; (2) edges of the same length
must be put together; (3) the monochromatic edges of
adjacent tiles must be oriented in the same direction. In
practice, directly using matching rules to construct a P2
tiling is very difficult. We subsequently describe successive
inflation and substitution method to achieve it.

Place an A-tile (B-tile) on the Descartes coordinate
system as shown in Figure 5(a) (Figure 5(d)). (1) Inflate
the A-tile (B-tile) τ times as τA-tile (τB-tile). (2) Use the
substitution rule shown in the left of Figure 4(b) (the right
of Figure 4(b)) to subdivide the inflated tile, which gives
raise to the result of Figure 5(b) (Figure 5(e)). (3) First,
reflect A-tile (B-tile) about the x-axis, then repeatedly
rotate it about the origin of 2π/5 to form a ten-sided reg-
ular polygon (star-shaped polygon). (4) Successive inflation
and substitution of patches of tiles will eventually tile
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Figure 4: (a) Kite and dart prototiles used in constructing P2 tiling. (b) Partition rules of A-tile and B-tile associated with P2 tiling.
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Euclidean planeℝ2. (5) A P2 tiling is obtained by deleting the
monochromatic edges which appeared in the process of
successive inflation and substitution. Figure 5 demonstrates
the first and second inflation and substitution processes with
respect to A-tile and B-tile of P2 tiling. The left of Figure 6
shows a P2 tiling obtained in this manner.

The difference of using A-tile or B-tile is that, during
the successive inflation and substitution, the center of a
P2 tiling will alternately appear a ten-sided regular polygon
or star-shaped polygon.

2.2. Substitution Rules of P3 Tiling Admitted by Thin and
Thick Rhombuses. The protoset of P3 tiling comprises a pair
of rhombuses with equal sides of length τ but different angles:

(i) Thin rhombus: a rhombus which has four corners
with angles of π/5, 4π/5, π/5, and 4π/5, as shown in
the left of Figure 7(a).

(ii) Thick rhombus: a rhombus which has the angles
of 2π/5, 3π/5, 2π/5, and 3π/5, as shown in the
right of Figure 7(a).

These two rhombuses can also be bisected along their
symmetrical axes to form two pairs of triangles which are
the same as the case of P2 tiling. Again, the larger acute
triangle is denoted as A-tile, but the smaller obtuse triangle
is denoted as B′-tile. Each vertex of A-tile or B′-tile is marked
with either a small solid or an open circle. A monochromatic
edge is an oriented edge connecting two vertices of the same
kind of circle.

The partition rules associated with A-tile and B′-tile are
exhibited in Figure 7(b). The right of Figure 6 illustrates a
P3 tiling. To save space, we omit matching rules and
construction method of P3 tiling since it is completely
similar to P2 tiling.

3. f -Tilings from Successive Adjacency
Substitution Method

Let λ be a patch of tiles created by successively inflating and
substituting B′-tile of P3 tiling 3 times. Figure 8(a) shows an
initial frame Γ obtained by first reflecting λ about the x-axis
and then rotating it about the origin repeatedly by 2π/5.
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Figure 5: (a–c) The first and second inflation and substitution processes of the A-tile associated with P2 tiling. (d–f) The first and second
inflation and substitution processes of the B-tile associated with P2 tiling.

(a) (b)

Figure 6: (a) A P2 tiling constructed by kite and dart tiles. (b) A P3 tiling constructed by thin and thick rhombuses.
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Remember that the resulting Γ is constructed by A-tile and
B′-tile, instead of the thin and thick rhombuses.

We next utilize Γ as the initial seed to produce a f -tiling
T . The first four layers of T are displayed in Figure 8(b).
Combined with Figure 8(c), we summarize the recursive
algorithm as follows.

Step 1. Denote by 1st-layer tiles (the biggest white and green
tiles in the figure) as tiles in the center of Γ. Except for
1st-layer tiles, denote by ∑1 tiles as the other tiles of Γ.

Step 2. All ∑1 tiles are substituted once by the substitution
rule. Denote by 2nd-layer tiles (the yellow and white tiles in
the figure) as the substituted smaller tiles contained in the
previous ∑1 tiles adjacent to 1st-layer tiles. Except for the
2nd-layer tiles, denote by∑2 tiles as the other substituted tiles
contained in ∑1 tiles.

Step 3. All ∑2 tiles are substituted once by the substitution
rule. Denote by 3rd-layer tiles (tiles with bold black edges
in the figure) as the substituted smaller tiles contained in
the previous ∑2 tiles adjacent to the 2nd-layer tiles. Except
for 3rd-layer tiles, denote by ∑3 tiles as the other substituted
tiles contained in ∑2 tiles.

