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This paper investigates the dynamic properties of a differential equation model of mammals’ circadian rhythms, including
parameter identification, adaptive control, and outer synchronization. The circadian oscillator network is described by a
Goodwin oscillator network, the couplings of which are from vasoactive intestinal polypeptides described by modified Van der
Pol oscillators. We build up a drive-response system consisting of two networks with unknown parameters and disturbances.
Then, we propose effective parameter updating laws to identify the unknown parameters and design adaptive control strategies
to achieve outer synchronization in the drive-response system. As special cases, two succinct corollaries are presented for
different instances. All the theoretical results are proved through strict mathematical deduction based on Lyapunov stability
theory, and a numerical example is also carried out to illustrate the effectiveness.

1. Introduction

In the past decades, there has been tremendous interest in
studying circadian rhythms of mammals at the cellular level
[1–8]. Based on experimental findings of system biology
and network biology, several gene regulatory network models
have been established to describe the circadian rhythm sys-
tem [3, 4]. Experimental evidence has shown that the circa-
dian rhythms are controlled by a pacemaker located in the
suprachiasmatic nucleus (SCN) of the hypothalamus [5]
and the circadian oscillator is usually described by a Goodwin
oscillator model, which describes a protein which represses
the transcription of its own gene via an inhibitor [6]. Now,
the Goodwin oscillator model and its variants have been
widely adopted as one of the classic hypothetical genetic
oscillators [7, 8]. The SCN consists of a dorsomedial shell
and a ventrolateral core, and the ventrolateral core can be
defined by cells containing vasoactive intestinal polypeptide

(VIP) [9]. The circadian oscillators are coupled with each
other via the rhythmic influence from VIP, and the VIP is
required to maintain circadian synchrony of the SCN [10].
However, we know nothing about the dynamics of the VIP
except its fundamental observational properties. Based on
these observational properties, the Van der Pol oscillator
was usually employed to describe the dynamics of the VIP
[11]. In this paper, we will carry out a modified circadian
rhythm network model with unknown parameters and inves-
tigate its several dynamical properties from the viewpoint of
complex network dynamics with the help of nonlinear
dynamics theory.

Recent years have seen significant advances in the study
of complex network dynamics [12, 13], and its related studies
will lead to more potential applications in the future. Syn-
chronization is a kind of typical collective behaviors and
basic motions in nature, which is one of the main research
focuses in complex network science. From the viewpoint of

Hindawi
Complexity
Volume 2018, Article ID 6483078, 10 pages
https://doi.org/10.1155/2018/6483078

http://orcid.org/0000-0003-0796-2459
http://orcid.org/0000-0003-3757-895X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/6483078


mathematics, the core of synchronization is the stability of
the zero solution of network error systems [14–16]. In previ-
ous studies, two effective methods are usually employed: the
first one is to study synchronization induced by the mutual
couplings between nodes [17, 18], and the second one is
to design reasonable control laws [19–21]. A great number
of researches on the first method have indicated that syn-
chronization without external control needs certain require-
ment in both network structures and node dynamics.
Therefore, a variety of external control approaches have been
developed such as pinning control [22, 23], sliding mode
control [24, 25], and feedback control [26, 27].

However, there are still lots of urgent and challenging
problems in practical application. For instance, we often
know very little about the exact values of system parame-
ters, or there are some time-varying parameters. Under
the effects of these uncertainties, the achieved synchroniza-
tion might be destroyed and broken. Therefore, it is neces-
sary to design an adaptive control law that adapts itself to
these uncertainties, which is a popular control technique
used for complex network models with unknown parame-
ters [28–30]. The theoretical basis of adaptive control is
parameter identification. As far as complex networks are
concerned, three dynamic properties of uncertain networks
need to be discussed, i.e., parameter identification, adaptive
control, and outer synchronization [31]. In order to achieve
each one of the three research goals above, Lyapunov stabil-
ity is usually employed, which will show the convergence of
the error systems and the parameter identification laws at
the same time. Due to the convenience and effectiveness
of adaptive control, it has been widely applied to many
fields of science and technology, including secure communi-
cation, chaos generator design, biological systems, and infor-
mation science.

