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The purpose of this paper is to develop a novel compromise approach using correlation-based closeness indices for addressing
multiple-criteria decision analysis (MCDA) problems of bridge construction methods under complex uncertainty based on
interval-valued Pythagorean fuzzy (IVPF) sets. The assessment of bridge construction methods requires the consideration of
multiple alternatives and conflicting tangible and intangible criteria in intricate and varied circumstances. The concept of IVPF
sets is capable of handling imprecise and ambiguous information and managing complex uncertainty in real-world applications.
Inspired by useful ideas concerning information energies, correlations, and correlation coefficients, this paper constructs new
concepts of correlation-based closeness indices for IVPF characteristics and investigates their desirable properties. These indices
can be utilized to achieve anchored judgments in decision-making processes and to reflect a certain balance between connections
with positive and negative ideal points of reference. Moreover, these indices can fully consider the amount of information
associated with higher degrees of uncertainty and effectively fuse imprecise and ambiguous evaluative ratings to construct a
meaningful comparison approach. By using the correlation-based closeness index, this paper establishes effective algorithmic
procedures of the proposed IVPF compromise approach for conducting multiple-criteria evaluation tasks within IVPF
environments. The proposed methodology is implemented in a practical problem of selecting a suitable bridge construction
method to demonstrate its feasibility and applicability. The practicality and effectiveness of the proposed methodology are
verified through a comparative analysis with well-known compromise methods and other relevant nonstandard fuzzy models.

1. Introduction

Bridges are a critical part of national development because
of their crucial role in road networks. However, compared
with other transportation-related constructions, bridges are
more prone to environmental impacts. Consequently, brid-
ges are the most fragile component of the transportation
system. Damaged or collapsed bridges can result in serious
casualties, traffic disruptions, and economic losses. Thus,
the development of effective bridge structural designs is

extremely important, and the selection of appropriate con-
structionmethods is the key to successful bridge construction.

However, the assessment of candidate methods for bridge
construction is considered a highly complicated multiple-
criteria decision analysis (MCDA) problem. To address this
complex MCDA problem, the concept of interval-valued
Pythagorean fuzzy (IVPF) sets is applied to describe the fuzz-
iness, ambiguity, and inexactness in the decision-making
process according to the degrees of membership and non-
membership that are represented by flexible interval values
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that reflect the degree of hesitation. The aim of this paper
is to develop a novel IVPF compromise approach using
correlation-based closeness indices to address high degrees
of uncertainty when assessing bridge construction methods.
Moreover, the proposed methods extend the existing
compromise-based methodology to the IVPF context and
can be applied to a variety of MCDA fields. In this section,
the background, motivation, objective, and contributions of
this study are detailed.

1.1. Problem Background of Bridge Construction. Highway
and transportation projects can be generally divided into
three categories: road engineering, bridge engineering, and
tunnel engineering. The construction of bridges is essential
for societies to function [1, 2], and their establishment
enables transportation among towns, cities, and communi-
ties [2]. Almost all developed countries build reliable and
durable bridges as a part of their infrastructure [3, 4]. How-
ever, bridges are relatively fragile and prone to wear and
damage from the environment [5], particularly in regions
featuring complex geological structures or natural disasters
such as flooding, earthquakes, or typhoons [6, 7]. There-
fore, bridges must be safe and serviceable for users [8, 9].
As an important part of highway transportation systems,
the structural design and construction of bridges are of
utmost importance to national development [10, 11];
selecting appropriate construction methods is therefore
crucial [6, 12–15].

The structural designing of bridges is divided into two
stages. The first stage, the conceptual design stage, primarily
involves deciding on the overall structural forms and con-
struction technologies to be adopted and accounting for
potential design risks [16]. The second stage is focused on
detailed construction analyses [17]. The first stage has a pro-
found effect on the subsequent design process and overall
costs [18–20]. In fact, no amount of design detail can make
up for poor initial concepts [19, 20]. Developing effective
bridge superstructures in the conceptual design stage has a
decisive effect on successful bridge construction [21]. The
different construction methods for building bridge super-
structures pertain to distinct construction characteristics,
applicable environments, construction costs, and construc-
tion durations. The types of hazards that can occur because
of the construction methods employed and the potential risk
factors and preventive measures involved in each construc-
tion method also differ. Because bridge projects are large in
scale and entail intricate implementation processes, identify-
ing the bridge construction methods that feature the lowest
cost, are best matched to local conditions, and are feasible
and environmentally friendly has remained the focus of pub-
lic and private construction industries.

Numerous superstructure construction methods are
currently available for bridge projects. However, these
methods vary considerably in cost and duration, and the
selection of inappropriate methods can lower the quality
of the structure, diminish the construction efficiency, and
lower the cost-effectiveness of the project [21]. Ensuring
the applicability, safety, durability, and cost-effectiveness
of bridge structural designs is of utmost importance [22,

23]. The most common accident that occurs during bridge
construction is bridge collapse, which is frequently the
result of inappropriate construction methods, incurs time
and monetary losses, and creates the need to repair envi-
ronmental damage and undertake subsequent reconstruc-
tion [6]. From a durability perspective, bridges are a
fragile component in road construction because they are
relatively more vulnerable to environmental impact than
are the other parts [5]. Accordingly, many assessment cri-
teria must be considered in the bridge design process, such
as construction safety, aesthetics, integration with the sur-
rounding environment (both landscaping and ecological
maintenance), construction cost efficiency, and operational
cost efficiency [9, 13, 16, 22, 24]. These conditions make
bridges one of the most challenging and complex structures
in construction [9].

In addition to these many assessment criteria, various
complex technical and structural problems must be resolved
in the design [9, 14, 15]. Decision-makers must consider the
safety, maintainability, traffic loads, and structural designs
and must demand adequate control over the risk of failure
[16, 25]. To optimize safety assessments, particularly those
of highway bridges, accurately estimating the effects of traffic
loads on the bridges is crucial [26]. For example, failure to
accurately estimate the effect of heavy truckload capacity on
the bottom structures of bridges can lead to gradual super-
structure collapses and catastrophic accidents [27]. In addi-
tion, because severe natural disasters often inflict serious
damage, decision-makers must include natural disasters in
their bridge design assessments [7]. These uncertainties make
the selection problem of bridge construction methods mark-
edly challenging [12, 24].

1.2. Motivation and Highlights of the Study. Selecting an
appropriate bridge construction method involves numerous
and complex criteria and entails challenging technical opera-
tions, particularly in regions featuring complicated geological
structures or frequent natural disasters [2, 6, 14, 15, 28]. To
illustrate the uncertainties that exist in the intricate decision
environment, this study attempts to develop a new MCDA
approach involving a novel application of IVPF set theory
to describe the uncertainties of decision-making according
to the degrees of membership and nonmembership that are
represented by flexible interval values that reflect the degree
of hesitation. This approach incorporates the compromise
model as the basis of construction method development
to investigate the related personnel’s selection of bridge-
superstructure construction methods in Taiwan. The devel-
oped methods and relevant techniques can help decision-
makers navigate the criteria and choose the appropriate
bridge construction methods for their particular situations
to prevent the many occupational hazards that have occurred
during bridge construction over the years. This concern is the
first motivation of this paper.

The theory of Pythagorean fuzzy (PF) sets originally
introduced by Yager [29–32] is a useful tool to capture the
vagueness and uncertainty in decision-making processes
[33–36]. PF sets are related to the concept of a membership
degree and a nonmembership degree that fulfill a relaxed
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condition that the square sum of the two degrees is less than
or equal to one [34, 37–40]. PF sets have been created as a
new and prospective class of nonstandard fuzzy sets because
they can accommodate higher degrees of uncertainty com-
pared with other nonstandard fuzzy models [32]. Since
Zhang and Xu [36] initially proposed general mathematical
forms of the PS sets, the PF theory has become increasingly
popular and widely used in theMCDA field [34, 41]. Further-
more, Zhang [40] generalized PF sets to propose the concept
of IVPF sets. IVPF sets permit the degrees of membership
and nonmembership of a given set to have an interval value
within 0, 1 ; moreover, they are required to satisfy the condi-
tion that the square sum of the respective upper bounds of
the two intervals is less than or equal to one [40, 42, 43]. As
an extension of PF sets, IVPF sets have wider application
potential because of their superior ability to manage more
complex uncertainty and address strong fuzziness, ambigu-
ity, and inexactness in practical situations [42, 44–47].

Many useful decision methods and models have been
developed for managing MCDA problems involving IVPF
information, such as a linear programming method based
on an improved score function for IVPF numbers with par-
tially known weight information [45], a generalized probabi-
listic IVPF-weighted averaging distance operator [48], new
exponential operational laws about IVPF sets and their
aggregation operators [46], a new gray relational analysis
method based on IVPF Choquet integral average operators
[49], new probabilistic aggregation operators with PF and
IVPF information [50], IVPF extended Bonferroni mean
operators for dealing with heterogeneous relationships
among criteria [47], an IVPF outranking method using a
closeness-based assignment model [42], and an extended
linear programming technique for the multidimensional
analysis of preferences based on IVPF sets [39]. Most exist-
ing MCDA methods based on IVPF sets have focused on
the investigation of scoring models (e.g., score functions,
aggregation operators, and mean operators). Nevertheless,
relatively few studies have focused on the development or
extensions of the compromise model within the IVPF envi-
ronment. IVPF sets can provide enough input space for
decision-makers to evaluate the assessments with interval
numbers [47]; thus, the IVPF theory is a powerful and use-
ful tool for handling fuzziness and vagueness. From this
perspective, it would be particularly advantageous to
employ the IVPF theory to handle more imprecise and
ambiguous information in the selection problem of bridge
construction methods, which constitutes the second motiva-
tion of this paper.

This paper attempts to incorporate the compromise
model as the basis of the developed approach for the exten-
sion of the IVPF theory to the compromise-based methodol-
ogy of application. In numerous real-life decision situations,
decision-makers often anchor their subjective judgments
with certain points of reference [34, 51–53]. In particular,
the specification of these points of reference can influence
the intensity or even the rank order of the preferences
[34, 54], which implies that anchor dependency affects the
evaluation outcomes among competing alternatives to some
degree. In general, anchor dependency can be effectively

achieved with the use of positive and negative ideals [34,
51]. More precisely, human preference can be expressed
as an “as close as possible” concept, which utilizes a positive
ideal as the point of reference. In contrast, preference can
be revealed as an “as far as possible” concept, which
employs a negative ideal as the point of reference. As can
be expected, the usage of these points of reference affects
the contrast of currently achievable performances among
competing alternatives [51, 52]. Under these circumstances,
it is essential to incorporate such concepts into the pro-
posed IVPF compromise approach. In other words, it is
necessary to address the issue of anchor dependency and
locate appropriate positive- and negative-ideal points of ref-
erence in the developed approach, which constitutes the
third motivation of this paper.

Aiming at addressing the foregoing motivational issues,
the purpose of this paper is to propose a simple and effective
IVPF compromise approach that works with some interest-
ing concepts (i.e., some comparison measures and indices
with respect to points of reference) for addressing MCDA
problems of bridge construction methods under complex
uncertainty based on IVPF information. In particular, this
paper incorporates anchored judgments with displaced and
fixed ideals into the modeling process of the developed tech-
nique, which is different from the existing MCDA methods
in the IVPF context. By using information energies, correla-
tions, and correlation coefficients based on IVPF sets, this
paper constructs novel concepts of correlation-based close-
ness indices to characterize complex IVPF information and
reflect a certain balance between the connection with
positive-ideal IVPF solutions and the remotest connection
with negative-ideal IVPF solutions. Several useful and desir-
able properties related to these concepts are also explored
and discussed to form a solid basis for the proposed methods.
This paper develops a new IVPF compromise approach to
underlie anchored judgments from opposite viewpoints of
displaced and fixed ideals and determine the ultimate priority
orders among candidate alternatives for solving MCDA
problems involving IVPF information. Two algorithmic
procedures are provided to enhance the implementation effi-
ciency of the proposed methods. Moreover, the computa-
tions associated with the relevant techniques are simple and
effective for facilitating multiple-criteria evaluation tasks in
IVPF environments. Based on the flexible and useful IVPF
compromise approach, this paper investigates an MCDA
problem of bridge construction methods in Taiwan to dem-
onstrate the practical effectiveness of the proposed methods
in real-world situations. A comparative analysis with well-
known and widely used compromise models and other
MCDA approaches based on relevant nonstandard fuzzy sets
is also conducted to validate the reasonability and advantages
of the developed methodology.

This paper proposes a novel compromise methodology
that fully takes into account a new concept of correlation-
based closeness indices instead of the distance measures in
classic compromise methods. Until recently, some compro-
mise methods have been employed to investigate relevant
issues of bridge design and construction. For example, Mara
et al. [28] proposed a joint configuration for panel-level
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connections to compromise the benefit of a rapid fiber-
reinforced polymer deck installation in bridge construction.
Penadés-Plà et al. [2] reviewed different methods and sus-
tainable criteria used for decision-making at each life-cycle
phase of a bridge, from design to recycling or demolition.
The authors indicated that the decision-making process
allows the conversion of a judgment into a rational procedure
to reach a compromise solution. Liang et al. [55] applied an
extended fuzzy technique for order preference by similarity
to ideal solution (TOPSIS) to investigate decision-making
schemes in large-scale infrastructure projects. Huang and
Wang [56] combined the TOPSIS method and the analytic
hierarchy process (AHP) to establish a comparison matrix
and applied it to a digital model of road and bridge construc-
tion enterprise purchasing. Wang et al. [57] employed the
AHP-TOPSIS procedure to develop an optimization decision
model for bridge design. Nevertheless, the abovementioned
compromise solutions or methods can hardly address the
MCDA problem of selecting an appropriate bridge construc-
tion method under complex uncertainty. These methods
have little capability to model imprecise and uncertain infor-
mation for an intricate and unpredictable decision environ-
ment involving strong fuzziness, ambiguity, and inexactness.
To overcome these difficulties, this paper develops a novel
compromise model using a useful concept of correlation-
based closeness indices to address highly uncertain MCDA
problems involving IVPF information and solve the selection
problem of bridge construction methods. Particularly, in
contrast to the existing compromise-based methodology,
the uniqueness of this paper is the consideration of flexible
IVPF information in assessing bridge construction methods,
the development of new correlation-based closeness indices
from the opposite perspectives of displaced and fixed ideals,
and the determination of ultimate priority rankings based
on a novel IVPF compromise approach.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews some basic concepts and operations of
IVPF sets. Section 3 formulates an MCDA problem within
IVPF environments and establishes a novel IVPF compro-
mise approach with correlation-based closeness indices for
managing MCDA problems under complex IVPF uncer-
tainty. Section 4 applies the proposed methodology to a
real-life MCDA problem of selecting a suitable bridge con-
struction method, along with certain comparative discus-
sions, to demonstrate its feasibility and practicality. To
further investigate the application results, Section 5 conducts
a comprehensive comparative analysis with well-known
compromise methods and with other relevant nonstandard
fuzzy models to demonstrate the effectiveness and advan-
tages of the developed approach. Finally, Section 6 presents
the conclusions.

2. Preliminary Definitions

This section introduces some basic concepts related to PF
and IVPF sets that are used throughout this paper. Moreover,
selected operations of IVPF values that are helpful in the
proposed approach are presented.

