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The boundary element method (BEM) and sequential function specification method (SFSM) are used to research the inverse
problem of boundary heat flux identification in the two-dimensional heat conduction system. The future time step in the SFSM
is optimized by introducing the residual error principles to get the more accurate inversion results. For the forward problems,
the BEM is used to calculate the required temperature value of discrete point; for the inverse problems, the impacts of different
future time steps, measuring point position, and measuring error on the inversion results are discussed. Furthermore, the
comparison is made for the optimal future time step obtained by introducing the residual error principle and the inherent
future time step. The example analysis shows that the method proposed still has higher accuracy when the measuring error
exists or the measuring point position is far away from the boundary heat flux.

1. Introduction

The inverse heat conduction problems (IHCP) are to mea-
sure the temperature at the heat conduction system boundary
or internal point or points by using the experimental method
to obtain partial temperature information and inverse some
unknown parameters: the boundary condition, material ther-
mophysical parameter, internal heat source and boundary
geometry, and so on [1–4]. The IHCP researches have wide
application background and are nearly applied in all fields
of science engineering: the aerospace engineering, bioengi-
neering, power engineering, machine manufacturing, chemi-
cal engineering, nuclear physics, metallurgy, material
processing, equipment geometry optimization, nondestruc-
tive testing, and so on [5–9]. The domestic and foreign
scholars have made many researches on IHCP. Duda identi-
fied the heat flux in two-dimensional transient heat conduc-
tion and reconstructed the transient temperature field by
utilizing the finite element method (FEM) and Levenberg-

Marquardt method in ANSYS Multiphysics software. The
method mentioned above was applied to the identification
of aerodynamic heating on an atmospheric reentry capsule
[10, 11]. Luo et al. proposed the decentralized fuzzy inference
method applicable to unsteady IHCP by dispersion and coor-
dination of measurement information on time domain on
the basis of researching steady IHCP by using the decentra-
lized fuzzy inference method [12, 13]. Qian et al. solved the
unsteady IHCP by using the SFSM and conjugate gradient
method, which sufficiently demonstrated the effectiveness
of these two methods, analyzed, and compared the advan-
tages and disadvantages of these two methods [14–16]. Lin
et al. proposed an improved SFSM and researched the IHCP
with time-varying internal heat source [17]. Cabeza et al.
researched the one-dimensional transient inverse problems.
It can be found that the time step is the key parameter in
the SFSM [18]. Shao et al. used the conjugate gradient
methods and SFSM for heat flux inversion for the lower sur-
face of the fixed geometric domain in heat flux reversion for
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the variable geometric domain and verified the stability and
effectiveness of such method [19, 20]. Lesnic et al. identified
the thermophysical parameters in one-dimensional transient
heat conduction problems by using the BEM [21]. Ershova
and Sidikova used the residual error principles in the Tikho-
nov regularization method and completed the crystal pho-
non spectrum identification tasks [22]. Weizhen proposed a
subsection identification method, by which the IHCP identi-
fied by variable thermophysical parameters was solved. Fur-
thermore, it is proved that the calculation accuracy and
efficiency of such method are superior to the common opti-
mization algorithm [23]. Li and Liu researched IHCP by
using the BEM and identified the irregular boundaries [24,
25]. Zhou et al. solved the heat conductivity coefficient in
the two-dimensional transient inverse problems by using
the BEM and gradient regularization method and obtained
the relatively accurate inversion results [26]. Yaparova solved
the inverse heat conduction boundary value problems with
stable boundary based on the Laplace and Fourier transfor-
mation method [27].

For the boundary heat flux identification problem in
the heat conduction system, the BEM is used to solve
the two-dimensional unsteady forward problem without
internal heat source; the SFSM is used to solve the inverse
problem. In the process of solving the inverse problem, the
future time step in the inversion process is optimized by
introducing the residual error principle to improve the
inversion accuracy.