As far as the circadian rhythm model is concerned, it is
more difficult to get the exact values of the system parame-
ters, and this becomes one of the interesting and significant
questions remaining open for discussion. In order to estimate
or evaluate the unknown parameters existing in the circadian
rhythm model, lots of researches have been carried out.
Based on the time series data of a certain group of individuals
in a circadian rhythm model, Tong [32] obtained the estima-
tions of the group level, group amplitude, and group phase.
Later, the estimations of the true values of unknown param-
eters were investigated for different circadian rhythm models
[33–35]. Now, it has become an interesting and significant
research direction in the fields of system biology. To the best
of our knowledge, most of the previous results were based on
the statistical method or experimental data, and few theoret-
ical researches have been carried out. Motivated by the dis-
cussions mentioned above, this paper aims at providing
theoretical estimations of unknown parameters existing in
such a network. It may help us build more accurate mathe-
matical models and better understand the circadian rhythms
of mammals. Therefore, the subject of this paper has a certain
degree of innovation, and it may also have some latent appli-
cations. By proposing appropriate parameter updating laws
and adaptive control strategies, we identify the unknown
parameters successfully and the network realizes outer

synchronization. Based on Lyapunov stability theory and
matrix theory, we give theoretical proof for adaptive outer
synchronization of the Goodwin oscillator network with
unknown parameters. As special cases, we present two suc-
cinct corollaries for different instances.

The organization of the remaining sections is as follows.
In Section 2, some preliminaries are introduced, including
the model descriptions of the Goodwin oscillator network
with unknown parameters. In Section 3, adaptive controllers
and parameter updating laws are designed, and their effec-
tiveness is also proved theoretically. In Section 4, a simple
example is provided to verify the validity of the theoretical
results. In the last section, conclusions are provided to sum-
marize the contributions of this paper and to highlight some
interesting issues as a further work.

1.1. Model Descriptions. The Goodwin model describes a
circadian oscillator consisting of three variables, which is
illustrated in Figure 1. A clock gene mRNA (a) produces a
clock protein (b), which activates a transcriptional inhibitor
(c), and in turn inhibits the transcription of the clock gene.
By the repression exerted by the inhibitor to the mRNA
synthesis, the three variables build up a closed negative
feedback loop.

The mathematical model for the circadian oscillator
is given as follows, in which each variable is governed
by a simple ordinary differential equation:

a t = v1K
n Kn + cn t −1 − δ1a t ,

b t = v2a t − δ2b t ,

c t = v3b t − δ3c t ,

1

where a t , b t , and c t can be interpreted as the concen-
trations of clock genes, clock proteins, and transcriptional
inhibitors, respectively; the constants v1, v2, and v3 are the
dimensionless transcription rates or translation rates; the
constants δ1, δ2, and δ3 are the dimensionless degradation
rates of the chemical molecules; and K and n are the param-
eters of the Hill function. The equations above describe
what is probably the simplest conceivable control process
consistent with certain essential features of the genetic
control of enzyme synthesis [6]. For instance, by choosing
K = 1, n = 10, v1 = v2 = v3 = 1, and δ1 = δ2 = δ3 = 0 1, the sys-
tem (1) produces a damped oscillator.

In order to produce physiological rhythms, many
researches considered the rhythmic influence of vasoactive
intestinal polypeptides (VIP). Then, a Goodwin oscillator
network model with a coupling term from VIP reads

ai t = v1K
n Kn + cni t −1 − δ1ai t + 〠

N

j=1
cijmj t ,

bi t = v2ai t − δ2bi t ,

ci t = v3bi t − δ3ci t ,
2
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where mj t , nj t
T is the concentration of VIP in the jth

cell. The coupling matrix C = cij N×N represents the cou-
pling configuration; if there is a coupling from cell i to cell j
, then denote the weight of this coupling as cij > 0; otherwise,
denote cij = 0. Different from most of the previous researches
on complex networks, it is assumed that cii ≥ 0 because the
term ciimi t describes the coupling from VIP in the cell i
to the Goodwin oscillator in the same cell. Throughout this
paper, we further assume that the coupling matrix has equal
row sums and equal column sums, i.e., there exists a nonneg-
ative constant l such that ∑N

i=1cij =∑N
j=1cij = 2l.