Definition 1 (see [30, 32, 36]). A PF set P is defined as a set of
ordered pairs of membership and nonmembership in a finite
universe of discourse X and is given as follows:

P = x, μP x , νP x ∣ x ∈ X , 1

which is characterized by the degree of membership μP
X → 0, 1 and the degree of nonmembership νP X → 0, 1
of the element x ∈ X in the set P with the condition

0 ≤ μP x 2 + νP x 2 ≤ 1 2

Let p = μP x , νP x denote a PF value. The degree of
indeterminacy relative to P for each x ∈ X is defined as follows:

πP x = 1 − μP x 2 − νP x 2 3

Definition 2 (see [40, 43]). Let Int 0, 1 denote the set of all
closed subintervals of the unit interval 0, 1 . An IVPF set P
is defined as a set of ordered pairs of membership and non-
membership in a finite universe of discourse X and is given
as follows:

P = x, μP x , νP x ∣ x ∈ X , 4

which is characterized by the interval of the membership
degree

μP X→ Int 0, 1 , x ∈ X→ μP x = μ−P x , μ+P x ⊆ 0, 1 ,
5

and the interval of the nonmembership degree

vP X → Int 0, 1 , x ∈ X → νP x = ν−P x , ν+P x ⊆ 0, 1 ,
6

with the following condition:

0 ≤ μ+P x 2 + ν+P x 2 ≤ 1 7

Let p = μP x , νP x = μ−
P
x , μ+

P
x , ν−

P
x , ν+

P
x

denote an IVPF value. The interval of the indeterminacy
degree relative to P for each x ∈ X is defined as follows:

πP x = π−
P x , π+

P x

= 1 − μ+
P
x 2 − ν+

P
x 2, 1 − μ−

P
x 2 − ν−

P
x 2

8

Definition 3 (see [40, 43]). Let p1 = μ−
P1

x , μ+
P1

x , v−
P1

x ,
v+
P1

x , p2 = μ−
P2

x , μ+
P2

x , ν−
P2

x , ν+
P2

x , and p = μ−
P

x , μ+
P
x , ν−

P
x , ν+

P
x be three IVPF values in X, and

let α ≥ 0. Selected operations are defined as follows:
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p1∨p2 = max μ−P1
x , μ−P2 x , max μ+P1

x , μ+P2 x ,

min ν−P1
x , ν−P2 x , min ν+P1

x , ν+P2
x ,

p1 ∧ p2 = min μ−P1
x , μ−P2

x , min μ+P1
x , μ+P2 x ,

max ν−P1
x , ν−P2

x , max ν+P1
x , ν+P2 x ,

p1 ⊕ p2 = μ−
P1

x
2
+ μ−

P2
x

2
− μ−

P1
x

2
⋅ μ−

P2
x

2
,

μ+
P1

x
2
+ μ+

P2
x

2
− μ+

P1
x

2
⋅ μ+

P2
x

2
,

ν−P1
x ⋅ ν−P2 x , ν+P1

x ⋅ ν+P2
x ,

p1 ⊗ p2 = μ−P1
x ⋅ μ−P2

x , μ+P1
x ⋅ μ+P2 x ,

ν−
P1

x
2
+ ν−

P2
x

2
− ν−

P1
x

2
⋅ ν−

P2
x

2
,

ν+
P1

x
2
+ ν+

P2
x

2
− ν+

P1
x

2
⋅ ν+

P2
x

2
,

pc = ν−P x , ν+P x , μ−P x , μ+P x ,

α ⋅ p = 1 − 1 − μ−
P
x 2 α

, 1 − 1 − μ+
P
x 2 α

,

ν−P x α, ν+P x α ,

p α = μ−P x α, μ+P x α , 1 − 1 − ν−
P
x 2 α

,

1 − 1 − ν+
P
x 2 α

9

Definition 4 (see [40, 43]). Let p1 and p2 be two IVPF values in
X. The distance between p1 and p2 is defined as follows:

D p1, p2 = 1
4 μ−P1

x
2
− μ−P2

x
2
+ μ+P1

x
2

− μ+P2
x

2
+ ν−P1

x
2
− ν−P2

x
2

+ ν+P1
x

2
− ν+P2

x
2
+ π−

P1
x

2

− π−
P2

x
2
+ π+

P1
x

2
− π+

P2
x

2

10

3. An IVPF Compromise Approach

This section attempts to propose an effective IVPF com-
promise approach by means of novel correlation-based
closeness indices for addressing MCDA problems within
a highly complex uncertain environment based on IVPF
sets. This section initially describes an MCDA problem
in the IVPF decision context. Based on useful concepts
of information energies and correlations for IVPF charac-
teristics, this section establishes novel correlation-based
closeness indices from the two different perspectives
of displaced and fixed ideals. Some essential and desir-
able properties are also investigated to furnish a sound
basis for the subsequent development of an IVPF com-
promise approach. Finally, this section provides two algorith-
mic procedures of the proposed IVPF compromise approach
for conducting multiple-criteria evaluation tasks in IVPF
environments.

3.1. Problem Formulation. Consider an MCDA problem
within the IVPF decision environment. Let Z = z1, z2,⋯,
zm denote a discrete set of m m ≥ 2 candidate alterna-
tives, and let C = c1, c2,⋯, cn denote a finite set of n
n ≥ 2 evaluative criteria. Set C can be generally divided
into two sets, CI and CII, where CI denotes a collection of
benefit criteria (i.e., larger values of cj indicate a higher pref-
erence), and CII denotes a collection of cost criteria (i.e.,
smaller values of cj indicate a higher preference). Moreover,

CI ∩ CII =∅ and CI ∪ CII = C. Let wT = w1,w2,⋯,wn
T

denote the weight vector of n evaluative criteria, where wj ∈
0, 1 for all j ∈ 1, 2,⋯, n and ∑n

j=1wj = 1 (i.e., the normali-
zation condition).

The evaluative rating of an alternative zi ∈ Z in rela-
tion to a criterion cj ∈ C is expressed as an IVPF value
pij = μ−ij, μ+ij , ν−ij, ν+ij , such that μ−ij, μ+ij ∈ Int 0, 1 , ν−ij,
ν+ij ∈ Int 0, 1 , and 0 ≤ μ+ij

2 + ν+ij
2 ≤ 1. The intervals

μ−ij, μ+ij and ν−ij, ν+ij represent the flexible degrees of member-
ship andnonmembership, respectively, forwhich zi is evaluated
with respect to cj. Moreover, the interval of the indeterminacy

degree that corresponds to each pij is determined as π−
ij, π+

ij =

1 − μ+ij
2 − ν+ij

2, 1 − μ−ij
2 − v−ij

2 . Accordingly, an

MCDA problem involving IVPF information can be con-
cisely expressed in the following IVPF decision matrix:

p = pij
m×n

=

μ−11, μ+11 , ν−11, ν+11 μ−12, μ+12 , ν−12, ν+12 ⋯ μ−1n, μ+1n , ν−1n, ν+1n
μ−21, μ+21 , ν−21, ν+21 μ−22, μ+22 , ν−22, ν+22 ⋯ μ−2n, μ+2n , ν−2n, ν+2n

⋮ ⋮ ⋱ ⋮

μ−m1, μ+m1 , ν−m1, ν+m1 μ−m2, μ+m2 , ν−m2, ν+m2 ⋯ μ−mn, μ+mn , ν−mn, ν+mn

11
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Furthermore, the IVPF characteristics Pi of an alterna-
tive zi can be represented by all of the relevant IVPF
values as follows:

Pi = c1, pi1 , c2, pi2 ,⋯, cn, pin
= c1, μ−i1, μ+i1 , ν−i1, ν+i1 , c2, μ−i2, μ+i2 ,

ν−i2, ν+i2 ,⋯, cn, μ−in, μ+in , ν−in, ν+in
12

As explained in the introduction, this paper attempts to
locate appropriate positive- and negative-ideal IVPF values
as points of reference to concretize anchored judgments in
the proposed methodology and handle their influences in
decision-making processes. From the two different perspec-
tives of displaced and fixed ideals [34, 51, 54], this paper
utilizes the concepts of the displaced/fixed positive- and
negative-ideal IVPF solutions. With respect to anchored
judgments with displaced ideals, this paper identifies the
displaced positive- and negative-ideal IVPF values that are
composed of all of the best and worst criterion values
attainable, respectively. Usually, the larger the evaluative
rating is, the greater the preference is for the benefit criteria
and the less the preference is for the cost criteria [42].
Thus, for each benefit criterion, the displaced positive-
and negative-ideal IVPF values are designated as the largest

and smallest IVPF values, respectively, based on all of the
IVPF evaluative ratings pij in the IVPF decision matrix p.
More precisely, p∗j = ∨m

i=1pij and p#j = ∧m
i=1pij for all cj ∈ CI

. In contrast, the displaced positive- and negative-ideal
IVPF values for each cost criterion are considered the smal-
lest and largest IVPF values, respectively, with respect to all
of the criterion-wise evaluative ratings in p. In other words,
p∗j = ∧m

i=1pij and p#j = ∨m
i=1pij for all cj ∈ CII.

Definition 5. Consider an IVPF decision matrix p = pij m×n.

Let z∗ and z# denote the displaced positive- and negative-
ideal IVPF solutions, respectively, with respect to p, and their
IVPF characteristics P∗ and P# are expressed as follows:

P∗ = c1, p∗1 , c2, p∗2 ,⋯, cn, p∗n , 13

P# = c1, p#1 , c2, p#2 ,⋯, cn, p#n 14

Here, p∗j = μ−∗j, μ+∗j , ν−∗j, ν+∗j and p#j = μ−#j, μ+# j ,
ν−#j, ν+#j represent the displaced positive- and negative-
ideal IVPF values, respectively, for each criterion cj ∈ C =
CI ∪ CII, whereCI ∩ CII =∅ ; they are defined as follows:

Concerning anchored judgments with fixed ideals, the
largest IVPF value ( 1, 1 , 0, 0 ) and smallest IVPF value
( 0, 0 , 1, 1 ) are designated as the fixed positive- and
negative-ideal IVPF values, respectively, for each cj ∈ CI. Con-
versely, the smallest IVPF value ( 0, 0 , 1, 1 ) and largest IVPF
value ( 1, 1 , 0, 0 ) are considered the fixed positive- and
negative-ideal IVPF values, respectively, for each cj ∈ CII.

Definition 6. Consider an IVPF decision matrix p = pij m×n.

Let z+ and z− denote the fixed positive- and negative-ideal
IVPF solutions, respectively, with respect to p, and their
IVPF characteristics P+ and P− are expressed as follows:

P+ = c1, p+1 , c2, p+2 ,⋯, cn, p+n ,
P− = c1, p−1 , c2, p−2 ,⋯, cn, p−n

17

Here, p+j and p−j represent thefixed positive- and negative-
ideal IVPF values, respectively, for each criterion cj ∈ C =
CI ∪ CII, whereCI ∩ CII =∅ ; they are defined as follows:

p+j = μ−+j, μ++j , ν−+j, ν++j =
1, 1 , 0, 0 if cj ∈ CI,
0, 0 , 1, 1 if cj ∈ CII,

p−j = μ−−j, μ+−j , ν−−j, ν+−j =
0, 0 , 1, 1 if cj ∈ CI,
1, 1 , 0, 0 if cj ∈ CII

18

Note that the respective intervals of the indetermi-
nacy degrees corresponding to p∗j and p#j are given by

the following equations: π−
∗j, π+

∗j = 1 − μ+∗j
2 − ν+∗j

2,

p∗j =
∨
m

i=1
pij = maxm

i=1
μ−ij, maxm

i=1
μ+ij , min

m

i=1
ν−ij, min

m

i=1
ν+ij if cj ∈ CI,

∧
m

i=1
pij = min

m

i=1
μ−ij, min

m

i=1
μ+ij , maxm

i=1
ν−ij, maxm

i=1
ν+ij if cj ∈ CII,

15

p# j =
∧
m

i=1
pij = min

m

i=1
μ−ij, min

m

i=1
μ+ij , maxm

i=1
ν−ij, maxm

i=1
ν+ij if cj ∈ CI,

∨
m

i=1
pij = maxm

i=1
μ−ij, maxm

i=1
μ+ij , min

m

i=1
ν−ij, min

m

i=1
ν+ij if cj ∈ CII

16
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1 − μ−∗j
2 − ν−∗j

2 and π−
# j, π+

# j = 1 − μ+#j
2 − ν+#j

2

1 − μ−#j
2 − ν−#j

2 . The respective intervals of the inde-

terminacy degrees corresponding to p+j and p−j are obtained
as π−

+j, π+
+j = π−

−j, π+
−j = 0, 0 .

3.2. Proposed Methodology. This subsection develops an
IVPF compromise approach using a novel concept of
correlation-based closeness indices. Considering anchored
judgments with the displaced or fixed ideal IVPF solutions,
this subsection initially presents useful comparison indices
based on information energies and correlations of the IVPF
characteristics. Furthermore, two simple and effective algo-
rithmic procedures using the proposed IVPF compromise
approach are provided for addressing MCDA problems
within the IVPF environment.

In the present study, two useful concepts of correlation-
based closeness indices from the different perspectives of dis-
placed and fixed ideals are presented to underlie anchored
judgments and to reflect a certain balance between the con-
nection with positive-ideal IVPF solutions and the remotest
connection with negative-ideal IVPF solutions. Motivated
by the idea of correlation coefficients based on PF sets [37],
this paper constructs the novel concept of correlation-based
closeness indices in the IVPF context and investigates their
useful and desirable properties. These comparison indices
provide a solid basis for building subsequent IVPF compro-
mise approaches.

Definition 7. Let pij = μ−ij, μ+ij , ν−ij, ν+ij be an IVPF evalua-
tive rating in the IVPF decision matrix p, and let wj be the

weight of criterion cj ∈ C. The information energy E Pi of

the IVPF characteristicsPi for each alternative zi ∈ Z is defined
as follows:

E Pi = 1
2〠

n

j=1
wj ⋅ μ−ij

4
+ μ+ij

4
+ ν−ij

4
+ ν+ij

4

+ π−
ij

4
+ π+

ij

4

19

Theorem 1. The information energy E Pi of the IVPF charac-
teristics Pi in p satisfies the following properties:

(T1.1) 0 < E Pi ≤ 1

(T1.2) E P+ = E P− = 1

Proof. (T1.1) Because pij is an IVPF value, the following are

known: μ+ij
2 + ν+ij

2 + π−
ij

2 = 1 and μ−ij
2 + ν−ij

2 +
π+
ij

2 =1. Thus, 0 5 ⋅ μ−ij
2 + μ+ij

2 + ν−ij
2 + ν+ij

2 + π−
ij

2 +
π+
ij

2 = 1. With these results, it is readily proved that

0 < 0 5 ⋅ μ−ij
4 + μ+ij

4 + ν−ij
4 + ν+ij

4 + π−
ij

4 + π+
ij

4 ≤ 1.

Using the normalization condition of criterion weights ∑n
j=1

wj = 1, one can then obtain 0 < E Pi ≤ 1; i.e., (T1.1) is valid.
(T1.2) According to Definition 6, one has P+ = cj, 1,

1 , 0, 0 ∣ cj ∈ CI , cj, 0, 0 , 1, 1 ∣ cj ∈ CII and P− =
cj, 0, 0 , 1, 1 ∣ cj ∈ CI , cj, 1, 1 , 0, 0 ∣ cj ∈ CII .

Therefore, one can easily infer that E P+ = E P− =∑n
j=1

wj = 1. This establishes the theorem.