2. Unsteady Forward Problem

2.1. Boundary Integral Equation. The mathematical model of
the two-dimensional unsteady heat conduction problem
without internal heat source for isotropic bodies is described
below:

∂2T
∂x2

+ ∂2T
∂y2

= 1
a
∂T
∂t

,  ∈Ω, t > t0 ,

T = T ,  ∈ Γ1, t > t0 ,

q = −λ
∂T
∂n

= q,  ∈ Γ2, t > t0 ,

∂T
∂n

+ h
λ
T = q′,  ∈ Γ3, t > t0 ,

T = T0,  ∈Ω, t = t0 ,

1

where Γ1 is the first boundary condition, Γ2 is the second
boundary condition, Γ3 is the third boundary condition,
and Γ = Γ1 + Γ2 + Γ3 is the boundary of the whole region. a
is the heat diffusion rate a = λ/cρ, c is the specific heat
capacity of the object, ρ is the density of the object, and λ
is heat conductivity coefficient of the object. T is the tem-
perature, q is the normal component of the heat flux vector
at the boundary surface, and n is the coordinate along the
external normal vector, q′ = h/λ T f , where T f is the ambi-
ent environment temperature and h is the surface heat
transfer coefficient.

The weight function T∗ is introduced by the weighted
residual method to get [28]

tx

t0 Ω
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The left side of Formula (2) is decomposed into
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The first item of Formula (3) is converted into
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4

Use Green’s second formula: D v∇2u − u∇2v dD = s
v ∂u/∂n − u ∂v/∂n ds, where s is the boundary curve of
region D and ds is the arc differential.

Based on Green’s formula, Formula (4) is converted as
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Formula (5) is substituted into Formula (3), and Formula
(3) is substituted into Formula (2) to get
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The single time integration by parts is conducted for
tx
t0 Ω 1/a ∂T/∂t T∗dΩdτ udv = uv − vdu to get

tx

t0 Ω

1
a
∂T
∂t

T∗dΩdτ =
Ω

1
a
T∗TdΩ

t=tx

t=t0
−

tx

t0 Ω

1
a
∂T∗

∂t
TdΩdτ

7

Formula (7) is substituted into Formula (6) to get
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Because Γ = Γ1 + Γ2 + Γ3, ∂T/∂n = q, and ∂T∗/∂n = q∗,
Formula (8) can be converted as
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tx
t0 Γ T∗q − Tq∗ dΓdτ is decomposed to get
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Formula (10) is substituted into Formula (9) to get

tx

t0 Ω
T ∇2T∗ + 1

a
∂T∗

∂t
dΩdτ −

Ω

1
a
T∗TdΩ

t=tx

t=t0

=
tx

t0 Γ3

h
λ
TT∗dΓdτ +

tx

t0 Γ1
Tq∗dΓdτ +

tx

t0 Γ2
Tq∗dΓdτ

+
tx

t0 Γ3
Tq∗dΓdτ −

tx

t0 Γ1
qT∗dΓdτ +

tx

t0 Γ2
qT∗dΓdτ

+
tx

t0 Γ3
q′T∗dΓdτ

11

Further simplify and combine the second item and the
third item at the right side of Formula (11) to get
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The basic solution of such equation is shown below:

T∗ = 1
4πa tx − t d/2 exp −

r2

4a tx − t
, 13

where d is the space dimension. The two-dimensional

problem will be discussed in this paper; d = 2 and r =

x − xi
2 + y − yi

2 . The basic solution has the follow-

ing characteristics:
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14

Formula (13) is derived:
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where D = ∂r/∂n ∗ r, where D is the vertical distance
from origin point i to the boundary.

Formulas (14) and (15) are substituted into Formula (12)
and simplified to get
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16

where

Ci =
1,  ∈Ω ,
1
2 ,  ∈ Γ, Smooth boundary

17

2.2. Dispersion of Boundary Integral Equation. When the
time domain is divided, functions T and q will change with
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time. But its change is small than the change of T∗ and q∗ and
can be ignored. Therefore, it can be considered constant
within a small time interval. The time integration by subsec-
tions can be made for Formula (16).

CiTi + a
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The internal time level is integrated:

tx

t0

q∗dτ = −
D

2πar2 exp −
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4a tx − t0
,

tx

t0

T∗dτ =
1

4πa Ei b ,
19

where

b = r2

4a tx − t0
, 20

where Ei b is the exponential integral function which can be
calculated by a series:

Ei b = −C − ln b + 〠
∞

k=1
−1 k−1 bk

k ⋅ k
, 21

where C is Euler’s constant C = 0 57721566 ; when 0 ≤ b ≤ 1,
the approximate value of the first five items is taken
generally.