Step 4. All ∑3 tiles are substituted once by the substitution
rule. Denote by 4th-layer tiles (the outmost tiles with red or
blue edges in the figure) as the substituted smaller tiles
contained in the previous ∑3 tiles adjacent to the 3rd-layer
tiles. Except for 4th-layer tiles, denote by ∑4 tiles as the other
substituted tiles contained in ∑3 tiles.

Step 5. All ∑i tiles are substituted once by the substitution
rule. Denote by (i+1)th-layer tiles as the substituted smaller
tiles contained in the previous ∑i tiles adjacent to the
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Figure 7: (a) Thin and thick rhombus prototiles used for constructing P3 tiling. (b) Partition rules of A-tile and B′-tile associated with
P3 tiling.

(a) (b) (c)

Figure 8: (a) Γ is a patch of tiles with the dihedral group D5 symmetry, which will be used as initial frame to generate f -tiling. (b) By vertex
adjacency substitution rule, the first four generations of the f -tiling on Γ. (c) The first four generations of the f -tiling on Γ obtained by moving
the initial frame Γ.
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ith-layer tiles. Except for (i+1)th-layer tiles, denote by
∑i+1 tiles as the other substituted tiles contained in ∑i
tiles, i = 4, 5, 6,… .

Keep in mind the three points. First, for the case shown in
Figure 8, two tiles are adjacent which means that they have

one vertex in common. Second, tiles of i-layer and ∑i always
have the same level size. Last, all known f -tilings are edge to
edge, while f -tilings constructed by above method are not
edge to edge.

According to the recursive algorithm, for a given
initial tile frame Γ, once we appoint 1st-layer tiles, the

(a)

FF

FF

FF

(b)

Figure 9: (a) A T (P3,A-tile,5) tiling. (b) From left to right, boundary details of the seventh, eighth, and tenth generations. As generations
continue, the regions marked “F” will be gradually closed and fully filled.

6 Complexity



rest of the tiles of Γ form ∑1 tiles automatically. By
vertex adjacency rule and successive substitutions, we
can obtain two sequences i − layertiles, i = 1, 2, 3,…
and ∑i tiles, i = 1, 2, 3,… . Geometrically, the sequences
correspond to a hierarchical tiling. When i→ +∞, the
resulting tiling becomes a fractal. For convenience, we
call the generation method of such f -tilings as successive
adjacency substitution method.

4. Gallery of f -Tilings from Successive
Adjacency Substitution Method

In this section, we implement some cases and present a
gallery of the rich variety of f -tilings obtained by successive
substitution method.

Let λ be a tile created by successively inflating and
substituting the prototile T of P2 or P3 tiling n times, and

(a) (b)

Figure 10: A T (P2,A-tile,3) and its center details obtained by appointing the outermost colored tiles as 1st-layer tiles.

(a) (b)

Figure 11: A T (P3,A-tile,2) and its center details obtained by appointing the outermost green tiles as 1st-layer tiles.
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let Γ be the initial tile frame obtained by first reflecting λ
about the x-axis and then rotating it about the origin repeat-
edly of 2π/5. By successive adjacency substitution method
described in Section 3, we denote by T P, T , n tiling as the
f -tiling generated by seed Γ.

As a tiling based on seed Γ generates, the amount of
calculation will rise sharply. Most of f -tilings were produced
through 10 to 15 generations, which adequately illustrates
fractal appearance. To show some interesting details, we
usually zoomed in some parts of a f -tiling.

(a)

G

G

G

G

(b)

Figure 12: (a) A T (P3,A-tile,4) tiling. (b) From left to right, boundary details of the sixth, seventh, eighth, and ninth generations. As
generations continue, the regions marked “G” will be closed gradually and fully filled.

8 Complexity



Figure 9 exhibits a T (P3,A-tile,5) tiling as well as its
boundary details. We see an interesting phenomenon that,
as generations continue, the regions marked “F” will be grad-
ually closed and fully filled. In practice, two factors determine
the closeness of a region: the size of the region and the scale of
contraction factor. For example, for the f -tilings shown in
Figures 10 and 11 that both gradually reduce from the out-
side toward the center, the center region of Figure 10 will
not be filled. However, the center region of Figure 11 do close
up since the region is small enough.