Definition 8. Let Pi and Pi′ be two IVPF characteristics in p,
and let wj be the weight of cj ∈ C. The correlation R between

Pi and Pi′ is defined as follows:

R Pi, Pi′ = 1
2〠

n

j=1
wj ⋅ μ−ij

2
⋅ μ−

i′j
2
+ μ+ij

2
⋅ μ+

i′j
2

+ ν−ij
2
⋅ ν−

i′j
2
+ ν+ij

2
⋅ ν+

i′j
2
+ π−

ij

2

⋅ π−
i′j

2
+ π+

ij

2
⋅ π+

i′j
2

20

Theorem 2. The correlation R Pi, Pi′ between two IVPF
characteristics Pi and Pi′ in p satisfies the following properties:

(T2.1) R Pi, Pi = E Pi

(T2.2) 0 ≤ R Pi, Pi′ ≤ 1

(T2.3) R Pi, Pi′ = R Pi′, Pi

(T2.4) R Pi, P+ = 1/2 ∑cj∈CI
wj ⋅ μ−ij

2 + μ+ij
2 +

∑cj∈CII
wj ⋅ ν−ij

2 + ν+ij
2

(T2.5) R Pi, P− = 1/2 ∑cj∈CI
wj ⋅ ν−ij

2 + ν+ij
2 +

∑cj∈CII
wj ⋅ μ−ij

2 + μ+ij
2 .

Proof. (T2.1)–(T2.3) are evident. (T2.4) and (T2.5) are
straightforward because p+j = 1, 1 , 0, 0 and p−j = 0, 0 ,
1, 1 for cj ∈ CI, p+j = 0, 0 , 1, 1 and p−j = 1, 1 , 0, 0
for cj ∈ CII, and π−

+j, π+
+j = π−

−j, π+
−j = 0, 0 for cj ∈ C. This

completes the proof.

Definition 9. Let Pi and Pi′ be two IVPF characteristics in p.
The correlation coefficient K between Pi and Pi′ is defined
as follows:

K Pi, Pi′ = R Pi, Pi′

E Pi ⋅ E Pi′

21

Theorem 3. The correlation coefficient K Pi, Pi′ between two
IVPF characteristics Pi and Pi′ satisfies the following properties:

7Complexity



(T3.1) K Pi, Pi′ = K Pi′, Pi

(T3.2) 0 ≤ K Pi, Pi′ ≤ 1

(T3.3) K Pi, Pi′ = 1 if Pi = Pi′

Proof. (T3.1) is trivial.
(T3.2) It can be easily obtained that K Pi, Pi′ ≥ 0 based

on the properties in (T1.1) (i.e., 0 < E Pi , E Pi′ ≤ 1) and
(T2.2) (i.e., 0 ≤ R Pi, Pi′ ≤ 1). By using the Cauchy-Schwarz
inequality, the following relationship can be determined:

wj
4 ⋅ μ−ij

2
⋅ wj

4 ⋅ μ−
i′j

2
+ wj

4 ⋅ μ+ij
2
⋅ wj

4 ⋅ μ+
i′j

2

+ wj
4 ⋅ ν−ij

2
⋅ wj

4 ⋅ ν−
i′j

2
+ wj

4 ⋅ ν+i j
2
⋅ wj

4 ⋅ ν+
i′j

2

+ wj
4 ⋅ π−

ij

2
⋅ wj

4 ⋅ π−
i′j

2
+ wj

4 ⋅ π+
ij

2
⋅ wj

4 ⋅ π+
i′j

2 2

≤ wj
4 ⋅ μ−ij

2 2
+ wj

4 ⋅ μ+ij
2 2

+ wj
4 ⋅ ν−ij

2 2

+ wj
4 ⋅ ν+ij

2 2
+ wj

4 ⋅ π−
ij

2 2
+ wj

4 ⋅ π+
ij

2 2

⋅ wj
4 ⋅ μ−

i′j
2 2

+ wj
4 ⋅ μ+

i′j
2 2

+ wj
4 ⋅ ν−

i′j
2 2

+ wj
4 ⋅ ν+

i′j
2 2

+ wj
4 ⋅ π−

i′j
2 2

+ wj
4 ⋅ π+

i′j
2 2

= wj ⋅ μ−ij
4
+wj ⋅ μ+ij

4
+wj ⋅ ν−ij

4
+wj ⋅ ν+ij

4
+wj

⋅ π−
ij

4
+wj ⋅ π+

ij

4
⋅ wj ⋅ μ−

i′j
4
+wj ⋅ μ+

i′j
4
+wj

⋅ ν−
i′j

4
+wj ⋅ ν+

i′j
4
+wj ⋅ π−

i′j
4
+wj ⋅ π+

i′j
4

= wj ⋅ μ−ij
4
+ μ+ij

4
+ ν−ij

4
+ ν+ij

4
+ π−

ij

4
+ π+

ij

4

⋅ wj ⋅ μ−
i′j

4
+ μ+

i′j
4
+ ν−

i′j
4
+ ν+

i′j
4
+ π−

i′j
4

+ π+
i′j

4

22

With the above results, one can employ Definition 8 to
infer the following:

R Pi, Pi′
2 = 1

2〠
n

j=1
wj ⋅ μ−ij

2
⋅ μ−

i′j
2
+ μ+ij

2
⋅ μ+

i′j
2

+ ν−ij
2
⋅ ν−

i′j
2
+ ν+ij

2
⋅ ν+

i′j
2
+ π−

ij

2

⋅ π−
i′j

2
+ π+

ij

2
⋅ π+

i′j
2

2

= 1
2

2
⋅ 〠

n

j=1
wj

4 ⋅ μ−ij
2
⋅ wj

4 ⋅ μ−
i′j

2

+ wj
4 ⋅ μ+ij

2
⋅ wj

4 ⋅ μ+
i′j

2
+ wj

4 ⋅ ν−ij
2

⋅ wj
4 ⋅ ν−

i′j
2
+ wj

4 ⋅ ν+ij
2
⋅ wj

4 ⋅ ν+
i′j

2

+ wj
4 ⋅ π−

ij

2
⋅ wj

4 ⋅ π−
i′j

2
+ wj

4 ⋅ π+
ij

2

⋅ wj
4 ⋅ π+

i′j
2

2

≤
1
2

2
〠
n

j=1
wj ⋅ μ−ij

4

+ μ+ij
4
+ ν−ij

4
+ ν+ij

4
+ π−

ij

4
+ π+

ij

4

⋅ 〠
n

j=1
wj ⋅ μ−

i′j
4
+ μ+

i′j
4
+ ν−

i′j
4
+ ν+

i′j
4

+ π−
i′j

4
+ π+

i′j
4

= 1
2〠

n

j=1
wj ⋅ μ−ij

4

+ μ+ij
4
+ ν−ij

4
+ ν+ij

4
+ π−

ij

4
+ π+

ij

4

⋅
1
2〠

n

j=1
wj ⋅ μ−

i′j
4
+ μ+

i′j
4
+ ν−

i′j
4

+ ν+
i′j

4
+ π−

i′j
4
+ π+

i′j
4

= E Pi ⋅ E Pi′

23

The obtained inequality can be written as R Pi, Pi′ ≤

E Pi ⋅ E Pi′ because R Pi, Pi′ ≥ 0, E Pi > 0, and E Pi′ >
0. Thus, we conclude that K Pi, Pi′ ≤ 1; i.e., (T3.2) is valid.

(T3.3) It is known that E Pi = E Pi′ because Pi = Pi′.

Using (T2.1) (i.e., R Pi, Pi = E Pi ) yields K Pi, Pi′ = E Pi /

E Pi ⋅ E Pi = 1. This basis establishes the theorem.

Turning now to the issue of identifying appropriate com-
parison indices in the proposed IVPF compromise approach,
this paper develops a useful concept of correlation-based
closeness indices to provide a starting point for realizing
anchored judgments with displaced/fixed ideals in the
MCDA process. First, this paper incorporates the displaced
positive-ideal IVPF solution z∗ and the displaced negative-
ideal IVPF solution z# into the specification of correlation-
based closeness indices. As mentioned earlier, the selection
of anchor values would influence the intensity of the prefer-
ences about candidate alternatives. In this respect, the larger
K Pi, P∗ is, the better are the IVPF characteristics Pi. Fur-
thermore, the smaller K Pi, P# is, the better are the Pi.
The IVPF characteristic most associated with P∗ does not
concur with the one that is least associated with P# in most
real-world decision situations. To address this issue, this
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paper defines a novel correlation-based closeness index Id
to simultaneously measure the strength of the association
with P∗ and P#. The usage of the index Id can facilitate
anchored judgments with displaced ideals. Moreover, Id is
an effective comparison index that can reflect some balance
between the connection with z∗ and the remotest connec-
tion with z#.

Definition 10. Let Pi be the IVPF characteristics of alternative
zi ∈ Z in p. With respect to the displaced ideal IVPF solutions
z∗ and z#, the correlation-based closeness index Id of Pi is
defined as follows:

Id Pi = K Pi, P∗

K Pi, P∗ + K Pi, P#
24

Theorem 4. For each IVPF characteristic Pi in p, the
correlation-based closeness index Id satisfies the property 0 ≤
Id Pi ≤ 1.

Proof. Using (T3.2), the proof of this property is direct
because K Pi, P∗ ≥ 0, K Pi, P# ≥ 0, and K Pi, P∗ ≤ K Pi,
P∗ + K Pi, P# .

Next, consider anchored judgments with fixed ideals.
As described in Definition 6, the fixed positive-ideal IVPF
solution z+ is composed of the largest IVPF value ( 1, 1 ,
0, 0 ) for each benefit criterion cj ∈ CI and the smallest
IVPF value ( 0, 0 , 1, 1 ) for each cost criterion cj ∈ CII.

In contrast, the fixed negative-ideal IVPF solution z− is
composed of the smallest IVPF value ( 0, 0 , 1, 1 ) for each
cj ∈ CI and the largest IVPF value ( 1, 1 , 0, 0 ) for each

cj ∈ CII. For the most part, the larger K Pi, P+ is, the bet-

ter are the IVPF characteristics Pi; moreover, the smaller
K Pi, P− is, the better are the Pi. However, a specific Pi

that is most associated with P+ does not concur with the
one that is least associated with P−. For this reason, this
paper provides another comparison index to effectively
underlie anchored judgments with the fixed positive- and
negative-ideal IVPF solutions. As indicated in the following
definition, this paper develops a useful correlation-based
closeness index I f of Pi to simultaneously measure the
strength of the association with P+ and P− to achieve a certain
balance between the connection with z+ and the remotest
connection with z−.

Definition 11. Let Pi be the IVPF characteristics of alternative
zi ∈ Z in p. With respect to the fixed ideal IVPF solutions z+
and z−, the correlation-based closeness index I f of Pi is
defined as follows:

I f Pi = K Pi, P+
K Pi, P+ + K Pi, P−

25

Theorem 5. For each IVPF characteristic Pi in p, the
correlation-based closeness index I f Pi based on the fixed
ideal IVPF solutions can be determined as follows:

Proof. According to (T1.2), the property E P+ = E P− = 1
implies the following:

I f Pi =
∑cj∈CI

wj ⋅ μ−ij
2
+ μ+ij

2
+∑cj∈CII

wj ⋅ ν−ij
2
+ ν+ij

2

∑n
j=1 wj ⋅ 2 − π−

ij

2
− π+

ij

2 26

I f Pi =
R Pi, P+ / E Pi ⋅ E P+

R Pi, P+ / E Pi ⋅ E P+ + R Pi, P− / E Pi ⋅ E P−

=
R Pi, P+ / E Pi

R Pi, P+ / E Pi + R Pi, P− / E Pi

= R Pi, P+
R Pi, P+ + R Pi, P−

27
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Next, using the properties in (T2.4) and (T2.5), the fol-
lowing results can be derived:

where μ+ij
2 + ν+ij

2 = 1 − π−
ij

2 and μ−ij
2 + ν−ij

2 = 1 −
π+
ij

2 for all cj ∈ C (i.e., j ∈ 1, 2,⋯, n ). This completes
the proof.

Theorem 6. The correlation-based closeness index I f Pi sat-
isfies the following properties:

(T6.1) 0 ≤ I f Pi ≤ 1

(T6.2) I f P− = 0

(T6.3) I f P+ = 1

(T6.4) I f Pi = 0 if and only if wj ⋅ μ−ij =wj ⋅ μ+ij = 0 for all
cj ∈ CI and wj ⋅ ν−ij =wj ⋅ ν+ij = 0 for all cj ∈ CII

(T6.5) I f Pi = 1 if and only if wj ⋅ ν−ij =wj ⋅ ν+ij = 0 for all
cj ∈ CI and wj ⋅ μ−ij =wj ⋅ μ+ij = 0 for all cj ∈ CII

Proof. (T6.1) can be inferred directly because K Pi, P+ ≥ 0,
K Pi, P− ≥ 0, and K Pi, P+ ≤ K Pi, P+ + K Pi, P− .

(T6.2) From Definition 6, it is known that μ−−j = μ+−j = 0
for each cj ∈ CI and ν−−j = ν+−j = 0 for each cj ∈ CII. From Def-
inition 9, (T1.2), and (T2.4), the following is clear:

I f Pi = 1
2 〠

cj∈CI

wj ⋅ μ−ij
2
+ μ+ij

2
+ 〠

cj∈CII

wj ⋅ ν−ij
2
+ ν+ij

2
/ 1

2 〠
cj∈CI

wj ⋅ μ−ij
2
+ μ+ij

2

+ 〠
cj∈CII

wj ⋅ ν−ij
2
+ ν+ij

2
+ 1
2 〠

cj∈CI

wj ⋅ ν−ij
2
+ ν+ij

2
+ 〠

cj∈CII

wj ⋅ μ−ij
2
+ μ+ij

2

= 〠
cj∈CI

wj ⋅ μ−ij
2
+ μ+ij

2
+ 〠

cj∈CII

wj ⋅ ν−ij
2
+ ν+ij

2
/ 〠

cj∈CI

wj ⋅ μ+ij
2
+ ν+ij

2
+ μ−ij

2
+ ν−ij

2

+ 〠
cj∈CII

wj ⋅ μ+ij
2
+ ν+ij

2
+ μ−ij

2
+ ν−ij

2

=
∑cj∈CI

wj ⋅ μ−ij
2
+ μ+ij

2
+∑cj∈CII

wj ⋅ ν−ij
2
+ ν+ij

2

∑n
j=1 wj ⋅ μ+ij

2
+ ν+ij

2
+ μ−ij

2
+ ν−ij

2

=
∑cj∈CI

wj ⋅ μ−ij
2
+ μ+ij

2
+∑cj∈CII

wj ⋅ ν−ij
2
+ ν+ij

2

∑n
j=1 wj ⋅ 2 − π−

ij

2
− π+

ij

2 ,

28

K P−, P+ = R P−, P+

E P− ⋅ E P+

=
1/2 ∑cj∈CI

wj ⋅ μ−−j
2
+ μ+−j

2
+∑cj∈CII

wj ⋅ ν−−j
2
+ ν+−j

2

1 ⋅ 1
= 0

29
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It directly follows that I f P− = 0; i.e., (T6.2) is valid.
(T6.3) By using (T3.1) and (T3.3), one obtains K P+,

P− = K P−, P+ and K P+, P+ = 1, respectively. Because
K P−, P+ = 0 from the previous result,

I f P+ = K P+, P+
K P+, P+ + K P+, P−

= 1
1 + 0 = 1 30

Therefore, (T6.3) is valid.
(T6.4) For the necessity, if I f Pi = 0, the condition of K

Pi, P+ = 0 must be satisfied. It follows that R Pi, P+ = 0
because K Pi, P+ = R Pi, P+ / E Pi ⋅ E P+ . By using the

property in (T2.4), one obtains wj ⋅ μ−ij
2 + μ+ij

2 = 0 for

all cj ∈ CI, and wj ⋅ ν−ij
2 + ν+ij

2 = 0 for all cj ∈ CII. Thus,
the weighted membership degrees wj ⋅ μ−ij =wj ⋅ μ+ij = 0 for all
cj ∈ CI, and the weighted nonmembership degrees wj ⋅ ν−ij =
wj ⋅ ν+ij = 0 for all cj ∈ CII. For the sufficiency, the assumptions
of wj ⋅ μ−ij =wj ⋅ μ+ij = 0 for cj ∈ CI and wj ⋅ ν−ij =wj ⋅ ν+ij = 0 for
cj ∈ CII result in R Pi, P+ = 0 and K Pi, P+ = 0. Accordingly,
(T6.4) is correct.