Based on the above formula, Formula (18) can be writ-
ten as

CiTi
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Ttxq∗t dΓ + a
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TtxT∗

t dΓ = a
Γ
qtxT∗
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Ω
T∗Tt0dΩ

22

When the space domain is divided, the domain Ω is
divided into M units, and the boundary Γ is divided into
N units; when j is within the boundary Γ1, Γ2, the formula
can be written as

CiTi
tx + a 〠

N1+N2

j=1 Γ j

Ttx
j q

∗
t dΓ = a 〠

N1+N2

j=1 Γ j

qtxj T
∗
t dΓ
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M

m=1 ΩM

T∗Tt0dΩ

23

The linear interpolation is used in this paper. Because
the interpolation function of the linear unit is

φ1 ξ = 1 − ξ

2 ,

φ2 ξ = 1 + ξ

2 ,
24

the boundary curve can be approximate to the straight
line. In each unit, the value of T and q is taken on the
endpoint of the unit and linearly approximated.

Formula (23) is collated to get
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where
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26
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1 ,
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Formula (25) is converted as
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Similarly, when j is within the boundary, Formula (22)
can be written as

CiTi
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Given
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30

Formula (29) is converted as

CiTi
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HijT
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Gijq

tx
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M
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T∗Tt0dΩ 31

Formulas (28) and (31) are written in a matrix form:

HTtx = GQtx + P,

P = 〠
M

m=1 ΩM

T∗Tt0dΩ
32

The value of T and q at the boundary node can be
obtained through Formula (32). Taking Ci = 1, the tempera-
ture at any internal point can be obtained through Formulas
(16), (25), and (29).

2.3. Mathematical Model of Rectangle Plate Heat Transfer
Process. Figure 1 is the model of a two-dimensional unsteady
heat conduction system without internal heat source. The
rectangle plate as shown in Figure 1 is used. The boundary
D1,D2,D3 is heat insulated. The boundary D4 has the time-
dependent heat flux qt . By using the relevant mathematical
model, Formula (1) can be converted as

∂2T
∂x2

+ ∂2T
∂y2

= 1
a
∂T
∂t

,  ∈Ω, t > t0 ,

−λ
∂T
∂x

= 0,  ∈D1, t > t0 ,

−λ
∂T
∂x

= 0,  ∈D2, t > t0 ,

−λ
∂T
∂y

= 0,  ∈D3, t > t0 ,

−λ
∂T
∂y

= qt ,  ∈D4, t > t0 ,

T = T0,  ∈Ω, t = t0

33

Among them, Duda has done a lot of experimental and
theoretical research on a heat transfer model and heat con-
duction, which has achieved many valuable results [29–31].

Duda identified the transient temperature distribution
and the local heat flux on unknown boundary edges with
the help of a flat plate heat conduction system shown in
Figures 2 and 3 and the inversion method in the literature.
The determination of the heating process of a simple two-
dimensional plate (Figure 2) and the identification of simul-
taneous transient heat flow by conduction (Figure 3) can

demonstrate high accuracy and stability of the proposed
algorithm. Figure 2 is the model of square plate heat conduc-
tion. Figure 3 is the model of a rectangular cross-section of an
infinitely long beam [10, 11].

3. Unsteady Inverse Problem

3.1. Objective Function of Inverse Problem. The inverse prob-
lem corresponding to the forward problem is to inverse the
unknown boundary heat flux qX at the present based on the
temperature information of measuring point S in the region,
other known boundary conditions, and thermophysical
parameter in the forward problems. At time tX , the heat flux
value q1, q2, q3,… , qX−1 at time X − 1 and the measured
value TX , TX+1,… , TX+R−1 of measuring point temperature
at later time R are known.

Its corresponding objective function can be defined
as below:

J qX = 〠
R

n=1
TX+n−1 qX − TX+n−1

mea
2, 34

x

y

D1 D2

D4

D3

qt

𝛀

S

Lx

Ly

Figure 1: Two-dimensional unsteady plate heat conduction system.
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x

y

Figure 2: The model of square plate heat conduction.