Figure 12 illustrates another similar case. Figure 13
demonstrates two interesting f -tilings that present a perfect

circular outline. The enlarged boundary details show that
both f -tilings have neat hierarchical structure. It should be
noted that, according to the Penrose rules, no “star” made
of 10 acute triangles appear in an infinite Penrose tiling.
The center “star” patch of the left of Figure 13 is constructed
by copying and rotating a cute triangle 10 times, rather than
by inflating and subdividing a tile of the Penrose tiling.

The previous f -tilings are obtained by appointing the
central tiles as 1st-layer tiles. By successive adjacency substi-
tution method demonstrated in Figure 8, tiles will gradually
reduce from the center toward the outside. Conversely, we
may appoint the outermost tiles as 1st-layer tiles. Under this

(a) (b)

Figure 13: A T (P2,A-tile,3) with ten-sided regular polygon at the center (a) and a T (P2,A-tile,4) with star-shaped polygon at the center (b).
The enlarged boundary details show hierarchical fine structure.

Figure 14: A T (P2,B-tile,4) and its center and boundary details obtained by appointing the middle yellow tiles as 1st-layer tiles.
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situation, as generations continue, tiles will gradually
reduce from the outside toward the center. Figures 10
and 11 illustrate two such examples, where the initial seed
Γ are marked with yellow lattices, the outermost colored
tiles are appointed as 1st-layer tiles, and the enlarged parts
show tilings’ center details.

We may also appoint some middle tiles of initial seed Γ as
1st-layer tiles and create f -tilings on such seeds. Under this
situation, tiles will gradually reduce from the middle toward
both center and outside. Figure 14 illustrates an example in
which the middle yellow 1st-layer tiles form a ring. By
appointing a few sporadic middle tiles as 1st-layer tiles,
Figure 15 shows two other kinds of such f -tilings.

One thing that needs to be paid special attention is
the meaning of adjacency. In the case of Figure 8, two
tiles are adjacent means that they have one vertex in
common. We may call such f -tilings as point adjacency
f -tilings. Similarly, we can also define adjacency that two
tiles have one edge in common and call such f -tilings as edge
adjacencyf -tilings.

According to edge adjacency rule, using similar succes-
sive adjacency substitution method, we can create different
style f -tilings. Due to space constraint, at the end of this
paper, we only exhibit two edge adjacency examples. By
appointing the center tiles of the initial seed Γ as 1st-layer
tiles, Figure 16 demonstrates two edge adjacency f -tilings.

5. Conclusion

In this paper, based on the idea of hierarchically subdividing
adjacent tiles, we present a general method to create f -tilings.
Penrose P2 and P3 tilings are utilized as illustrators.

We first review the substitution rules for constructing P2
and P3 tilings. Then, we present a recursive algorithm to gen-
erate f -tilings by hierarchically subdividing adjacent tiles,
which include six steps: (1) use an A-tile or B-tile (B′-tile)
and substitution rule to construct a patch of tiles with the
dihedral group D5 symmetry; (2) denote some tiles in the
patch as the 1st-layer tiles and denote all remainder tiles as
∑1 tiles; (3) all ∑i tiles are substituted once by the substitu-
tion rule; (4) denote by i + 1 th-layer tiles as the substituted
smaller tiles contained in the previous ∑i tiles adjacent to
ith-layer tiles; (5) except for the i + 1 th-layer tiles,
denote by ∑i+1 tiles as the other substituted tiles contained
in ∑i tiles; (6) let i = 1, 2, 3,… . By appointing ∑i+1 tiles and
i + 1 th-layer tiles, a f -tiling is generated by recursively
executing steps (3)–(5).

With the method of hierarchically subdividing adjacent
tiles, we implement three cases by appointing the center,
outer, and middle tiles of the patch as the 1st-layer tiles,
respectively. Accordingly, tiles of the resulting f -tilings grad-
ually reduce from the center toward the outer (Figures 9, 12,
and 13), from the outside toward the center (Figures 10 and
11), and from the middle toward both center and outer
(Figures 14 and 15). Figures 9–15 are produced by the vertex
adjacent rule which means that two tiles are adjacent if they
have more than one vertex in common. This method can
be similarly generalized to edge adjacent rule which means
that two tiles are adjacent if they have two vertexes in com-
mon. We attempt two f -tilings of edge adjacent kind and
demonstrate them in Figure 16. It is obvious that our method
can be extended to treat a large number of tilings that can be
constructed by substitution rule and used to yield a great
many of f -tilings.

(a) (b)

Figure 15: (a) A T (P3,B-tile,4) tiling in which the middle green tiles are appointed as 1st-layer tiles. (b) A T (P2,A-tile,4) tiling in which the
middle gray tiles are appointed as 1st-layer tiles.
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