(T6.5) For the necessity, if I f Pi = 1, applying Theorem
5, the following result can be acquired:

〠
cj∈CI

wj ⋅ μ−ij
2
+ μ+ij

2
+ 〠

cj∈CII

wj ⋅ ν−ij
2
+ ν+ij

2

= 〠
n

j=1
wj ⋅ 2 − π−

ij

2
− π+

ij

2
= 〠

n

j=1
wj ⋅ μ−ij

2

+ μ+ij
2
+ ν−ij

2
+ ν+ij

2
= 〠

cj∈CI

wj ⋅ μ−ij
2

+ μ+ij
2
+ ν−ij

2
+ ν+ij

2
+ 〠

cj∈CII

wj ⋅ μ−ij
2

+ μ+ij
2
+ ν−ij

2
+ ν+ij

2

31

Thus, ∑cj∈CI
wj ⋅ ν−ij

2 + ν+ij
2 =∑cj∈CII

wj ⋅ μ−ij
2 +

μ+ij
2 = 0. Therefore, it can be concluded that the weighted

nonmembership degrees wj ⋅ ν−ij =wj ⋅ ν+ij = 0 for all cj ∈ CI,
and the weighted membership degrees wj ⋅ μ−ij =wj ⋅ μ+ij = 0
for all cj ∈ CII. For the sufficiency, the assumption of wj ⋅
ν−ij =wj ⋅ ν+ij = 0 for cj ∈ CI infers that ∑cj∈CI

wj ⋅ μ−ij
2 +

μ+ij
2 =∑cj∈CI

wj ⋅ μ−ij
2 + μ+ij

2 + ν−ij
2 + ν+ij

2 . Analo-

gously, one can obtain ∑cj∈CII
wj ⋅ ν−ij

2 + ν+ij
2 =

∑cj∈CII
wj ⋅ μ−ij

2 + μ+ij
2 + ν−ij

2 + ν+ij
2 based on the

assumption that wj ⋅ μ−ij =wj ⋅ μ+ij = 0 for cj ∈ CII. Accord-

ingly, these results yield that ∑cj∈CI
wj ⋅ μ−ij

2 + μ+ij
2 +

∑cj∈CII
wj ⋅ ν−ij

2 + ν+ij
2 =∑n

j=1 wj ⋅ 2 − π−
ij

2 − π+
ij

2 .

I f Pi = 1 by Theorem 5. Hence, (T6.5) is valid, which com-
pletes the proof.

Based on the useful and desirable properties proved in the
previous theorems, the developed correlation-based closeness
indices Id Pi and I f Pi can assist decision-makers in deter-
mining the ultimate priority orders among candidate alterna-
tives. Notably, the larger the Id Pi (or I f Pi ) value is, the

greater the preference is for the IVPF characteristics Pi. More
specifically, the condition Id Pi > Id Pi′ (or I f Pi > I f Pi′ )

indicates that Pi is better than Pi′ or that zi is preferred to zi′;
alternatively, Id Pi < Id Pi′ (or I f Pi < I f Pi′ ) indicates

that Pi is worse than Pi′ or that zi is less preferred to zi′.
The condition Id Pi = Id Pi′ (or I f Pi = I f Pi′ ) implies

indifference between Pi and Pi′ or equal preference between
zi and zi′. Following such a ranking procedure, this paper
establishes a novel IVPF compromise approach using
correlation-based closeness indices based on information
energies and correlations in the IVPF context. Employing
the proposed approach and techniques to address an MCDA
problem within the IVPF environment, the ultimate priority
orders among candidate alternatives can be effectively deter-
mined according to the descending order of the Id Pi and
I f Pi values when underlying anchored judgments with dis-
placed and fixed ideals, respectively.

3.3. Proposed Algorithm. This subsection intends to provide
useful and effective algorithmic procedures for implement-
ing the developed IVPF compromise approaches using
correlation-based closeness indices with respect to the dis-
placed/fixed ideal IVPFsolutions. First, in the caseof anchored
judgments with displaced ideals, the proposed IVPF compro-
mise approach for solving MCDA problems under complex
uncertainty based on IVPF sets can be summarized as the fol-
lowing algorithmic procedure.

Concerning anchored judgments with fixed ideals, the
algorithmic procedure can be significantly simplified because
of desirable and valuable properties proved inTheorems 5 and
6. Based on the correlation-based closeness indices with
respect to the anchor points (i.e., ( 1, 1 , 0, 0 ) and ( 0, 0 , 1,
1 )) of fixed ideals, the proposed IVPF compromise approach
formanagingMCDAproblems within the IVPF environment
is summarized below.

4. Practical Application with
Comparative Discussions

This section utilizes a practical MCDA problem of bridge
construction methods in Taiwan to examine the usefulness
andeffectivenessof theproposed IVPFcompromiseapproach.
Furthermore, this section investigates the application results
yielded by the developed Algorithms 1 and 2 to make a thor-
ough inquiry about practical implications.

4.1. Problem Statement of a Case Study. Taiwan is character-
ized by a diversity of landscapes that are rugged and complex
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and feature different terrain characteristics (e.g., basins and
mountains). Because Taiwan features numerous mountains
and rivers, the implementation of transportation projects
requires bridges to join disconnected regions. However, due
to intensive domestic land development, increasing land
costs, and various residential environment factors and to
avoid considerable demolitions and reduce negative envi-
ronmental impact, transportation projects have generally
occurred on hills and in mountain areas. This relatively
unfavorable geology makes bridge-site selection procedures
particularly complex. In urban areas, flyovers and viaducts
are used to avoid road traffic congestion. These endeavors
have subsequently increased the number of bridge projects
in proportion to overall transportation projects.

Earthquakes, flooding, and typhoons are natural disasters
that often occur in Taiwan because of Taiwan’s location on
the west side of the Ring of Fire at the junction of the Philip-
pine Sea Plate and the Eurasian Plate. These disaster events,
combined with rapid changes in the global climate and sub-
sequent changes in related areas such as environmental and
climate conditions, have exposed bridges to an increasing
number of natural threats. Furthermore, as the length of
bridges increases, aesthetic considerations and the demand
to join or integrate multiple bridges together arise, inflaming
the problems of labor shortage and growing wages in the
construction industry. Bridge projects therefore encounter
increasingly challenging construction conditions that can
no longer be resolved by traditional means. Accordingly,
novel, economical, and highly efficient bridge construction
methods that can overcome terrain constraints and sustain
attacks from natural disasters are in great demand for con-
struction projects.

Hualien and Taitung have some of Taiwan’s most famous
tourist attractions; however, they are also the regions that are
most prone to natural disasters. The Suhua Highway is the
main road connecting Taitung, Hualien, and the Taipei met-
ropolitan area. Nevertheless, because the Suhua Highway is
meandering and steep, vehicle accidents regularly occur. In
poor weather conditions such as strong winds, rains, and
typhoons, disasters frequently occur, resulting in the Suhua
Highway being blocked or bridges collapsing, in turn creating
service interruptions. To address this problem, the central
government proposed the Suhua Highway Alternative Road
Project, in which safe and fast alternative roads were devel-
oped for the disaster-prone sections of the Suhua Highway.

This study investigated the construction of the concrete-
based bridge superstructure for the Suhua Highway Alterna-
tive Road Project, which involved four widely used bridge
construction methods: the advanced shoring method, the
incremental launching method, the balanced cantilever
method, and the precast segmental method. First, the
advanced shoring method creates relatively negligible pollu-
tion and has a relatively minimal environmental impact. It
is suitable for the site in which the project was performed
and is not affected by terrain constraints. However, the
method entails relatively high damage costs and creates less
durable bridges. Second, the incremental launching method
allows the reuse of construction equipment, reducing con-
struction costs. It also has a smaller effect on traffic during
construction. However, it compromises the aesthetics of the
surrounding scenery. Third, the balanced cantilever method
enables easy control over construction quality, facilitating
longer bridge life and reducing bridge maintenance and
repairs. However, the method is relatively expensive and

Step I.1: formulate an MCDA problem within the IVPF environment. Specify the set of candidate alternatives Z = z1, z2,⋯, zm and
the set of evaluative criteria C = c1, c2,⋯, cn , which is divided into CI and CII.
Step I.2: establish the weight vector wT = w1,w2,⋯,wn

T with respect to n criteria. Identify the IVPF evaluative rating pij of each
alternative zi ∈ Z in relation to criterion cj ∈ C. Construct an IVPF decision matrix p = pij m×n.

Step I.3: identify the characteristics P∗ of the displaced positive-ideal IVPF solution z∗ by means of (13) and (15). In addition,
determine the characteristics P# of the displaced negative-ideal IVPF solution z# using (14) and (16).
Step I.4: use (19) to compute the information energy E Pi of the IVPF characteristics Pi for each zi ∈ Z in p. In addition, derive E P∗
and E P# for the displaced ideal IVPF solutions z∗ and z#.
Step I.5: Derive the correlations R Pi, P∗ and R Pi, P# between Pi and P∗ and between Pi and P#, respectively, using (20).

Step I.6: employ (21) to calculate the correlation coefficients K Pi, P∗ and K Pi, P# for each IVPF characteristics Pi in p.
Step I.7: determine the correlation-based closeness index Id Pi using (24) for each zi ∈ Z.
Step I.8: rank the m alternatives in accordance with the Id Pi values. The alternative with the largest Id Pi value is the best choice.

Algorithm 1: For anchored judgments with displaced ideals.

Steps II.1 and II.2: see Steps I.1 and I.2 of Algorithm 1.
Step II.3: apply (26) to calculate the correlation-based closeness index I f Pi of the IVPF characteristics Pi for each zi ∈ Z in p.
Step II.4: rank the m alternatives in accordance with the I f Pi values. The alternative with the largest I f Pi value is the best choice.

Algorithm 2: For anchored judgments with fixed ideals.
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can be delayed or otherwise affected by poor weather condi-
tions. Fourth, the precast segmental method has a relatively
negligible effect on the surrounding landscape and existing
traffic conditions during construction. However, it is limited
by the climate and geological conditions of the site.

The bridge construction criteria selected for this project
were based on those proposed by Pan [58] and Malekly
et al. [21], which are explained as follows: (i) durability: the
service life of the bridge built using a given method; the
bridge should have a permanent service life and not require
frequent maintenance; (ii) damage cost: the maintenance
and repair costs of the bridge when damaged; (iii) construc-
tion cost: the overall costs involved in the construction of
the bridge, from the start of the design process to the comple-
tion of the final construction; (iv) traffic effect: the negative
effect of the bridge construction process on existing traffic;
(v) site condition: the conditions of the site, which includes
the suitability of the construction method to a site’s terrain
structure and whether the site imposes constraints on the
construction methods; (vi) climatic condition: whether the
climate of the site accelerates the damage inflicted on the
bridge or delays its construction; (vii) landscape: whether
the bridge has a negative effect on the landscape of the
surrounding environment, or whether the bridge itself is aes-
thetically attractive; and (viii) environmental impact: damage
caused by the construction method and process to the sur-
rounding environment. Of the eight criteria, durability and
site condition are benefit criteria, whereas the remaining cri-
teria are cost criteria.

4.2. Application of Selecting a Suitable Bridge Construction
Method. The practical case concerning the selection problem
of bridge construction methods is modified from the case
introduced by Chen [18, 42, 59, 60] and Wang and Chen
[52]. This case involves an MCDA problem of how to select
the most suitable bridge construction method for the Suhua
Highway Alternative Road Project in the Hualien and
Taitung areas of Taiwan. As explained earlier, this MCDA
problem is defined by four candidate bridge-construction
methods and eight criteria for evaluating the alternatives.

First, the developed methodology with Algorithm 1 was
utilized to help the authority select the most appropriate
bridge construction method. In Step I.1, the set of candidate
alternatives is denoted by Z = z1 (the advanced shoring
method), z2 (the incremental launching method), z3 (the bal-
anced cantilever method), and z4 (the precast segmental
method)}. The set of evaluative criteria is denoted by C =
c1 (durability), c2 (damage cost), c3 (construction cost), c4
(traffic effect), c5 (site condition), c6 (climatic condition),
c7 (landscape), and c8 (environmental impact)}, which is
divided into CI = c1, c5 and CII = c2, c3, c4, c6, c7, c8 .

The original evaluative ratings data presented in Chen
[18, 59, 60] and Wang and Chen [52] belong to Atanassov’s
interval-valued intuitionistic fuzzy (IVIF) sets [61], not IVPF
sets. To validate the feasibility of the IVPF outranking
method with an assignment model, Chen [42] converted
the IVIF evaluative ratings into the IVPF values by simply
recalculating the corresponding intervals of the indetermi-
nacy degree. That is, Chen did not adjust interval-valued

degrees of membership and nonmembership with respect to
each original IVIF evaluative rating. Nevertheless, although
there can be no doubt that the transformed data belong to
IVPF sets, there must be considerable doubt concerning the
distinct interrelationships among membership, nonmember-
ship, and indeterminacy degrees. In contrast with Chen [42],
this paper proposes another approach to reasonably convert
the IVIFdata into the IVPFvalues for conducting a substantive
transformation of the IVPF representation and maintaining
essential information conveyed by the original IVIF evaluative
ratings. More specifically, let p0ij denote the IVIF evaluative
rating of an alternative zi ∈ Z in terms of criterion cj ∈ C
within the IVIF decision environment, where p0ij = μ0−ij ,
μ0+ij , ν0−ij , ν0+ij and the interval of the indeterminacy degree

π0
ij = π0−

ij , π0+
ij = 1 − μ0+ij − ν0+ij , 1 − μ0−ij − ν0−ij . To adapt the

p0ij value to the IVPF environment, the IVPF evaluative rating
pij related to p0ij can be determined in the following manner:

pij = μ−ij, μ+ij , ν−ij, ν+ij

= min
μ0−ij

2

μ0−ij
2
+ ν0−ij

2
+ π0+

ij

2,

μ0+ij
2

μ0+ij
2
+ ν0+ij

2
+ π0−

ij

2 ,

max
μ0−ij

2

μ0−ij
2
+ ν0−ij

2
+ π0+

ij

2,

μ0+ij
2

μ0+ij
2
+ ν0+ij

2
+ π0−

ij

2 ,

min
ν0−ij

2

μ0−ij
2
+ ν0−ij

2
+ π0+

ij

2,

ν0+ij
2

μ0+ij
2
+ ν0+ij

2
+ π0−

ij

2 ,

max
ν0−ij

2

μ0−ij
2
+ ν0−ij

2
+ π0+

ij

2,

ν0+ij
2

μ0+ij
2
+ ν0+ij

2
+ π0−

ij

2 ,
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where 0 ≤ μ−ij ≤ μ+ij ≤ 1, 0 ≤ ν−ij ≤ ν+ij ≤ 1, and μ+ij
2 + ν+ij

2 ≤ 1.
The interval of the indeterminacy degree corresponding to pij
can be computed using (8) or, equivalently, be determined as
follows:

πij = π−
ij, π+

ij = min
π0−
ij

2

μ0+ij
2
+ ν0+ij

2
+ π0−

ij

2,

π0+
ij

2

μ0−ij
2
+ ν0−ij

2
+ π0+

ij

2 ,

max
π0−
ij

2

μ0+ij
2
+ ν0+ij

2
+ π0−

ij

2,

π0+
ij

2

μ0−ij
2
+ ν0−ij

2
+ π0+

ij

2 ,

33

where 0≤π−
ij≤π

+
ij ≤ 1, μ−ij

2 + ν−ij
2 + π+

ij
2 = 1, and μ+ij

2 +
ν+ij

2 + π−
ij

2 = 1. The IVPF evaluative ratings required in
the bridge construction case can then be acquired according
to the transformation procedure in (32) and (33).

