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Although many mathematical models have been presented for glucose and insulin interaction, none of these models can describe
diabetes disease completely. In this work, the dynamical behavior of a regulatory system of glucose-insulin incorporating time delay
is studied and a new property of the presented model is revealed. This property can describe the diabetes disease better and
therefore may help us in deeper understanding of diabetes, interactions between glucose and insulin, and possible cures for this
widespread disease.

1. Introduction

Diabetes, technically called diabetes mellitus, is referred to
types of disorders in the metabolic processes of the human
body in which the controlling mechanism of sugar level in
blood is disrupted. In these cases, insulin, the mainstay
controlling element, is either not secreted or its presence
is ignored by body cells [1]. There are three types of diabe-
tes: type 1, type 2, and gestational diabetes. Type 1 diabetes
is all about insulin. In this type of diabetes, the body’s
immune system intercepts insulin-releasing cells and
destroys them. This type of diabetes accounts for 5 to 10
out of 100 diabetic people. In type 2 diabetes, the body is
not able to use insulin in the right way. This type of diabe-
tes is the most common in the world, and around 90 to 95
percent of diabetics have type 2. A third type of diabetes,
gestational diabetes, is a temporary condition that occurs
during pregnancy. It affects approximately two to four per-
cent of all pregnancies [2–5].

The function of insulin alters for each organ in the
human body, so the effects of environmental factors like
stress and nourishing habits may cause blood glucose shift.
As observed in various countries, diabetes is discernibly
widespread and there is an increasing number of people suf-
fering from this. Hence, the potentially lethal symptoms of
the illness necessitate more meticulous treatments and pre-
cautionary activities. The essence for such cure procedures
is even more accentuated in contemporary hectic life in
which people have an increasing penchant to be nourished
by artificially cultivated foods and do less exercise. The num-
ber of people suffering from this disease was approximately
415 million in 2015 with equal shares of both genders, which
accounted for 8.3% of the overall adult population of the
world. And nearly 1.5 to 5 million people have died because
of diabetes every year between years 2012 and 2015 world-
wide [1].

Speaking of the reasons triggering this illness, many ele-
ments can cause this irregularity behavior in the body, such
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as genetic factors inherited through generations that fertil-
ize the body for other factors of the disease to easily disrupt
the metabolic system, obesity due to malnutrition and
urbanization as consequent of modern lifestyle, side effects
of taking specific drugs like glucocorticoids and thyroid
hormone, progression of other illnesses, and many other
factors which cannot be wholly included [1]. Knowing
about the causes of disease enables scientists to develop
meditative procedures.

Besides the paramount and distinctive importance of
experimental researches for developing effective treatment
protocols, studying and developing mathematical models of
glucose-insulin bilateral interplay have had an essential role
in accelerating the research processes and making break-
throughs in this field by saving both money and time. Con-
ventionally, it was believed that a linear relationship defines
the mechanism of glucose-insulin negative feedback system.
A linear model for diabetes assumes that the relationship
between glucose and insulin concentration could be studied
in isolation from other components [6]. In contrast, nonlin-
ear models proposed in previous studies assume that the
relationship between components is not always linear [7]
and it could depend on initial blood glucose level [8]; more-
over, they revealed the fact that statistical properties of the
profile in some patients could alter substantially [6, 9, 10].
In glucose-insulin system, interactions between components
are responsible for the overall behavior of the system, which
makes this system a complex one. The basic structure of insu-
lin secretion system is a negative feedback controller operat-
ing between two elements, namely, the pancreatic β-cells and
plasma glucose concentration of the blood contacting these
cells. A high level of glucose concentration is acquired, for
example, when having a snack which provokes the produc-
tion and release of insulin leading to a decrease in glucose
levels by increasing the consumption rate of the extra sugar
or initiation of storage process. On the contrary, if plasma
blood is experiencing low levels of glucose concentration,
insulin secretion is halted, preventing further declination of
blood sugar. In this case, the metabolic system shifts condi-
tion from absorptive to postabsorptive [11, 12].

As delineated in the preceding paragraph, various math-
ematical models have been proposed in attempts to simulate
the relation between plasma glucose concentration and
plasma insulin concentration more accurately, so that scien-
tists will be able to have an elaborate perspective of this met-
abolic interaction [13–17]. It is wondering that the recently
submitted models show some kind of chaotic behavior in
the mechanism of malfunctioning metabolic system which
is revealed in the current study.

The investigation of chaotic dynamics has attracted the
foci of many scientists, and a great deal of effort is put in
this field as it has provided a successful method for study-
ing biological systems [18–23]. Moreover, this novel van-
tage point of studying biological phenomena has made
revolutionary effects on developing biological system
models [24–27].