5Complexity



where qX is the parameter to be inversed. TX+n−1 qX is the
calculated temperature value of measuring point S at time
tX+n−1 and obtained by solving the forward problem
through the predicted value of qX . TX+n−1

mea is the measured
temperature value of measuring point S at time tX+n−1.

3.2. Sequential Function Specification Method for Inverse
Problem. Suppose that the boundary heat flux satisfies
the certain function relationship with the time domain
tX , tX+R−1 :

qX = qX+1 = qX+2 =⋯ = qX+R−1 35

Given the initial predicted value of heat flux qX to
be inversed as qXp , considering that the model described
in Formula (33) has linear characteristics, the calculated
value TX+n−1 of measuring point is

TX+n−1 qX = TX+n−1 qXp + ZX+n−1 qX − qXp , 36

where ZX+n−1 = ∂TX+n−1/∂qX is the sensitivity coefficient
of heat flux to be inversed. qX is derived by the equation in
Formula (33) and the corresponding sensitivity equation
can be obtained:

∂2Z
∂x2

+ ∂2Z
∂y2

= 1
a
∂Z
∂t

,  ∈Ω, tX ≤ t ≤ tX+R−1 ,

−λ
∂Z
∂x

= 0,  ∈D1, tX ≤ t ≤ tX+R−1 ,

−λ
∂Z
∂x

= 0,  ∈D2, tX ≤ t ≤ tX+R−1 ,

−λ
∂Z
∂y

= 0,  ∈D3, tX ≤ t ≤ tX+R−1 ,

−λ
∂Z
∂y

= 1,  ∈D4, tX ≤ t ≤ tX+R−1 ,

Z = Z0 = 0,  ∈Ω, t = tX

37

For the sensitivity equation solving, as Z is unrelated to
qX , the BEM for the forward problems is used to obtain the
sensitivity coefficient.

Substitute Formula (36) into the objective function (34)
and given ∂J qX /∂qX = 0 to get

〠
R

n=1
ZX+n−1 2

qX − qXp = 〠
R

n=1
TX+n−1 qX − TX+n−1

mea ZX+n−1

38

Further simplify to get

qX = qXp + ∑R
n=1 TX+n−1 qX − TX+n−1

mea ZX+n−1

∑R
n=1 ZX+n−1 2 39

3.3. Residual Error Principle. The residual error principle is
introduced to calculate the optimal further time step and
reduce the impacts of measuring error on inversion results
[32–34].

The boundary heat flux value will be inversed in this
paper. Therefore, the forward problem should be solved
firstly by the predicted value of heat flux to obtain the calcu-
lated temperature value Tx

S of measuring point S at time x.
In addition, when the measured temperature value Tx

mea of
measuring point S has a measuring error, Tx

mea can be repre-
sented by the sum of the actual temperature and measuring
error, namely,

Tx
mea = Tx

act + ωσ, 40

where ω is the standard normal random number in interval
−2 576, 2 576 , ωσ is the measuring error, and σ is the stan-
dard deviation of the measured value. The form of σ is
shown below:

σ = 1
X − 1〠

X

x=1
Tx
mea − Tx

act
2 41

q2 = ?
Unknown
boundary
condition

Known
boundary
condition

K,c,𝜌

x

y

q1 = ?

A
B

C
D

Figure 3: The model of a rectangular cross-section of an infinitely long beam.
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As the measured temperature and calculated tempera-
ture are known, the standard temperature error in the whole
inversed time domain can be obtained. The standard tem-
perature error formula can be defined below:

RT = 1
X − 1〠

X

x=1
Tx
mea − Tx

S R 2 42

In ideal conditions, there exits

Tx
act = Tx

S R 43

According to the residual error principles, when For-
mula (43) is satisfied, RB is the optimal future time step.
The standard temperature error is equal to the standard
deviation of the measured value, namely,

RT = σ 44

The obtained future time step RB is substituted into the
SFSM to calculate the heat flux to be inversed and thus
reduce the impacts of the measuring error on the inversion
results.

3.4. Inverse Problem Solving Process

Step 1. Select the initial predicted value qXp of heat flux at a
certain time.