Table 1 contrasts the original IVIF data with the obtained
IVPF results. Based on the pij values in this table, the IVPF
decision matrix p = pij 4×8, along with the IVPF characteris-

tics Pi, can be obtained correspondingly. Consider the IVIF
evaluative rating p037 = 0 18, 0 19 , 0 68, 0 74 with π0

37 =
0 07, 0 14 as an example. Employing (32) and (33), p37
and π37 were calculated as follows:

p37 = min 0 18 2

0 18 2 + 0 68 2 + 0 14 2,

0 19 2

0 19 2 + 0 74 2 + 0 07 2 ,

max 0 18 2

0 18 2 + 0 68 2 + 0 14 2,

0 19 2

0 19 2 + 0 74 2 + 0 07 2 ,

min 0 68 2

0 18 2 + 0 68 2 + 0 14 2,

0 74 2

0 19 2 + 0 74 2 + 0 07 2 ,

max 0 68 2

0 18 2 + 0 68 2 + 0 14 2,

0 74 2

0 19 2 + 0 74 2 + 0 07 2

= min 0 2510, 0 2477 , max 0 2510, 0 2477 ,

min 0 9481, 0 9645 , max 0 9481, 0 9645

= 0 2477, 0 2510 , 0 9481, 0 9645 ,

π37 = min 0 07 2

0 19 2 + 0 74 2 + 0 07 2,

0 14 2

0 18 2 + 0 68 2 + 0 14 2 ,

max 0 07 2

0 19 2 + 0 74 2 + 0 07 2,

0 14 2

0 18 2 + 0 68 2 + 0 14 2

= min 0 0912, 0 1952 , max 0 0912, 0 1952
= 0 0912, 0 1952

34

The original case concerning the selection of bridge
construction methods was initiated by Chen [59], and in
this case the importance weights of the criteria were
expressed with a set of incomplete and inconsistent infor-
mation. In other words, the importance weights of the cri-
teria are unknown a priori. Thus, this paper adopts the
preference information provided in Chen [18] and Wang
and Chen [52]. Nevertheless, the criterion weights are
expressed with IVIF values, which is different from the sca-
lar weights used in the proposed methodology. To address
this issue, the concept of score functions based on IVIF
information was employed to determine nonfuzzy and nor-
malized weights for each criterion. Let w0

j denote the IVIF
importance weight of a criterion cj ∈ C within the IVIF envi-

ronment, where w0
j = ω0−

j , ω0+
j , ϖ0−

j , ϖ0+
j . This paper

applies the concept of score functions to obtain comparable
values of w0

j and then performs a normalization of the
obtained results to fulfill the normalization condition. The
widely used score function of an IVIF value is between −1
and 1 [52]. To facilitate the following study, this paper
attempts to employ the modified score function introduced
by Yu et al. [62] because the range of their definition is
between 0 and 1. According to Yu et al.’s definition (i.e.,
the score function of the IVIF value w0

j is defined as 1/4 ⋅
2 + ω0−

j + ω0+
j − ϖ0−

j − ϖ0+
j ), the normalized weight of crite-

rion cj is determined as follows:
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wj =
2 + ω0−

j + ω0+
j − ϖ0−

j − ϖ0+
j

∑n
j′=1 2 + ω0−

j′ + ω0+
j′ − ϖ0−

j′ − ϖ0+
j′

, 35

where 0 ≤wj ≤ 1 and ∑n
j=1wj = 1. Considering the bridge

construction case presented in Chen [18] and Wang and
Chen [52], the data of the IVIF importance weights are given
as follows: w0

1 = 0 49, 0 67 , 0 08, 0 12 , w0
2 = 0 30, 0 64 ,

0 09, 0 21 , w0
3 = 0 26, 0 54 , 0 18, 0 32 , w0

4 = 0 11,
0 33 , 0 24,0 43 , w0

5= 0 42,0 56 , 0 04, 0 07 , w0
6= 0 38,

0 54 , 0 04, 0 24 , w0
7 = 0 55, 0 69 , 0 09, 0 18 , and w0

8 =
0 54, 0 63 , 0 10, 0 13 . Using (35), the obtained results of

the nonfuzzy and normalized weights are as follows: w1 =
0 1404, w2 = 0 1252, w3 = 0 1090, w4 = 0 0839, w5 = 0 1361,
w6 = 0 1252, w7 = 0 1408, and w8 = 0 1394. The weight vec-
tor wT = w1,w2,⋯,w8

T can be acquired correspondingly.
In Step I.3, applying (15) and (16), the characteristics P∗

and P# of the displaced ideal IVPF solutions z∗ and z#,
respectively, were identified based on the pij values in

Table 1, as follows:

Table 1: Evaluative ratings and indeterminacy intervals in the bridge construction case.

zi cj
Original IVIF evaluative ratings Converted IVPF evaluative ratings

p0ij π0
ij pij πij

z1

c1 ([0.28, 0.35], [0.33, 0.46]) [0.19, 0.39] ([0.4806, 0.5752], [0.5664, 0.7560]) [0.3123, 0.6694]

c2 ([0.43, 0.58], [0.16, 0.17]) [0.25, 0.41] ([0.6988, 0.8868], [0.2599, 0.2600]) [0.3822, 0.6663]

c3 ([0.08, 0.16], [0.63, 0.75]) [0.09, 0.29] ([0.1146, 0.2072], [0.9024, 0.9713]) [0.1166, 0.4154]

c4 ([0.07, 0.49], [0.38, 0.41]) [0.10, 0.55] ([0.1041, 0.7577], [0.5653, 0.6340]) [0.1546, 0.8183]

c5 ([0.64, 0.67], [0.15, 0.33]) [0.00, 0.21] ([0.8971, 0.9274], [0.2174, 0.4418]) [0.0000, 0.3043]

c6 ([0.07, 0.14], [0.64, 0.74]) [0.12, 0.29] ([0.0991, 0.1836], [0.9064, 0.9703]) [0.1574, 0.4107]

c7 ([0.14, 0.21], [0.34, 0.37]) [0.42, 0.52] ([0.2198, 0.3513], [0.5339, 0.6189]) [0.7025, 0.8165]

c8 ([0.04, 0.09], [0.88, 0.90]) [0.01, 0.08] ([0.0452, 0.0995], [0.9949, 0.9950]) [0.0111, 0.0904]

z2

c1 ([0.68, 0.71], [0.06, 0.26]) [0.03, 0.26] ([0.9309, 0.9383], [0.0821, 0.3436]) [0.0396, 0.3559]

c2 ([0.04, 0.12], [0.61, 0.86]) [0.02, 0.35] ([0.0568, 0.1382], [0.8660, 0.9901]) [0.0230, 0.4969]

c3 ([0.09, 0.26], [0.33, 0.46]) [0.28, 0.58] ([0.1337, 0.4348], [0.4901, 0.7692]) [0.4682, 0.8614]

c4 ([0.12, 0.23], [0.64, 0.67]) [0.10, 0.24] ([0.1729, 0.3215], [0.9222, 0.9365]) [0.1398, 0.3458]

c5 ([0.37, 0.39], [0.26, 0.29]) [0.32, 0.37] ([0.6332, 0.6702], [0.4450, 0.4984]) [0.5499, 0.6332]

c6 ([0.18, 0.19], [0.74, 0.78]) [0.03, 0.08] ([0.2351, 0.2365], [0.9664, 0.9709]) [0.0373, 0.1045]

c7 ([0.49, 0.66], [0.18, 0.26]) [0.08, 0.33] ([0.7934, 0.9245], [0.2915, 0.3642]) [0.1121, 0.5343]

c8 ([0.18, 0.41], [0.17, 0.28]) [0.31, 0.65] ([0.2588, 0.7005], [0.2444, 0.4784]) [0.5296, 0.9345]

z3

c1 ([0.72, 0.77], [0.17, 0.20]) [0.03, 0.11] ([0.9627, 0.9672], [0.2273, 0.2512]) [0.0377, 0.1471]

c2 ([0.03, 0.07], [0.66, 0.76]) [0.17, 0.31] ([0.0411, 0.0895], [0.9044, 0.9720]) [0.2174, 0.4248]

c3 ([0.05, 0.18], [0.36, 0.63]) [0.19, 0.59] ([0.0722, 0.2639], [0.5195, 0.9235]) [0.2785, 0.8514]

c4 ([0.35, 0.45], [0.39, 0.44]) [0.11, 0.26] ([0.5983, 0.7043], [0.6667, 0.6887]) [0.1722, 0.4445]

c5 ([0.64, 0.67], [0.15, 0.33]) [0.00, 0.21] ([0.8971, 0.9274], [0.2174, 0.4418]) [0.0000, 0.3043]

c6 ([0.14, 0.36], [0.22, 0.40]) [0.24, 0.64] ([0.2026, 0.6110], [0.3183, 0.6788]) [0.4073, 0.9261]

c7 ([0.18, 0.19], [0.68, 0.74]) [0.07, 0.14] ([0.2477, 0.2510], [0.9481, 0.9645]) [0.0912, 0.1952]

c8 ([0.36, 0.40], [0.44, 0.58]) [0.02, 0.20] ([0.5675, 0.5974], [0.7301, 0.8229]) [0.0284, 0.3319]

z4

c1 ([0.37, 0.52], [0.33, 0.41]) [0.07, 0.30] ([0.6385, 0.7809], [0.5695, 0.6157]) [0.1051, 0.5177]

c2 ([0.26, 0.36], [0.46, 0.64]) [0.00, 0.28] ([0.4348, 0.4903], [0.7692, 0.8716]) [0.0000, 0.4682]

c3 ([0.36, 0.40], [0.52, 0.52]) [0.08, 0.12] ([0.5592, 0.6052], [0.7868, 0.8078]) [0.1210, 0.1864]

c4 ([0.17, 0.40], [0.29, 0.48]) [0.12, 0.54] ([0.2673, 0.6287], [0.4559, 0.7544]) [0.1886, 0.8489]

c5 ([0.15, 0.31], [0.21, 0.62]) [0.07, 0.64] ([0.2174, 0.4450], [0.3043, 0.8899]) [0.1005, 0.9274]

c6 ([0.26, 0.85], [0.13, 0.14]) [0.01, 0.61] ([0.3848, 0.9866], [0.1625, 0.1924]) [0.0116, 0.9027]

c7 ([0.04, 0.15], [0.83, 0.84]) [0.01, 0.13] ([0.0476, 0.1758], [0.9844, 0.9868]) [0.0117, 0.1546]

c8 ([0.13, 0.21], [0.75, 0.77]) [0.02, 0.12] ([0.1687, 0.2630], [0.9645, 0.9733]) [0.0251, 0.1557]
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P∗ = c1, 0 9627, 0 9672 , 0 0821, 0 2512 ,
c2, 0 0411, 0 0895 , 0 9044, 0 9901 ,
c3, 0 0722, 0 2072 , 0 9024, 0 9713 ,
c4, 0 1041, 0 3215 , 0 9222, 0 9365 ,
c5, 0 8971, 0 9274 , 0 2174, 0 4418 ,
c6, 0 0991, 0 1836 , 0 9664, 0 9709 ,
c7, 0 0476, 0 1758 , 0 9844, 0 9868 ,
c8, 0 0452, 0 0995 , 0 9949, 0 9950 ,

P# = c1, 0 4806, 0 5752 , 0 5695, 0 7560 ,
c2, 0 6988, 0 8868 , 0 2599, 0 2600 ,
c3, 0 5592, 0 6052 , 0 4901, 0 7692 ,
c4, 0 5983, 0 7577 , 0 4559, 0 6340 ,
c5, 0 2174, 0 4450 , 0 4450, 0 8899 ,
c6, 0 3848, 0 9866 , 0 1625, 0 1924 ,
c7, 0 7934, 0 9245 , 0 2915, 0 3642 ,
c8, 0 5675, 0 7005 , 0 2444, 0 4784

36

Furthermore, the intervals of the indeterminacy degrees
corresponding to each p∗j in P∗ were calculated as follows:
π−
∗1, π+

∗1 = 0 0377, 0 2578 , π−
∗2, π+

∗2 = 0 1081, 0 4247 ,
π−
∗3, π+

∗3 = 0 1168, 0 4248 , π−
∗4, π+

∗4 = 0 1400, 0 3724 ,
π−
∗5, π+

∗5 = 0 0000, 0 3846 , π−
∗6, π+

∗6 = 0 1538, 0 2372 ,
π−
∗7, π+

∗7 = 0 0000, 0 1694 , and π−
∗8, π+

∗8 = 0 0086, 0 0902 .
The intervals of the indeterminacy degrees corresponding to
each p#j in P# were acquired as follows: π−

#1, π+
#1 = 0 3124,

0 6669 , π−
#2, π+

#2 = 0 3821, 0 6664 , π−
#3, π+

#3 = 0 2051,
0 6687 , π−

#4, π+
#4 = 0 1547, 0 6589 , π−

#5, π+
#5 = 0 1003,

0 8687 , π−
#6, π+

#6 = 0 0000, 0 9086 , π−
#7, π+

#7 = 0 1125,
0 5344 , and π−

#8, π+
#8 = 0 5296, 0 7863 .