In many previous studies [11], the concentration
dynamics of VIP was described by the following modi-
fied Van der Pol oscillators:

mi t = β1 ni t − 2 5 + β2 mi t − 2 5 − β3 mi t − 2 5 3 + kai t ,

ni t = β1 mi t − 2 5 ,

3

where βp, p = 1,2,3, and k are constants.
For ease of notations, we denote xi t = αi t , bi t ,

ci t
T and yi t = mi t , ni t

T and rewrite the network
(2)–(3) as follows:

xi t = f1 xi t α1 + f2 xi t α2 + 〠
N

j=1
cijΓyj t ,

yi t = g yi t β + kΓTxi t ,

4

where α1 = v1, v2, v3
T, α2 = δ1, δ2, δ3

T, and β = β1, β2,
β3

T are all real-valued vectors; the coupling component
matrix

Γ =
1 0

0 0

0 0

5

The matrix functions

f1 xi t = diag Kn Kn + cni t −1, ai t , bi t ∈ R3×3,

f2 xi t = −diag ai t , bi t , ci t ∈ R3×3,

g yi t =
ni t − 2 5 mi t − 2 5 mi t − 2 5 3

mi t − 2 5 0 0
,

6

where i = 1, 2,… ,N . Assuming that the parameters α1, α2,
andβ, and the network topology matrices C and C are all
unknown, we build the following response network:

xi t = f1 xi t α1 t + f2 xi t α2 t + 〠
N

j=1
cijΓyj t + Δx t + uxi t ,

yi t = g yi t β t + kΓTxi t + Δy t + uyi t ,

7

where xi t = ai t , bi t , ci t
T
, yi t = mi t , ni t

T, α1
t , α2 t , and β t are the updating laws of the
unknown parameters in the network (4); Δx t , Δy t
are the external disturbances such as wind and noise;
and uxi t , uyi t are the adaptive controllers left to be
designed in the next section, where i = 1, 2,… ,N . Net-
work (4) and network (7) form a drive-response system;
the next section will design adaptive controllers to make
the drive-response system realize the outer synchroniza-
tion and design parameter updating laws to identify the
unknown parameters.

2. Adaptive Control Schemes for
Outer Synchronization

Let us first carry out the definition of outer synchronization,
two hypotheses, and a lemma to prove the effectiveness of
our results.

Definition 1. The system (4)–(7) is said to achieve outer
synchronization if

lim
t→∞

exi t = 0,

lim
t→∞

eyi t = 0,
8
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Figure 1: Scheme of a circadian oscillator modeled by a Goodwin
oscillator. By the repression exerted by the inhibitor (c (t)) to the
clock gene mRNA synthesis (a (t)), the three variables build up a
closed negative feedback loop. The coupling from vasoactive
intestinal polypeptide (VIP) is required to maintain circadian
synchrony of the circadian oscillator.
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where exi t = xi t − xi t and eyi t = yi t − yi t , where
i = 1,… ,N .

Hypothesis 1. For any x ∈ R3 and y ∈ R2, denote X =
xT, yT T ∈ R5, and

F X, α1, α2, β = f1 x α1 + f2 x α2
T, g y β + kΓTx T T

9

Suppose that there exists a positive constant L such that

Y − X T F Y , α1, α2, β − F X, α1, α2, β ≤ L Y − X T Y − X

10

holds for any X, Y ∈ R5.

Since the function F X, α1, α2, β of the network (4) is
differentiable and the oscillator is a damped oscillator,
there exists a positive constant L satisfying Hypothesis 1
in theory.

Hypothesis 2. For the disturbances Δx t and Δy t , sup-
pose that there exist two positive constants 0 ≤ ρx, ρy <
∞ such that

Δx t ≤ ρx, Δy t ≤ ρy 11

The second hypothesis guarantees the boundedness of
the disturbances, and this paper yields adaptive controllers
that are robust against all possible bounded disturbances.

Lemma 1. For any vectors x ∈ R3 and y ∈ R2 and the matrix Γ
defined by (5), the following inequality holds:

2xTΓy ≤ xTΓΓTx + yTΓTΓy 12

Proof. Denote x = a, b, c T and y = m, n T; it follows from
(5) that ΓTx = a, 0 T, Γy = m,0,0 T, and 2xTΓy = 2ma. After
a simple deduction, one gets that

xTΓΓTx + yTΓTΓy = a2 +m2 13

Based on the inequality a2 +m2 ≥ 2am, the lemma
is proved.