Step 2.Calculate to obtain the calculated temperature value of
measuring point S at time R after such time through qXp value
and Formula (33).

Step 3. Calculate the optimal future time step RB by Formula
(44).

Step 4. Obtain the corresponding sensitivity ∂J qX /∂qX by
Formula (37).

Step 5. Update the heat flux value qX to be inversed by
Formula (39) to obtain the final inversion results.

Step 6. Push backward in time orientation, repeat Steps 1–5,
and obtain the heat flux inversion value at different times.

4. Numerical Experiment and Analysis

The effectiveness of the above methods is verified by numer-
ical experiment. The impacts of different future time steps,
measuring point positions, and measuring error on the inver-
sion results are analyzed. At the same time, the inversion
results of the optimal future time step obtained through
residual error principle and the inherent future time step
are analyzed to verify the accuracy of proposed methods.

The two-dimensional plate heat transfer model for for-
ward problems as shown in Figure 1 is used. In such simula-
tion example, the length Lx and width Ly of the plate is

0.05m, the heat conductivity coefficient is λ = 50W/ m ⋅ K ,
the heat diffusion rate is a = 1 × 10−5 m2/s, and the initial
temperature is T0 = 20°C. The actual heat flux of boundary
D4 is distributed in step wave as shown in

q t =

0 W
m ,   0 < t < 60, 240 < t < 300 ,

4000 W
m2 ,   60 ≤ t < 120, 180 < t ≤ 240 ,

8000 W
m2 ,   120 ≤ t ≤ 180

45

The value in Formula (45) is the exact solution of heat
flux (exact). The temperature of measuring point S is
obtained for actual heat flux distribution by the methods
used in forward problems. The measured temperature of
measuring point is obtained by Formula (40) for the above
inverse problems.

4.1. Impacts of Future Time Step on Results. In the case of
standard deviation σ = 0 00 and the position of the measur-
ing point L = 0 01m away from the boundary ofD4, the mea-
sured temperature history and the calculated temperature
history when the future time step R = 2, 5, 8 are shown in
Figure 4. The inversion results when the future time step
R = 2, 5, 8 are shown in Figure 5. Figure 4 shows the history
of measured and calculated temperatures for different future
time steps. Figure 5 shows the impacts of different future
time steps on the inversion results when σ = 0 00 and L =
0 01m.

In the case of standard deviation σ = 0 001 and the posi-
tion of the measuring point L = 0 01m away from the bound-
ary of D4, the inversion results when the future time step
R = 2, 5, 8 are shown in Figure 6. Figure 6 shows the impacts
of different future time steps on the inversion results when
σ = 0 001 and L = 0 01m.

Table 1 shows the relative average error of inversion
results of different future time steps when σ = 0 00 and L =
0 01m and σ = 0 001 and L = 0 01m. Based on the data in
Table 1 and by the comparison of the inversion results in
Figures 5 and 6, when the future time step is increased, the
relative average error of results is increased but the relative
average error can be controlled within 9% by the proposed
methods. In addition, when R value is smaller, the inversion
results are sensitive to the measuring error. In case of differ-
ent errors, the increase of R value can obtain the relatively
smooth inverse value curve, control measuring error, and
improve the inversion accuracy.

4.2. Impacts of Measuring Point Position on Results. In the
case of standard deviation σ = 0 00 and the future time step
R = 2, the measured temperature history and the calculated
temperature history when the position of the measuring
point L = 0 01m, 0 015m, 0 02m, 0 025m are shown in
Figure 7. The inversion results when the position of the mea-
suring point L = 0 01m, 0 015m, 0 02m, 0 025m are shown
in Figure 8. Figure 7 shows the history of measured and

7Complexity



calculated temperatures for different measuring point posi-
tions. Figure 8 shows the impacts of different measuring
point positions on the inversion results when σ = 0 00 and
R = 2.

Table 2 shows the relative average error of inversion
results of different measuring point positions when σ = 0 00
and R = 2. Based on the data in Table 2 and the inversion
results in Figure 8, the different measuring point positions
have little impacts on the inversion results. Although the rel-
ative average error of result is increased, the proposed
methods can track the exact solution of heat flux and obtain
more accurate inversion results. In Figure 8, when the heat
fluxes change, the inversion results will fluctuate. Further-
more, the farther the measuring point position, the larger

the fluctuation. It is caused by damping and delay of
unsteady heat conduction.