In Step I.4, the information energies of all IVPF character-
istics Pi in p were computed using (19); the obtained results
are as follows: E P1 = 0 6541, E P2 = 0 6547, E P3 =
0 6856, and E P4 = 0 6831. Additionally, the information
energies of P∗ and P# for the displaced ideal IVPF solutions
were acquired as follows: E P∗ = 0 8556 and E P# =
0 5430. Consider E P1 as an example:

E P1 = 1
2 ⋅ 0 1404 ⋅ 0 4806 4 + 0 5752 4 + 0 5664 4

+ 0 7560 4 + 0 3123 4 + 0 6694 4 + 0 1252
⋅ 0 6988 4 + 0 8868 4 + 0 2599 4 + 0 2600 4

+ 0 3822 4 + 0 6663 4 + 0 1090 ⋅ 0 1146 4

+ 0 2072 4 + 0 9024 4 + 0 9713 4 + 0 1166 4

+ 0 4154 4 + 0 0839 ⋅ 0 1041 4 + 0 7577 4

+ 0 5653 4 + 0 6340 4 + 0 1546 4 + 0 8183 4

+ 0 1361 ⋅ 0 8971 4 + 0 9274 4 + 0 2174 4

+ 0 4418 4 + 0 0000 4 + 0 3043 4 + 0 1252

⋅ 0 0991 4 + 0 1836 4 + 0 9064 4 + 0 9703 4

+ 0 1574 4 + 0 4107 4 + 0 1408 ⋅ 0 2198 4

+ 0 3513 4 + 0 5339 4 + 0 6189 4 + 0 7025 4

+ 0 8165 4 + 0 1394 ⋅ 0 0452 4 + 0 0995 4

+ 0 9949 4 + 0 9950 4 + 0 0111 4 + 0 0904 4

= 0 6541
37

In Steps I.5 and I.6, the correlations between Pi and P∗ for
all zi ∈ Zwere determinedusing (20); the obtained results are as
follows: R P1, P∗ = 0 5601, R P2, P∗ = 0 5343, R P3, P∗ =
0 6685, and R P4, P∗ = 0 5508. Next, using (21), the correla-
tion coefficients were computed as follows: K P1, P∗ =
0 7487, K P2, P∗ = 0 7138, K P3, P∗ = 0 8729, and K P4,
P∗ = 0 7205. Furthermore, the correlations between Pi and
P# for each zi were acquired as follows: R P1, P# = 0 3002,
R P2, P# = 0 3353, R P3, P# = 0 2950, and R P4, P# =
0 3933. The correlation coefficients for each Pi were derived
as follows: K P1, P# = 0 5037, K P2, P# = 0 5624, K P3,
P# = 0 4835, and K P4, P# = 0 6457. Taking R P1, P∗ and
K P1, P∗ for example:

R P1, P∗ = 1
2 ⋅ 0 1404 ⋅ 0 4806 2 ⋅ 0 9627 2 + 0 5752 2

⋅ 0 9672 2 + 0 5664 2 ⋅ 0 0821 2 + 0 7560 2

⋅ 0 2512 2 + 0 3123 2 ⋅ 0 0377 2 + 0 6694 2

⋅ 0 2578 2 + 0 1252 ⋅ 0 6988 2 ⋅ 0 0411 2

+ 0 8868 2 ⋅ 0 0895 2 + 0 2599 2 ⋅ 0 9044 2

+ 0 2600 2 ⋅ 0 9901 2 + 0 3822 2 ⋅ 0 1081 2

+ 0 6663 2 ⋅ 0 4247 2 + 0 1090 ⋅ 0 1146 2

⋅ 0 0722 2 + 0 2072 2 ⋅ 0 2072 2 + 0 9024 2

⋅ 0 9024 2 + 0 9713 2 ⋅ 0 9713 2 + 0 1166 2

⋅ 0 1168 2 + 0 4154 2 ⋅ 0 4248 2 + 0 0839
⋅ 0 1041 2 ⋅ 0 1041 2 + 0 7577 2 ⋅ 0 3215 2

+ 0 5653 2 ⋅ 0 9222 2 + 0 6340 2 ⋅ 0 9365 2

+ 0 1546 2 ⋅ 0 1400 2 + 0 8183 2 ⋅ 0 3724 2

+ 0 1361 ⋅ 0 8971 2 ⋅ 0 8971 2 + 0 9274 2

⋅ 0 9274 2 + 0 2174 2 ⋅ 0 2174 2 + 0 4418 2

⋅ 0 4418 2 + 0 0000 2 ⋅ 0 0000 2 + 0 3043 2

⋅ 0 3846 2 + 0 1252 0 0991 2 ⋅ 0 0991 2

+ 0 1836 2 ⋅ 0 1836 2 + 0 9064 2 ⋅ 0 9664 2

+ 0 9703 2 ⋅ 0 9709 2 + 0 1574 2 ⋅ 0 1538 2

+ 0 4107 2 ⋅ 0 2372 2 + 0 1408 ⋅ 0 2198 2

⋅ 0 0476 2 + 0 3513 2 ⋅ 0 1758 2 + 0 5339 2

⋅ 0 9844 2 + 0 6189 2 ⋅ 0 9868 2 + 0 7025 2
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⋅ 0 0000 2 + 0 8165 2 ⋅ 0 1694 2 + 0 1394
⋅ 0 0452 2 ⋅ 0 0452 2 + 0 0995 2 ⋅ 0 0995 2

+ 0 9949 2 ⋅ 0 9949 2 + 0 9950 2 ⋅ 0 9950 2

+ 0 0111 2 ⋅ 0 0086 2 + 0 0904 2 ⋅ 0 0902 2

= 0 5601,

K P1, P∗ = 0 5601
0 6541 ⋅ 0 8556

= 0 7487

38

In Step I.7, using (24), the correlation-based closeness
indices for all zi ∈ Z were determined as follows: Id P1 =
0 7487/ 0 7487+0 5037 =0 5978, Id P2 = 0 5593, Id P3 =

0 6435, and Id P4 = 0 5274. In Step I.8, the ultimate priority
ranking z3 ≻ z1 ≻ z2 ≻ z4 was acquired by sorting each Id Pi
value in descending order. Therefore, alternative z3, i.e.,
the balanced cantilever method, should be selected as the
most appropriate bridge construction method among the
four candidate alternatives for the Suhua Highway Alterna-
tive Road Project.

Next, the developed methodology with Algorithm 2 was
applied to solve the same selection problem of bridge construc-
tionmethods. Note that Steps II.1 and II.2 are the same as Steps
I.1 and I.2 of Algorithm 1. In Step II.3, the correlation-based
closeness index I f Pi of each IVPF characteristic Pi for all
zi ∈ Z can be determined using (26), and the obtained results
are as follows: I f P1 = 0 7424, I f P2 = 0 7292, I f P3 =
0 8269, and I f P4 = 0 6673. Using I f P1 as an example,

In Step II.4, the ultimate priority ranking z3 ≻ z1 ≻ z2 ≻ z4
was obtained by sorting each I f Pi value in descending
order. This ranking result is in accordance with that yielded
by Algorithm 1. Therefore, the best choice for the bridge con-
struction case is the balanced cantilever method (z3).

4.3. Comparative Discussions. This subsection conducts a
comparative analysis of the obtained results yielded by the
developed methodology with Algorithms 1 and 2. This anal-
ysis focuses on the respective solution results based on
anchored judgments with displaced ideals and fixed ideals.

It was not necessary for decision-makers to have deter-
mined the correlation coefficients K Pi, P+ and K Pi, P−
when applying Algorithm 2 to address MCDA problems.
Nevertheless, the current comparative study additionally cal-
culated K Pi, P+ and K Pi, P− to facilitate detailed compar-
isons of Algorithms 1 and 2 on a consistent basis. To
demonstrate the differences among the relevant outcomes
generated by the proposed methodology from the perspec-
tives of displaced and fixed ideals, this paper highlights the
summarized results of pairwise comparisons with respect to
correlation coefficients and correlation-based closeness indi-
ces in the following three figures.

Figure 1 depicts the comparison results of the correlation
coefficients K Pi, P∗ and K Pi, P+ with respect to the
positive-ideal IVPF solutions z∗ and z+. As revealed in this
figure, there are no evident differences between K Pi, P∗
and K Pi, P+ in relation to each alternative. Thus, the corre-
lations between the IVPF characteristics Pi and P∗ are very

similar to the correlations between Pi and P+ in the bridge

construction case. Moreover, the values of K Pi, P∗ and
K Pi, P+ show very similar distributions and trends with
respect to the four alternatives. More specifically, the two
similar rankings z3 ≻ z1 ≻ z4 ≻ z2 (in accordance with K P3,
P∗ > K P1, P∗ > K P4, P∗ > K P2, P∗ ) and z3 ≻ z1 ≻ z2 ≻
z4 (in the light of K P3, P+ > K P1, P+ > K P2, P+ > K P4,
P+ ) can be acquired by sorting the values of K Pi, P∗ and
K Pi, P+ separately in descending order. On average, the
extent of each alternative zi associated with the displaced
positive-ideal IVPF solution z∗ is very close to that of the zi
associated with the fixed positive-ideal IVPF solution z+,
based on the comparison results via correlation coefficients
of IVPF characteristics.

Figure 2 reveals the summarized comparisons of the cor-
relation coefficients K Pi, P# and K Pi, P− in terms of the
negative-ideal IVPF solutions z# and z−. The contrast
between K Pi, P# and K Pi, P− is significantly different
from the contrast between K Pi, P∗ and K Pi, P+ in
Figure 1. Overall, the dissimilarity between the IVPF charac-
teristics Pi and P# is relatively lower than that between Pi and
P− in the bridge construction case. As can be expected, the
K Pi, P# values are markedly greater than the K Pi, P+
values. The difference between K Pi, P# and K Pi, P− is
obvious in general. However, they demonstrate a common
distribution among the four alternatives. More precisely,
by sorting the K Pi, P# and K Pi, P− values separately
in ascending order, the same ranking z3 ≻ z1 ≻ z2 ≻ z4 can
be obtained because K P3, P# < K P1, P# < K P2, P# < K
P4, P# and K P3, P− < K P1, P− < K P2, P− < K P4, P− .

I f P1 =
∑cj∈ c1,c5 wj ⋅ μ−i j

2
+ μ+i j

2
+∑cj∈ c2,c3,c4,c6,c7,c8 wj ⋅ ν−ij

2
+ ν+i j

2

∑8
j=1 wj ⋅ 2 − π−

ij

2
− π+

i j

2

= 0 1404 ⋅ 0 48062 + 0 57522 + 0 1361 ⋅ 0 89712 + 0 92742 + 0 1252 ⋅ 0 69882 + 0 88682 + 0 1090 ⋅ 0 11462 + 0 20722 + 0 0839 ⋅ 0 10412 + 0 75772 + 0 1252 ⋅ 0 09912 + 0 18362 + 0 1408 ⋅ 0 21982 + 0 35132 + 0 1394 ⋅ 0 04522 + 0 09952
0 1404 ⋅ 2 − 0 31232 − 0 66942 + 0 1252 ⋅ 2 − 0 38222 − 0 66632 + 0 1090 ⋅ 2 − 0 11662 − 0 41542 + 0 0839 ⋅ 2 − 0 15462 − 0 81832 + 0 1361 ⋅ 2 − 0 00002 − 0 30432 + 0 1252 ⋅ 2 − 0 15742 − 0 41072 + 0 1408 ⋅ 2 − 0 70252 − 0 81652 + 0 1394 ⋅ 2 − 0 01112 − 0 09042

= 0 7424

39
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Conversely, there is an evident distinction between P# and
P−; however, the difference between P∗ and P+ is not signif-
icant everywhere. Thus, the difference between K Pi, P#
and K Pi, P− should be obviously larger than that between
K Pi, P∗ and K Pi, P+ . As seen in Figure 2, the K Pi, P#
values are larger than the K Pi, P− values with respect to the
four alternatives. In contrast, the K Pi, P∗ values are close to
the K Pi, P+ values for all alternatives, as indicated in
Figure 1.

Figure 3 shows the contrast of the correlation-based
closeness indices Id Pi and I f Pi . In the bridge construc-
tion case, the correlation-based closeness indices lie in the
range from 0.52 to 0.65 based on anchored judgments with
displaced ideals (i.e., using Algorithm 1) and from 0.66 to
0.83 based on anchored judgments with fixed ideals (i.e.,
using Algorithm 2). These indices have different ranges.
However, they show a common distribution among the four
alternatives. Specifically, by sorting the Id Pi and I f Pi
values separately in descending order, the same ultimate
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Figure 1: Comparison results for K Pi, P∗ and K Pi, P+ .
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priority ranking z3 ≻ z1 ≻ z2 ≻ z4 can be obtained according
to Id P3 > Id P1 > Id P2 > Id P4 using Algorithm 1 and
I f P3 > I f P1 > I f P2 > I f P4 using Algorithm 2. The fea-
sibility and applicability of the proposed methodology with
Algorithms 1 and 2 can be validated and supported through
the practical application concerning the selection problem
of bridge construction methods.

Based on the comparison results, the developed Algo-
rithms 1 and 2 can generate a stable and steady ultimate pri-
ority ranking among competing alternatives. In particular,
the implementation procedure of Algorithm 2 is significantly
simpler and more effective than that of Algorithm 1. In con-
trast, with Algorithm 1 or other MCDAmethods in the IVPF
context, the developed Algorithm 2 can fully account for the
information associated with IVPF evaluative ratings and
importance weights in a convenient manner. However, Algo-
rithm 2 can also produce an intuitively appealing and per-
suading solution result. In this respect, adopting Algorithm
2 as the main structure of the IVPF compromise approach
is suggested, i.e., the usage of correlation-based closeness
indices with respect to the fixed ideal IVPF solutions when
addressing MCDA problems within the IVPF environment.

5. Comparative Analysis

This section attempts to conduct some comparisons of the
proposed IVPF compromise approach with well-known
and widely used compromise models as well as with different
fuzzy MCDA methods in uncertain environments based on
other nonstandard fuzzy sets to illustrate the advantages
and effectiveness of the developed methodology. Further-
more, this section extends the applicability of the proposed
methods to other application fields for enriching the practical
potentials in the real world.

5.1. Comparison to Well-Known TOPSIS Methods. Consider
that the TOPSIS methodology is the most widely used com-
promise model in the MCDA field. In particular, TOPSIS uti-
lizes the distances to both the ideal and the negative-ideal
solutions simultaneously to determine the closeness coeffi-
cient, which inspires this paper to develop the useful concept
of correlation-based closeness indices. More importantly,
both TOPSIS and the proposed approach belong to the com-
promise model. For these reasons, this subsection extends the
classic TOPSIS to the IVPF environment to conduct a com-
prehensive comparative study.

In this subsection, the comparative analysis focuses on a
comparison of the results yielded by the extended TOPSIS
method and those obtained by the developed methodology.
TOPSIS has been the most widely used compromise model
in the last few decades. Because the proposed methods belong
to the compromise model in nature, this paper attempts to
extend the classic TOPSIS to the IVPF environment to
address highly uncertain information based on IVPF sets to
facilitate a comparative study.