Now, with the help of the preceding preliminaries
and Lyapunov stability theory, we turn to prove the fol-
lowing theorem.

Theorem 1. Under Hypothesis 1 and Hypothesis 2, let the
parameter updating laws

αp t = −〠
N

j=1
f p xj t exj t , p = 1, 2,

β t = −〠
N

j=1
gT yj t eyj t ,

14

and the adaptive controllers

uxi t = −ηxi t exi t − γxi t sign exi t + 〠
N

j=1
pij t Γyj t ,

ηxi t = kxie
T
xi t exi t , kxi > 0,

γxi t = ξxi exi t 1, ξxi > 0,

uyi t = −ηyi t eyi t − γyi t sign eyi t ,

ηyi t = kyie
T
yi t eyi t , kyi > 0,

γyi t = ξyi eyi t 1, ξyi > 0,

pij t = −eTxi t Γyj t
15

Then, the following conclusions hold:

(i) The parameter updating laws (14) satisfy

lim
t→∞

α1 t = α1,

lim
t→∞

α2 t = α2,

lim
t→∞

β t = β

16

(ii) There exist constants η∗xi, η∗yi, γ∗xi, γ∗yi such that the
adaptive controllers (15) satisfy

lim
t→∞

ηxi t = η∗xi,

lim
t→∞

ηyi t = η∗yi,

lim
t→∞

γxi t = γ∗xi,

lim
t→∞

γyi t = γ∗yi,

lim
t→∞

pij t = cij − cij

17

(iii) The system (4)–(7) achieves outer synchronization, i.e.,

lim
t→∞

exi t = lim
t→∞

eyi t = 0 18

where exi t 1 = exi t sign exi t and eyi t 1 = eyi t sign
eyi t , where i, j = 1, 2,… ,N.
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Proof. Denote ei t = eTxi t , eTyi t
T
, αp t = αp t − αp, p =

1, 2, and β t = β t − β, and consider the following Lyapu-
nov function:

V t = V1 t +V2 t +V3 t , 19

where

V1 t =
1
2
〠
N

i=1
eTi t ei t +

1
2
〠
N

i=1
〠
N

j=1
pij t + cij − cij

2
,

V2 t =
1
2
〠
2

p=1
αTp t αp t +

1
2
β
T
t β t ,

V3 t =
1
2
〠
N

i=1
k−1xi ηxi t − η∗xi

2 + k−1yi ηyi t − η∗yi
2

+ ξ−1xi γxi t − γ∗xi
2 + ξ−1yi γyi t − γ∗yi

2
,

20

where η∗xi, η∗yi, γ∗xi, γ∗yi are positive constants left to be chosen,
where i = 1, 2,… ,N . The aim of the proof is to select appro-
priate constants to ensure that V t < 0.

By the parameter updating laws (14) and the con-
trollers (15), the derivative of V2 t and V3 t along
the trajectories of (4)–(7) can be calculated as follows:

V2 t = −〠
2

p=1
〠
N

j=1
αTp t f p xj t exj t − 〠

N

j=1
β
T
t gT yj t eyj t ,

21

V3 t = 〠
N

i=1
ηxi t − η∗xi e

T
xi t exi t

+ ηyi t − η∗yi eTyi t eyi t + γxi t − γ∗xi exi t 1

+ γyi t − γ∗yi eyi t 1

22

It follows from Hypothesis 1 that the derivative of
V1 t can be written as

V1 t = 〠
N

i=1
eTi t F Xi t , α1 t , α2 t , β t

− F Xi t , α1, α2, β

+ 〠
N

i=1
〠
N

j=1
eTxi t cijΓyj t − cijΓyj t

+ 〠
N

i=1
eTxi t Δx t + eTyi t Δy t + eTxi t uxi t

+ eTyi t uyi t − 〠
N

i=1
〠
N

j=1
pij t + cij − cij e

T
xi t Γyj t

≤ 〠
N

i=1
eTi t F Xi t , α1 t , α2 t , β t

− F Xi t , α1, α2, β + Lei t

+ 〠
N

i=1
〠
N

j=1
cije

T
xi t Γeyj t − pij t e

T
xi t Γyj t

+ 〠
N

i=1
eTxi t Δx t + eTyi t Δy t + eTxi t uxi t

+ eTyi t uyi t ,

23

and then,

V1 t ≤ 〠
N

i=1
eTi t F Xi t , α1 t , α2 t , β t

− F Xi t , α1, α2, β + Lei t

+ 〠
N

i=1
〠
N

j=1
cije

T
xi t Γeyj t

+ 〠
N

i=1
eTxi t Δx t + eTyi t Δy t

− 〠
N

i=1
ηxi t e

T
xi t exi t + γxi t exi t 1

− 〠
N

i=1
ηyi t e

T
yi t eyi t + γyi t eyi t 1

24

Combining the identities ∑N
i=1cij =∑N

j=1cij = 2l,

F Xi t , α1 t , α2 t , β t − F Xi t , α1, α2, β

= αT1 t f1 xi t + αT2 t f2 xi t , βT
t gT yi t

T
,

25

and Lemma 1 together yields

V1 t ≤ 〠
2

p=1
〠
N

i=1
αTp t f p xi t exi t + 〠

N

i=1
β
T
t gT yi t eyi t

+ L〠
N

j=1
eTi t ei t +

1
2
〠
N

i=1
〠
N

j=1
cij e

T
xi t ΓΓTexi t

+ eTyj t ΓTΓeyj t + 〠
N

i=1
eTxi t Δx t − γxi t exi t 1

+ eTyi t Δy t − γyi t eyi t 1 − 〠
N

i=1
ηxi t e

T
xi t exi t
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+ ηyi t e
T
yi t eyi t ≤ 〠

2

p=1
〠
N

j=1
αTp t f p xj t exj t

+ 〠
N

j=1
β
T
t gT yj t eyj t + 〠

N

i=1
eTxi t Δx t

− γxi t exi t 1 + eTyi t Δy t − γyi t eyi t 1

+ 〠
N

i=1
L + l − ηxi t eTxi t exi t

+ L + l − ηyi t eTyi t eyi t

26

Then, one concludes from the inequalities (21), (22),
and (26) that

V t ≤ 〠
N

i=1
eTxi t Δx t − γ∗xi exi t 1 + eTyi t Δy t − γ∗yi eyi t 1

+ 〠
N

i=1
L + l − η∗xi e

T
xi t exi t + L + l − η∗yi eTyi t eyi t

27

Choosing the constants γ∗xi, γ∗yi, η∗xi, η∗yi large enough to
ensure that

ρx − γ∗xi < 0, ρy − γ∗yi < 0, L + l − η∗yi < 0, L + l − η∗yi < 0, 28

one finally proves that V t < 0. Based on Lyapunov sta-
bility theory, V2 t indicates the validity of the first item,
V3 t indicates the validity of the first two equalities of
the second item, the second term of V1 t indicates that
limt→∞pij t = cij − cij, and the first term of V1 t indicates
the validity of the third item. Hence, the three items are
all proved.

As special cases, when some of the three unknown
parameters are given and fixed, Theorem 1 remains valid.
For example, assuming that the parameters α1 and α2 are
both determined, one gets the following corollary.

Corollary 1. Consider the system (4)–(7) with α1 t = α1
and α2 t = α2 under Hypothesis 1 and Hypothesis 2 hold.
Choose the adaptive controllers (15) and the parameter updat-
ing the law

β t = −〠
N

j=1
gT yj t eyj t 29

The three statements in Theorem 1 still hold.

Proof. Choose the following Lyapunov function:

W t = V1 t +W2 t +V3 t , 30

where V1 t andV3 t are defined in the proof of Theo-
rem 1, and

W2 t =
1
2
β
T
t β t 31

Analogous to the proof of Theorem 1, it follows from
Lemma 1 that

V1 t ≤ 〠
N

i=1
eTxi t Δx t − γxi t exi t 1 + eTyi t Δy t

− γyi t eyi t 1 + 〠
N

i=1
L + l − ηxi t exi t

2

+ L + l − ηyi t eyi t
2 + 〠

N

j=1
β
T
t gT yj t eyj t ,

32

and

W2 t = −〠
N

j=1
β
T
t gT yj t eyj t 33

Thus, one gets

W t ≤ 〠
N

i=1
eTxi t Δx t − γ∗xi exi t 1 + eTyi t Δy t

− γ∗yi eyi t 1 + 〠
N

i=1
L + l − η∗xi e

T
xi t exi t

+ L + l − η∗yi eTyi t eyi t ,

34

which is similar to the inequality (27). The remainder of the
argument is analogous to that of Theorem 1, and it is omit-
ted here.