4.3. Impacts of Measuring Error on Results. In the case of the
future time step R = 3 and the position of the measuring
point L = 0 01m away from the boundary of D4, the
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Figure 5: Impacts of different future time steps on inversion results
when σ = 0 00 and L = 0 01m.
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Figure 6: Impacts of different future time steps on inversion results
when σ = 0 00 and L = 0 01m.

Table 1: Relative average error of inversion results of different
future time steps when σ = 0 00 and L = 0 01m.

Future time step R 2 5 8

σ = 0 00 relative average error η (%) 3.52 6.19 8.15

σ = 0 001 relative average error η (%) 5.10 6.24 8.17
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Figure 7: The history of measured and calculated temperatures for
different measuring point positions when σ = 0 00 and R = 2.
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Figure 4: The history of measured and calculated temperatures for
different future time steps when σ = 0 00 and L = 0 01m.
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measured temperature history and the calculated tempera-
ture history when the standard deviation σ = 0 001, 0 005,
0 01, 0 02 are shown in Figure 9. The inversion results when
the standard deviation σ = 0 001, 0 005, 0 01, 0 02 are shown
in Figure 10. Figure 9 shows the history of measured and cal-
culated temperatures for different measuring errors.
Figure 10 shows the impacts of different measuring errors
on the inversion results when R = 3 and L = 0 01m.

Table 3 shows the relative average error of inversion
results of different measuring errors when L = 0 01m and
R = 3. Based on the data in Table 3 and the inversion results
in Figure 10, when the measuring error is relatively smaller,
the better inversion results can be obtained. When increasing
the measuring error, the inversion results will be deteriorated
and vibration will be more severe.

When there exists a higher measuring error, the residual
error principle is introduced. For different measuring errors,
the methods for the above inverse problem are used to calcu-
late the optimal future time step. Taking the measuring point
position L = 0 01m away from the boundary of D4, when the
standard deviation σ = 0 001, 0 005, 0 01, 0 02, the corre-
sponding optimal future time step obtained from Formula
(44) is RB = 3, 5, 6, 8. The inversion results are shown in
Figure 11. Figure 11 shows the impacts of different measuring
errors on the inversion results when L = 0 01m and R = RB.

Table 4 shows the relative average error of inversion
results of different measuring errors when L = 0 01m and

R = RB. By comparing the data in Table 4 and inversion
results in Figure 11 with the data in Table 3 and inversion
results in Figure 10, it can be known that the proposed
methods can effectively restrain the impacts of the measur-
ing error on inversion results and control the relative aver-
age error of inversion results within 9% when there exists
the measuring error.
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Figure 8: Impacts of different measuring point positions on
inversion results when σ = 0 00 and R = 2.

Table 2: Relative average error of inversion results of different
measuring point positions when σ = 0 00 and R = 2.

Distance from the boundary L (m) 0.010 0.015 0.020 0.025

Relative average error η (%) 3.52 3.53 3.83 5.09
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Figure 9: The history of measured and calculated temperatures for
different measuring errors when L = 0 01m and R = 3.
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Figure 10: Impacts of different measuring errors on inversion
results when L = 0 01m and R = 3.

Table 3: Relative average error of inversion results of different
measuring errors when L = 0 01m and R = 3.

Standard deviation σ 0.001 0.005 0.01 0.02

Relative average error η (%) 4.81 9.41 16.21 31.12
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5. Conclusion

The boundary heat flux of the two-dimensional unsteady
heat conduction system is inversed by the BEM and SFSM
based on residual error principles. By solving and analyzing
the algorithm example, it demonstrates that the proposed
methods have higher accuracy in the inversion process. At
the same time, by discussing the impacts of different future
time steps, measuring point positions, and measuring errors
on the results, it demonstrates that the obtained inversion
results can better represent the variation trend of the exact
solution on time orientation and have better stability when
there exists the measuring error or the measuring point posi-
tion is changed.
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