Consider an MCDA problem involving the IVPF deci-
sion matrix p = pij m×n and the weight vector wT = w1, w2,
⋯,wn

T . The IVPF TOPSIS method is presented as a series
of successive steps. First, let an IVPF value ρij denote the
weighted evaluative rating of an alternative zi ∈ Z; ρij is calcu-
lated as follows:

ρij =wj ⋅ pij = 1 − 1 − μ−ij
2 wj

,

1 − 1 − μ+ij
2 wj

, ν−ij
wj , ν+ij

wj

40
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Concerning anchored judgments with displaced ideals, let
two IVPF values ρ∗j and ρ#j denote the weighted evaluative
ratings of the displaced positive-ideal IVPF solution z∗ and
the displaced negative-ideal IVPF solution z#, respectively.
Using Definition 3, ρ∗j and ρ# j are identified as follows:

ρ∗j =
∨
m

i=1
ρij if cj ∈ CI,

∧
m

i=1
ρij if cj ∈ CII,

ρ#j =
∧
m

i=1
ρij if cj ∈ CI,

∨
m

i=1
ρij if cj ∈ CII,

41

where

∨
m

i=1
ρij = 1 − 1 − maxm

i=1
μ−ij

2 wj

,

1 − 1 − maxm

i=1
μ+ij

2 wj

,

min
m

i=1
ν−ij

wj

, min
m

i=1
ν+ij

wj

,

∧
m

i=1
ρij = 1 − 1 − min

m

i=1
μ−ij

2 wj

,

1 − 1 − min
m

i=1
μ+ij

2 wj

,

maxm

i=1
ν−ij

wj , maxm

i=1
ν+ij

wj

42

Next, the distances D ρij, ρ∗j and D ρij, ρ#j between ρij
and ρ∗j and between ρij and ρ#j, respectively, can be com-
puted using Definition 4. Based on the obtained D ρij, ρ∗j ,
the separation D∗

i of each alternative zi ∈ Z from the displaced
positive-ideal IVPF solution z∗ is given as follows:

D∗
i =

1
n
〠
n

j=1
D ρij, ρ∗j 43

Similarly, according to the obtained D ρij, ρ#j , the sepa-
ration D#

i of each alternative zi ∈ Z from the displaced
negative-ideal IVPF solution z# is given as follows:

D#
i = 1

n
〠
n

j=1
D ρij, ρ#j 44

Let CCd
i denote the closeness coefficient of an alternative

zi with respect to the displaced ideal IVPF solutions; it is
defined as follows:

CCd
i =

D#
i

D∗
i +D#

i

45

According to CCd
i in descending order, the ultimate prior-

ity orders amongm candidate alternatives can be determined.
Concerning anchored judgments with fixed ideals, let two

IVPF values ρ+j and ρ−j denote the weighted evaluative rat-
ings of the fixed positive-ideal IVPF solution z+ and the fixed
negative-ideal IVPF solution z−, respectively; they are given
as follows:

ρ+j =wj ⋅ p+j =
1, 1 , 0, 0 if cj ∈ CI,
0, 0 , 1, 1 if cj ∈ CII,

ρ−j =wj ⋅ p−j =
0, 0 , 1, 1 if cj ∈ CI,
1, 1 , 0, 0 if cj ∈ CII

46

After determining the distances D ρij, ρ+j and D ρij,
ρ−j for each ρij, the separations D

+
i and D−

i of each alterna-
tive zi from the fixed ideal IVPF solutions z+ and z−, respec-
tively, can be obtained as follows:

D+
i =

1
n
〠
n

j=1
D ρij, ρ+j ,

D−
i =

1
n
〠
n

j=1
D ρij, ρ−j

47

The closeness coefficient CCf
i of an alternative zi

with respect to the fixed ideal IVPF solutions is calcu-
lated as follows:

CCf
i =

D−
i

D+
i +D−

i
48

The ultimate priority orders among m candidate alterna-

tives can be acquired in accordance with the CCf
i values in

descending order.
Employing the IVPF TOPSIS method to address the

selection problem of bridge construction methods, the
obtained results of the separations (D∗

i , D
#
i , D

+
i , and D−

i )

and the closeness coefficients (CCd
i and CCf

i ) are revealed
in Table 2. According to the CCd

i values, the ultimate priority
ranking z3 ≻ z2 ≻ z1 ≻ z4 was acquired based on anchored
judgments with displaced ideals. Moreover, the ranking

result z3 ≻ z1 ≻ z2 ≻ z4 was determined by sorting each CCf
i

value based on anchored judgments with fixed ideals. The
best alternative for the bridge construction case is the bal-
anced cantilever method (z3), which is consistent with the
result yielded by the proposed methodology.

5.2. Comparison to Relevant Nonstandard Fuzzy Models.
This subsection includes a comparative discussion with other
nonstandard fuzzy models to demonstrate the advantages
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of the proposed IVPF compromise approaches using
correlation-based closeness indices.

The comparative analysis focuses on investigations of the
obtained results yielded by different MCDA methods based
on other nonstandard fuzzy sets. As mentioned previously,
Chen [18, 59, 60] and Wang and Chen [52] explored the
selection problem of bridge construction methods for the
Suhua Highway Alternative Road Project. The decision envi-
ronments discussed in the above research were based on IVIF
sets. The concept of IVPF sets can be considered an extension
of IVIF sets [40, 43]. From this perspective, this paper further
draws a comparison with these nonstandard fuzzy models,
consisting of the nonlinear assignment-based method [59],
the IVIF qualitative flexible multiple-criteria method (QUA-
LIFLEX) [60], the extended linear assignment method [18],
and the likelihood-based assignment method [52]. Addition-
ally, Chen [42] developed an IVPF outranking method with a
closeness-based assignment model and examined its feasibil-
ity and effectiveness using the selection problem of bridge
construction methods. Thus, this paper also compares the
obtained result yielded by the IVPF outranking method.
With respect to the bridge construction case, Table 3 indicates
the summary application results using the aforementioned
comparative approaches and the proposed methodology. In
particular, the data types of evaluative ratings and criterion
weights, the obtained ranking results, and the category of
MCDA models among the comparative methods are con-
trasted in this table.

According to the side-by-side comparisons presented
in Table 3, the nonlinear assignment-based method, the
IVIF QUALIFLEX method, the extended linear assignment
method, the likelihood-based assignment method (with
Algorithms A and B), and the IVPF outranking method
belong to the outranking model. However, the IVPF TOPSIS
method with respect to displaced/fixed ideals and the pro-
posed IVPF compromise approach (with Algorithms 1 and
2) belong to the compromise model. As revealed in this
table, the assignment-based methods introduced by Chen
[18, 42, 59] and Wang and Chen [52] produced two similar
ultimate ranking results: z1 ≻ z3 ≻ z2 ≻ z4 and z1 ≻ z3 ≻ z4 ≻
z2. Although these results are somewhat different from the
rankings obtained using the compromise-based methods
(i.e., the IVPF TOPSIS method and the proposed methodol-
ogy), the relatively better alternatives (i.e., z1 and z3) and the
relatively worse alternatives (i.e., z2 and z4) yielded by the
assignment- and compromise-based methods are the same.

Conversely, significantly different results z4 ≻ z3 ≻ z1 ≻ z2
and z2 ≻ z3 ≻ z1 ≻ z4 were acquired using the IVIF QUALI-
FLEX method. These inconsistent rankings can result from
the distinct data types of evaluative ratings and/or the differ-
ent preference structures of criterion importance. For exam-
ple, the nonlinear assignment-based method, the IVIF
QUALIFLEX method, and the likelihood-based assignment
method with Algorithm B are aimed at coping with IVIF
MCDA problems involving incomplete preference informa-
tion. More precisely, the importance weights of criteria are
unknown and might even conflict a priori. In contrast, the
extended linear assignment method and the likelihood-
based assignment method with Algorithm A utilized IVIF
values to express criterion weights. Furthermore, the impor-
tance weights were represented using IVPF values in the
IVPF outranking method. The IVPF TOPSIS method and
the proposed methodology evaluated criterion weights as
ordinary (i.e., crisp and nonfuzzy) values. Therefore, there
are evident discriminations among the preference structures
of criterion importance adopted in these comparative
methods. Additionally, the assignment-based methods estab-
lished the evaluative ratings based on IVIF sets, whereas the
compromise-based methods utilized IVPF sets to construct
the evaluative ratings. The above discussions can be a source
of the ranking differentiation in the comparison results.

Concerning the ultimate priority ranking results,
decision-makers often consider the relatively better alterna-
tives further to make a final decision. For the most part, the
alternatives that are top ranked and second ranked in the
ultimate priority ranking deserve serious consideration. As
indicated in Table 3, z1 and z3 are relatively better alterna-
tives in relation to most of the comparative methods. The
assignment-based methods produced the ranking result z1
≻ z3, but the compromise-based methods generated an
opposite result z3 ≻ z1. To investigate the validity and justifi-
ability of these conflicting results, the concept of extended
score functions within the IVPF environment was employed
to facilitate judgments about the priority orders of z1 and z3.

By modifying Yu et al.’s score function (2012) based on
IVIF sets for adapting to the IVPF environment, the extended
score function S ρij of an IVPF-weighted evaluative rating
ρij is computed as follows:

S ρij = 1
4 2 + 1 − 1 − μ−ij

2 wj
2

+ 1 − 1 − μ+ij
2 wj

2

− ν−ij
wj 2

− ν+ij
wj 2

= 1
4 4 − 1 − μ−ij

2 wj

− 1 − μ+ij
2 wj

− ν−ij
2wj

− ν+ij
2wj ,
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where 0 ≤ S ρij ≤ 1. A comparable value ofρij can be acquired
using the extended score function S ρij . Concerning a benefit

Table 2: Separations and closeness coefficients yielded by the IVPF
TOPSIS method.

zi

Anchored judgments with
displaced ideals

Anchored judgments with
fixed ideals

D∗
i D#

i CCd
i Rank D+

i D−
i CCf

i
Rank

z1 0.1002 0.1335 0.5711 3rd 0.2863 0.7759 0.7304 2nd

z2 0.1024 0.1425 0.5818 2nd 0.2925 0.7883 0.7294 3rd

z3 0.0545 0.1816 0.7691 1st 0.2358 0.8080 0.7741 1st

z4 0.1221 0.1151 0.4854 4th 0.3049 0.7499 0.7109 4th
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criterion cj ∈ CI, the larger the S ρij value is, the better the
weighted performance is on ρij, and the greater the preference
is for pij. With respect to a cost criterion cj ∈ CII, the smaller
the S ρij value is, the better the weighted performance is on
ρij, and the greater the preference is for pij.

Consider the weight vector wT = 0 1404, 0 1252, 0 1090
, 0 0839, 0 1361, 0 1252, 0 1408, 0 1394 and the IVPF evalu-
ative ratings p1j and p3j of z1 and z3, respectively, with respect
to each cj ∈ C (see Table 1). Employing (49), the extended
score functions of z1 in relation to each cj were computed
as follows: S ρ11 = 0 0785, S ρ12 = 0 2072, S ρ13 = 0 0087,
S ρ14 = 0 0587, S ρ15 = 0 2433, S ρ16 = 0 0093, S ρ17 =
0 0784, and S ρ18 = 0 0011. Moreover, the extended score
functions of z3 in terms of each cj were derived as follows: S
ρ31 = 0 3221, S ρ32 = 0 0083, S ρ33 = 0 0396, S ρ34 =
0 0547, S ρ35 = 0 2433, S ρ36 = 0 1009, S ρ37 = 0 0108,
and S ρ38 = 0 0623. Recall the set of benefit criteria CI =
c1, c5 and the set of cost criteria CII = c2, c3, c4, c6, c7, c8 .
According to the obtained S ρ1j and S ρ3j values, the
following comparison results can be acquired. Specifically,
z1 performs better than z3 with respect to c3, c6, and c8
because S ρ13 < S ρ33 , S ρ16 < S ρ36 , and S ρ18 < S ρ38 ,
respectively. In contrast, z3 performs better than z1 with
respect to c1, c2, c4, and c7 because S ρ31 > S ρ11 , S ρ32 <
S ρ12 , S ρ34 < S ρ14 , and S ρ37 < S ρ17 , respectively.
Additionally, the result S ρ15 = S ρ35 indicates an indiffer-
ent preference between z1 and z3 with respect to c5. Thus,
ρ3j is better than ρ1 j (or, equivalently, z3 is preferred to z1
on cj) in terms of four criteria, whereas ρ3j is worse than
ρ1j (or, equivalently, z3 is less preferred to z1 on cj) in terms
of three criteria. In particular, z3 performs better than z1 with

respect to the two most important criteria c1 and c7. Based
on the above analysis, the ranking result z3 ≻ z1 yielded by
the compromise-based methods is more appropriate and
reasonable than the z1 ≻ z3 generated by the assignment-
based methods.

Furthermore, the employment of the IVPF TOPSIS
method produced different ranking results, i.e., z3 ≻ z2 ≻
z1 ≻ z4 and z3 ≻ z1 ≻ z2 ≻ z4, with respect to anchored
judgments with displaced ideals and fixed ideals, respectively.
In contrast, the proposed IVPF compromise approach with
Algorithms 1 and 2 acquired the same ranking result z3 ≻
z1 ≻ z2 ≻ z4 in relation to displaced ideals and fixed ideals.
Thus, concerning the comparative methods of the compro-
mise model, the proposed IVPF compromise approach with
Algorithms 1 and 2 is capable of acquiring a stable and cred-
ible result in comparison with the IVPF TOPSIS methods.

5.3. Further Studies in Other Application Fields. This subsec-
tion attempts to employ the proposed methodology to inves-
tigate two real-world cases consisting of a financing decision
of working capital policies and a risk evaluation problem of
technological innovation to show its practicality and effec-
tiveness in other application fields.

The first application filed focuses on a financial decision-
making problem. Chen [44] developed an outranking-based
MCDA method that utilizes a risk attitudinal assignment
model based on an extended concept of risk attitude-based
score functions within the PF and IVPF decision environ-
ments. The practical usefulness and contributions of the risk
attitudinal assignment model have been adequately sup-
ported by a financial decision-making application. In this
paper, the comparative study attempts to employ the pro-
posed IVPF compromise approach to solve the same
selection problem regarding financing policies for working

Table 3: Comparative analysis of the obtained results in the bridge construction case.

Source Methods
Evaluative
rating

Criterion weight Ranking result Model category

Chen [59] Nonlinear assignment-based method IVIF values Incomplete information z1 ≻ z3 ≻ z2 ≻ z4 Outranking model

Chen [60]
IVIF QUALIFLEX method IVIF values Incomplete information z4 ≻ z3 ≻ z1 ≻ z2 Outranking model

IVIF values
Incomplete and inconsistent

information
z2 ≻ z3 ≻ z1 ≻ z4 Outranking model

Chen [18] Extended linear assignment method IVIF values IVIF values z1 ≻ z3 ≻ z4 ≻ z2 Outranking model

Wang and
Chen [52]

Likelihood-based assignment method
with Algorithm A

IVIF values IVIF values z1 ≻ z3 ≻ z2 ≻ z4 Outranking model

Likelihood-based assignment method
with Algorithm B

IVIF values Incomplete information z1 ≻ z3 ≻ z2 ≻ z4 Outranking model

Chen [42] IVPF outranking method IVPF values IVPF values z1 ≻ z3 ≻ z4 ≻ z2 Outranking model

The current
paper

IVPF TOPSIS method with respect to
displaced ideals

IVPF values
Ordinary (crisp and
nonfuzzy) values

z3 ≻ z2 ≻ z1 ≻ z4 Compromise model

IVPF TOPSIS method with respect to
fixed ideals

IVPF values
Ordinary (crisp and
nonfuzzy) values

z3 ≻ z1 ≻ z2 ≻ z4 Compromise model

Proposed IVPF compromise approach
with Algorithm I

IVPF values
Ordinary (crisp and
nonfuzzy) values

z3 ≻ z1 ≻ z2 ≻ z4 Compromise model

Proposed IVPF compromise approach
with Algorithm II

IVPF values
Ordinary (crisp and
nonfuzzy) values

z3 ≻ z1 ≻ z2 ≻ z4 Compromise model
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capital management within the IVPF environment. This
financial decision-making problem, originally introduced
by Chen [44], is defined by five financing policies and six cri-
teria for evaluating the alternatives. The five alternatives
contain the aggressive dominant policy (z1), the aggressive-
leaning policy (z2), the balanced aggressive and conservative
policy (z3), the conservative-leaning policy (z4), and the
conservative dominant policy (z5). The six evaluative cri-
teria include cash reserves (c1), maturity hedging (c2),
interest rate fluctuation (c3), financial leverage (c4), return
on assets (c5), and financing cost (c6), where the weight
vector wT = w1,w2,⋯,w6

T = 0 10, 0 05, 0 20, 0 10, 0 25,
0 30 T . Table 4 presents the data of the pij values in the
IVPF decision matrix p = pij 5×6.

Employing the developed IVPF compromise approach to
solve the financing problem, the top part of Table 5 indicates
the obtained results consisting of the correlations R Pi, P∗
and R Pi, P# , the correlation coefficients K Pi, P∗ and
K Pi, P# , and the correlation-based closeness index with
displaced ideals Id Pi yielded by the proposed Algorithm 1,
as well as the correlation-based closeness index with fixed
ideals I f Pi yielded by the proposed Algorithm 2. According

to the Id Pi values, the ultimate priority ranking z3 ≻ z2 ≻
z4 ≻ z1 ≻ z5 was acquired based on anchored judgments with
displaced ideals. Moreover, the ultimate priority ranking
z3 ≻ z4 ≻ z2 ≻ z1 ≻ z5 was determined by sorting each I f Pi

value based on anchored judgments with fixed ideals. The
best policy is the balanced aggressive and conservative policy
(z3), which is the same as that obtained using the outranking
approach based on a risk attitudinal assignment model by
Chen [44].