It follows from the proof of Theorem 1 that the functions
γxi t and γyi t are designed for the disturbances Δx t and
Δy t . Therefore, we obtain the following corollary without
considering the disturbances.

Corollary 2. Consider the system (4)–(7) under Hypothesis 1.
If the disturbances Δx t = Δy t = 0, choose the parameter
updating laws (14) and the adaptive controllers

uxi t = −ηxi t exi t + 〠
N

j=1
pij t Γyj t ,

ηxi t = kxie
T
xi t exi t , kxi > 0,

uyi t = −ηyi t eyi t ,

ηyi t = kyie
T
yi t eyi t , kyi > 0,

pij t = −eTxi t Γyj t ,

35

where i, j = 1, 2,… ,N ; the three statements of Theorem 1
still hold.

6 Complexity



Proof. Choose the following Lyapunov function:

W t = V1 t +V2 t +W3 t , 36

where V1 t and V2 t are defined in the proof of
Theorem 1, and

W3 t =
1
2
〠
N

i=1
k−1xi ηxi t − η∗xi

2 + k−1yi ηyi t − η∗yi
2

37

Analogous to the proof of Theorem 1, it follows from
Lemma 1 that

V1 t ≤ 〠
2

p=1
〠
N

j=1
αTp t f p xj t exj t

+ 〠
N

j=1
β
T
t gT yj t eyj t

+ 〠
N

i=1
L + l − ηxi t exi t

2

+ L + l − ηyi t eyi t
2 ,

38

and

W3 t = 〠
N

i=1
ηxi t − η∗xi exi t

2

+ ηyi t − η∗yi eyi t
2

39

Thus, one has

W t ≤ 〠
N

i=1
L + l − η∗xi e

T
xi t exi t

+ L + l − η∗yi eTyi t eyi t ,
40

which is similar to the inequality (27). The remainder of
the argument is analogous to that of Theorem 1, and it is
omitted here.

3. A Numerical Example

In this section, a special case of the system (4)–(7) is given to
illustrate the effectiveness of the three statements of Theorem
1 one by one.

For clarity, we choose the coupling matrices as follows,
the row sums of which are equal to 5:

C =

3 2 0 0 0 0

0 3 2 0 0 0

0 0 3 2 0 0

0 0 0 3 2 0

0 0 0 0 3 2

2 0 0 0 0 3

,

C =

2 0 0 0 0 3

3 2 0 0 0 0

0 3 2 0 0 0

0 0 3 2 0 0

0 0 0 3 2 0

0 0 0 0 3 2

41

The topology structure corresponding to the above cou-
pling matrices is shown in Figure 2. For instance, the element
c21 = 3 implies that there is a coupling from the oscillator y2
to the oscillator x1, and the weight of this coupling is 3; the
element c11 = 3 implies that there is a coupling from the
oscillator y1 to the oscillator x1, and the weight of this cou-
pling is 3.

Based on the previous results [6], we set the parameters
of the drive network (4) as K = 1, n = 4, k = 1, α1 = v1, v2,
v3

T = 0 1,0 1,0 1 T, α2 = δ1, δ2, δ3
T = 0 35,0 35,0 35 T,

and β = β1, β2, β3
T = 0 28,1,0 2 T. The initial values α1 0 ,

α2 0 , and β 0 are selected randomly in 0, 1 × 0, 1 × 0, 1 ,
the initial values xi 0 and xi 0 are selected randomly
in 0, 1 × 0, 1 × 0, 1 , the initial values yi 0 and yi 0
are selected randomly in 0, 1 × 0, 1 , and the distur-
bances Δx t = cos t, −sin t, sin t T and Δy t = −cos t, 2
sin t, −3 sin t T. Then, with the help of Matlab, the following
figures are provided to verify the effectiveness of the obtained
theoretical results.

Figures 3 and 4 are presented to verify the validity of the
parameter laws (14). As can be seen, the parameter updating
laws (14) are in a good agreement with the actual value of the
corresponding parameters; i.e.,

lim
t→∞

v1 t = lim
t→∞

v2 t = lim
t→∞

v3 t = 0 1,

lim
t→∞

δ1 t = lim
t→∞

δ2 t = lim
t→∞

δ3 t = 0 1,

lim
t→∞

β1 t = 0 28,

lim
t→∞

β2 t = 1,

lim
t→∞

β3 t = 0 2

42
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Therefore, the first item of Theorem 1 is verified by
Figures 3 and 4.

Figure 5 depicts the time evolutions of the control gains
ηxi t of the adaptive controllers (15). As can be seen, for
each adaptive control gain ηxi t , there exists a positive con-
stant η∗xi such that

lim
t→∞

ηxi t = η∗xi, i = 1, 2,… , 6 43

The time evolutions of ηyi t , γxi t , γyi t are all similar
to those of ηxi t , i = 1, 2⋯ , 6, and we omitted them here.
The time evolutions of the topology updating laws pij t in
the adaptive controllers (15) are plotted in Figure 6, which
verifies that

lim
t→∞

pij t 6×6
= cij − cij 6×6

=

1 2 0 0 0 −3

−3 1 2 0 0 0

0 −3 1 2 0 0

0 0 −3 1 2 0

0 0 0 −3 1 2

2 0 0 0 −3 1
44
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0
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�̄�i(t)

v̄i(t)

v̄1(t)
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�̄�1(t)

�̄�2(t)
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Figure 3: Parameter identification of the system (4)–(7): limt→∞
α1 t = α1 and limt→∞α2 t = α2.

Adaptive
controllers

Disturbances
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x2y2

x3y3
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x6y6
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Figure 2: The topology structure of a special case of the network (4)–(7) with N = 6.

t→ 

0

0.5

1

1.5

2

2.5

𝛽
i(
t)

𝛽1(t)

𝛽2(t)

𝛽3(t)

0 2 4 6 8 10

Figure 4: Parameter identification of the system (4)–(7): limt→∞β
t = β.
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In particular, the blue lines indicate that limt→∞pii t = 1,
the red lines indicate that limt→∞pi,i+1 t = 2, the magenta
lines indicate that limt→∞pi+1,i t = −3, and the black lines
indicate that limt→∞p61 t = 2, limt→∞p16 t = −3, and
limt→∞pij t = 0 for other elements. Therefore, the second
item of Theorem 1 is verified by Figures 5 and 6.

Finally, the time evolutions of the outer synchronization
errors ei t = exi t + eyi t , where i = 1, 2,… , 6 are
shown in Figure 7, which shows that the errors converge to
zero and outer synchronization is achieved under the adap-
tive control schemes.

4. Conclusions

Based on Lyapunov stability theory, this paper has discussed
the dynamic principles of mammals’ circadian rhythms,
where the suprachiasmatic nucleus (SCN) of the hypothala-
mus was modeled by a Goodwin oscillator and the vasoactive
intestinal polypeptides (VIP) was modeled by a Van der Pol
oscillator. Considering that it is very difficult to get the exact
values of the system parameters, this paper has proposed
effective parameter updating laws to identify the unknown
parameters. The result has been proved based on strict theo-
retical reduction, and it should have a theoretical advantage
over the previous results, which were based on the statistical
method or experimental data. Another contribution of this
paper is the problem of outer synchronization under adaptive

control. Noticing that the coupling manner is different from
the widely accepted coupling of the classical complex net-
work, this paper has designed targeted adaptive controllers
to synchronize the drive Goodwin oscillator network and
the response one. The effectiveness of the obtained results
has been verified both theoretically and numerically.

We hope that the results can provide theoretical guidance
for biology experiments in spite of the confusing biological
applications, and we will continue to study the context of
the biological interpretation later. Another possible further
work is the identification of unknown time-varying parame-
ters since this paper is only applicable to the identification of
given and fixed parameters.
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