It is noted that Chen [44] conducted a sensitivity analysis
to explore the influence of the risk attitudinal parameter. As
a whole, the ultimate priority ranking results z3 ≻ z4 ≻ z2 ≻
z5 ≻ z1, z3 ≻ z4 ≻ z2 ≻ z1 ≻ z5, and z1 ≻ z4 ≻ z3 ≻ z2 ≻ z5 were
determined in risk-averse, risk-neutral, and risk-seeking sit-
uations, respectively. Figure 4 depicts the comparisons of the
ranking results yielded by the proposed methods (with Algo-
rithms 1 and 2) and the risk attitude-based outranking
approach (with risk-averse, risk-neutral, and risk-seeking
attitudes). It can be observed that the ranking results yielded
by the proposed Algorithms 1 and 2 are very similar to those
produced by the outranking approach with the risk-averse
and risk-neutral attitudes. Moreover, the alternative z3 is
the best ranked in these results. Based on the comparison
outcomes in the financing decision problem, the proposed
methodology is capable of generating intuitively reasonable
and acceptable results in a more straightforward and effec-
tive way, especially the developed Algorithm 2.

The second application filed focuses on a risk evaluation
of technological innovation. Chen [63] introduced a novel
risk evaluation method of technological innovation using
an inferior ratio-based assignment model based on IVPF
sets. A real-world case concerning a risk evaluation problem
of technological innovation in high-tech enterprises was
investigated to examine the feasibility and advantages of
the IVPF inferior ratio-based assignment method. In this

risk evaluation problem, the set of alternatives contains four
candidate projects, consisting of z1 (the first potential high-
tech enterprise), z2 (the second potential high-tech enter-
prise), z3 (the third potential high-tech enterprise), and z4
(the fourth potential high-tech enterprise). These candidate
projects would be evaluated using six risk indicators, includ-
ing policy risk (c1), financial risk (c2), technological risk (c3),
production risk (c4), market risk (c5), and managerial risk
(c6). Moreover, the weight vector wT = w1,w2,⋯,w6

T =
0 1894, 0 1841, 0 1361, 0 1257, 0 1753, 0 1894 T . Table 6
provides the data of the pij values in the IVPF decision
matrix p = pij 4×6. Using the proposed methodology to solve

this risk evaluation problem, the obtained results yielded by
Algorithms 1 and 2 are revealed in the bottom part of
Table 5. Furthermore, Figure 5 contrasts the ranking results
yielded by the proposed methods (with Algorithms 1 and 2)
and the IVPF inferior ratio-based assignment method.

The ultimate priority ranking z4 ≻ z2 ≻ z1 ≻ z3 was deter-
mined based on the Id Pi values under anchored judgments
with displaced ideals. Additionally, the ultimate priority
ranking z2 ≻ z4 ≻ z1 ≻ z3 was acquired based on the I f Pi

values under anchored judgments with fixed ideals. It is
noted that the ranking result z2 ≻ z4 ≻ z3 ≻ z1 was obtained
using the IVPF inferior ratio-based assignment method.
According to Chen’s [63] solution result, the best project is
the second potential high-tech enterprise (z2), which is the
same as that obtained using the proposed methodology based
on anchored judgments with fixed ideals. In particular, a
different result of z4 ≻ z2 ≻ z1 ≻ z3 was derived under
anchored judgments with displaced ideals. Based on the
results in Table 5 and Figure 5, it can be concluded that the
proposed methodology can generate acceptable and flexible
results through an appropriate employment of the proposed
Algorithms 1 and 2.

5.4. Concluding Remarks. In addition to the selection prob-
lem of construction methods for bridge superstructures, this
paper investigated two real-world cases consisting of a
financing decision of working capital policies and a risk eval-
uation problem of technological innovation to extend the
applicability of the proposed methods to other application
fields. Based on the comparative studies between the pro-
posed methods and the existing approaches, some valuable
observations were obtained and concluded.

First, the feasibility and applicability of the proposed
methodology were demonstrated via three practical applica-
tions: bridge construction methods for the Suhua Highway
Alternative Road Project, financing policies for working
capital management, and risk assessments for technological
innovation in high-tech enterprises. Additionally, for the
bridge construction case, as opposed to the comparative
methods of the outranking model in the IVIF context, the
proposed methodology produces an evidently reasonable
ranking result and performs well in a more complex deci-
sion situation, i.e., the IVPF context. As mentioned previ-
ously, the space of an IVPF value is larger than the space
of an IVIF value because of the relaxed constraint condition,
implying that the proposed methodology can sufficiently
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depict more uncertainty and ambiguity inherent in the sub-
jective judgment and decision-making process by utilizing
IVPF information. Furthermore, the usefulness and advan-
tages of the proposed methodology were justified and sup-
ported based on the comprehensive comparative analysis.
In summary, the proposed IVPF compromise approach
leads to both better explanations of and better applicability
in addressing MCDA problems because it employs a
straightforward and easily implemented decision-making
mechanism using correlation-based closeness indices to

handle high-order uncertainties associated with practical
decision environments.

6. Conclusions

This paper focused on the development of a novel compro-
mise model and relevant techniques within the IVPF envi-
ronment to address highly uncertain MCDA problems,
along with an application to bridge construction methods.
Bridges are a crucial part of road networks because they can

Table 5: Selected results in other application fields.

zi
Algorithm 1 Algorithm 2

R Pi, P∗ R Pi, P# K Pi, P∗ K Pi, P# Id Pi Rank I f Pi Rank

Results for the financing decision of working capital policies

z1 0.3718 0.3408 0.6141 0.6741 0.4767 4th 0.5705 4th

z2 0.4458 0.3158 0.7910 0.6710 0.5410 2nd 0.7062 3rd

z3 0.5768 0.2666 0.9283 0.5138 0.6437 1st 0.8770 1st

z4 0.4808 0.3528 0.7942 0.6980 0.5322 3rd 0.7207 2nd

z5 0.3550 0.3904 0.5883 0.7746 0.4316 5th 0.5100 5th

Results for the risk evaluation problem of technological innovation

z1 0.4858 0.3877 0.9447 0.8738 0.5195 3rd 0.8006 3rd

z2 0.4921 0.3825 0.9423 0.8488 0.5261 2nd 0.8424 1st

z3 0.4715 0.3798 0.9435 0.8807 0.5172 4th 0.7779 4th

z4 0.4968 0.3840 0.9719 0.8705 0.5275 1st 0.8206 2nd

Table 4: IVPF evaluative ratings in the financing decision of working capital policies.

cj zi pij πij zi pij πij

c1 z1 ([0.15, 0.26], [0.74, 0.92]) [0.29, 0.66] z2 ([0.27, 0.44], [0.66, 0.82]) [0.37, 0.70]

c2 ([0.29, 0.37], [0.75, 0.81]) [0.45, 0.59] ([0.49, 0.61], [0.38, 0.58]) [0.54, 0.78]

c3 ([0.42, 0.56], [0.48, 0.59]) [0.58, 0.77] ([0.53, 0.68], [0.42, 0.47]) [0.56, 0.74]

c4 ([0.22, 0.36], [0.64, 0.76]) [0.54, 0.74] ([0.34, 0.48], [0.59, 0.67]) [0.57, 0.73]

c5 ([0.85, 0.96], [0.07, 0.19]) [0.21, 0.52] ([0.74, 0.86], [0.12, 0.21]) [0.47, 0.66]

c6 ([0.41, 0.56], [0.34, 0.45]) [0.70, 0.85] ([0.67, 0.79], [0.23, 0.38]) [0.48, 0.71]

c1 z3 ([0.57, 0.69], [0.46, 0.57]) [0.45, 0.68] z4 ([0.78, 0.86], [0.13, 0.28]) [0.43, 0.61]

c2 ([0.71, 0.82], [0.19, 0.30]) [0.49, 0.68] ([0.78, 0.88], [0.11, 0.19]) [0.44, 0.62]

c3 ([0.84, 0.91], [0.15, 0.27]) [0.31, 0.52] ([0.73, 0.82], [0.21, 0.33]) [0.47, 0.65]

c4 ([0.55, 0.67], [0.41, 0.53]) [0.52, 0.73] ([0.68, 0.79], [0.27, 0.34]) [0.51, 0.68]

c5 ([0.68, 0.74], [0.26, 0.35]) [0.57, 0.69] ([0.28, 0.35], [0.72, 0.86]) [0.37, 0.63]

c6 ([0.88, 0.95], [0.09, 0.13]) [0.28, 0.47] ([0.81, 0.87], [0.11, 0.25]) [0.42, 0.58]

c1 z5 ([0.92, 0.96], [0.11, 0.17]) [0.22, 0.38]

c2 ([0.89, 0.91], [0.05, 0.15]) [0.39, 0.45]

c3 ([0.56, 0.66], [0.38, 0.45]) [0.60, 0.74]

c4 ([0.78, 0.86], [0.23, 0.29]) [0.42, 0.58]

c5 ([0.07, 0.14], [0.82, 0.93]) [0.34, 0.57]

c6 ([0.43, 0.59], [0.52, 0.65]) [0.48, 0.74]
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overcome terrain obstacles and promote regional economic
development. Many transportation-related construction pro-
jects rely on theuseofbridges to join twodisconnected regions.
However, bridge construction entails challenging technical
operations, particularly in regions featuring complex geologi-
cal structures or frequent natural disasters. Because the criteria
for assessing such constructions are numerous and complex,
selecting an appropriate bridge constructionmethod involves
difficult, multiple-criteria decision-making problems. This
paper developed an effective IVPF compromise approach
by means of novel correlation-based closeness indices with
respect to each IVPF characteristic for assessing all candidate
alternatives. This paper charted the landscape of IVPF theory
in the compromise decision-making methodology. More-
over, the proposed methods provide a simple and effective
means of handling impressions and quantifying the ambigu-
ous nature of human judgments.

For illustrative applications, a real-world case study con-
cerning bridge construction methods was investigated to
assist the authority in making an appropriate decision for

the Suhua Highway Alternative Road Project and to verify
the feasibility and practical effectiveness of the proposed
methodology. Furthermore, a comparative analysis was
conducted to examine the results yielded by the proposed
Algorithms 1 and 2 in comparison with other MCDA
approaches (consisting of some nonstandard fuzzy models
using the assignment-based outranking methodology and
an IVPF extension of the widely used TOPSIS methodology).
The obtained results demonstrated the comprehensiveness
and dependability of the proposed methods and techniques,
particularly the developed Algorithm 2, because of easy
implementation and reasonable outcomes. In particular, the
usage of the proposed correlation-based closeness indices
can effectively facilitate anchored judgments with displaced
and fixed ideals, respectively, for each alternative. Addition-
ally, they are useful and practical comparison indices that
can reflect certain balances between the connection with
the displaced/fixed positive-ideal IVPF solutions and the
remotest connection with the displaced/fixed negative-ideal
IVPF solutions. With the increasing complexity of MCDA

Table 6: IVPF evaluative ratings in the risk evaluation problem of technological innovation.

cj zi pij πij zi pij πij

c1 z1 ([0.7481, 0.8553], [0.2000, 0.3000]) [0.4224, 0.6327] z2 ([0.5687, 0.7000], [0.2521, 0.4401]) [0.5624, 0.7830]

c2 ([0.5964, 0.8473], [0.1741, 0.3680]) [0.3830, 0.7836] ([0.5252, 0.7011], [0.2558, 0.4401]) [0.5610, 0.8116]

c3 ([0.5755, 0.7789], [0.2998, 0.4874]) [0.3947, 0.7609] ([0.6819, 0.8731], [0.2549, 0.3824]) [0.3024, 0.6856]

c4 ([0.7226, 0.8439], [0.2921, 0.3955]) [0.3625, 0.6265] ([0.7311, 0.8422], [0.1569, 0.3000]) [0.4480, 0.6640]

c5 ([0.6801, 0.8277], [0.2378, 0.3770]) [0.4157, 0.6935] ([0.5964, 0.7359], [0.1923, 0.4076]) [0.5407, 0.7793]

c6 ([0.4957, 0.6645], [0.4373, 0.5720]) [0.4809, 0.7504] ([0.8000, 0.9000], [0.1516, 0.3000]) [0.3162, 0.5805]

c1 z3 ([0.5284, 0.6676], [0.4000, 0.5000]) [0.5516, 0.7489] z4 ([0.6552, 0.8314], [0.1845, 0.3680]) [0.4164, 0.7326]

c2 ([0.7656, 0.8687], [0.2639, 0.3680]) [0.3316, 0.5867] ([0.7459, 0.8492], [0.3031, 0.4076]) [0.3357, 0.5931]

c3 ([0.6007, 0.7541], [0.2521, 0.4025]) [0.5190, 0.7587] ([0.6446, 0.8000], [0.4000, 0.5000]) [0.3317, 0.6515]

c4 ([0.6446, 0.8277], [0.2297, 0.4345]) [0.3551, 0.7292] ([0.6248, 0.7904], [0.2639, 0.3680]) [0.4897, 0.7348]

c5 ([0.6454, 0.7776], [0.2378, 0.3568]) [0.5177, 0.7259] ([0.5708, 0.7515], [0.1414, 0.3568]) [0.5549, 0.8088]

c6 ([0.6692, 0.7703], [0.4000, 0.5329]) [0.3502, 0.6262] ([0.6639, 0.7977], [0.3031, 0.4076]) [0.4445, 0.6836]
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Figure 4: Contrast of ultimate priority rankings in the financing decision problem.

25Complexity



problems in the real world, the proposed methodology based
on the IVPF compromise approach is powerful at handling
higher degrees of uncertainty and addressing complicated
and changeable MCDA issues using a simple and easy-to-
use decision-making framework, particularly Algorithm 2,
for decision-makers.

Based on the obtained results of the real-world applica-
tion and comparative studies, this paper has some theoretical
and practical implications. First, the developed IVPF com-
promise approaches can be used to address MCDA problems
of bridge construction methods within a highly complex
uncertain environment based on IVPF sets. Second, the
proposed methodology is capable of enriching the existing
compromise-based methods to accommodate more compli-
cated scenarios because it successfully extended the applica-
bility of the compromise model to IVPF contexts. Third,
the proposed methodology can be applied to a variety of
MCDA fields because it establishes an effective and flexibility
mechanism via the employment of IVPF theory to handle
complex vagueness and uncertainty in realistic decision-
making processes.

The current paper successfully proposed a new compro-
mise method that uses the concept of correlation-based
closeness indices to manage MCDA problems involving
IVPF information. However, a possible limitation exists in
the case that the problems characterized by interdependent
criteria and dimensions may exhibit feedback-like effects
[64, 65]. Since the current techniques are more appropriately
used to conduct MCDA tasks based on the assumption that
most criteria are independent, further investigation into
extending the applicability with respect to interdependent
criteria with feedback-like effects can be conducted to over-
come this limitation of the developed methods.

It is anticipated that the developed IVPF compromise
approaches not only complement the existing MCDA

methods but also create a new direction for the proliferation
of IVPF theory into the field of engineering management.
Further studies need to replicate this research in other indus-
try domains and in other decision environments. On the the-
oretical front, a future research direction can be to investigate
the potentials of extending other compromise-based meth-
odologies to the IVPF decision environment.
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