Because of the complexity of the system, the model that
has been studied in this paper is a nonlinear model. The non-
linear model that we study reflects the relationship between

injected insulin and blood glucose response. The studies
about variation in the blood glucose indicate a chaotic
component.

In the second section, the dynamical properties of the last
presented model for glucose and insulin concentration are
investigated. Eventually, conclusion remarks are given in
Section 4.

2. Mathematical Model

In 1964, Ackerman et al. [16] proposed a linear model for
glucose tolerance test consisting of two ordinary differentials
(1), as demonstrated below.

dx
dt

= a1y t − a2x t + C1,

dy
dt

= −a3y t − a4x t + C2 + I t ,
1

where x t is the insulin concentration and y t is the
blood glucose concentration. a1y t is the rate of increase
in insulin concentration due to increase in glucose con-
centration, a2x t represents the rate of insulin reduction,
a3y t represents the rate of glucose reduction indepen-
dent to insulin, and a4x t represents the rate of glucose
removal due to insulin secretion. C1 and C2 are positive
constants, and I t is the rate of increase in blood glu-
cose concentration due to absorption in the gastrointesti-
nal system.

In 1987, Bajaj et al. [15] proposed a nonlinear mathemat-
ical model for glucose-insulin feedback system which incor-
porated β-cell kinetics. The mathematical relationships for
the model are formulated as shown in

dx
dt

= R1y − R2x + C1,

dy
dt

= R3N
z

− R4x + C2,

dz
dt

= R5y T − z + R6z T − z − R7z,

2

where x t and y t represent the insulin and glucose con-
centrations, respectively, and z t represents the number of
β-cells. It has been discovered that β-cells have an essential
role in regulating glucose and insulin concentration. Recent
studies indicate two delays in glucose-insulin feedback con-
trol system [28–32]. Two important time lags can be noticed
in the system, the lag in insulin secretion in response to an
increase in blood glucose concentration, τg, and hepatic glu-
cose response lag, τi.

In the current research, we study a nonlinear mathemat-
ical model for glucose-insulin feedback control system by
incorporating the enhanced delay differential equations
embracing β-cells proposed by the model presented by Sarika
et al. [28]. The modified model is the compound of the model
proposed by Bajaj et al. [15] and the one suggested by Sarika
et al. [28]. The resulted model is the one presented by
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Chuedoung et al. [11] (Figure 1), which can be presented in
delay differential equations as follows:

dx
dt

= r1y t − τg z t − τg − r2x + c1z t − τg ,

dy
dt

= R3N
z

− R4x t − τi + C2,

dz
dt

= R5 y − ŷ T − z + R6z T − z − R7z,

3

where x t is the insulin concentration, y t is the glucose
concentration, z t is the number of β-cells, and ŷ is the
difference between glucose fasting level and its basal level.
τg is the delay in insulin secretion in response to blood
glucose level increase based on clinical evidence reported
by Palumbo et al. [33], and τi is the delay in glucose drop
due to increased insulin level based on clinical evidence
reported by Prager et al. [34]. r1y t − τg z t − τg shows
the increase in insulin concentration in response to blood
glucose increase with the time delay τg. r2x is the rate of
insulin decrease independent of glucose, and c1z t − τg
is the increase of insulin level secreted by β-cells and is
independent from other components. System (3) con-
siders two time lags in insulin-glucose regulatory system;
therefore, it is more realistic and is capable of showing
the behavior of insulin-glucose regulatory system in dif-
ferent time delays. Previous models cannot display the
behavior of aforementioned biological system with respect
to time delays.

According to the model presented by Molnar et al. [17], if
insulin secretion decreases to 1/N of the number of β-cells,
designated by N , due to a reduction, then the blood glucose

increases until insulin levels are restored to nearly normal
standards. So the blood glucose level is a function of the
β-cells’ capacity N/n. N is the normal number of β-cells.
R4x t − τi is the rate of glucose reduction in response to
insulin secretion with the time delay τi. T is the total density
of β-cells, and the term R5 y − ŷ T − z represents the
increase in dividing β-cells caused by the interaction between
blood glucose above the fasting level and the nondividing
β-cells. The term R6z T − z represents the increase in z
due to interaction between dividing and nondividing β-cells,
and the term R7z represents the reduction in z due to its
current level.

3. Results and Discussion

Based on the study by Chuedoung et al. [11], the men-
tioned model shows the different behaviors for different
parameters. The proposed model comprises a number of
parameters that their values are essential in changing the
behavior of the system.

In current research, the new capability of the mentioned
model is revealed. By increasing the insulin secretion delay
by β-cells (τg), the system behaves in a chaotic way
(Figure 2). Figure 2 is the bifurcation diagram of the system
for the different values of τg. Figure 2 shows that if there is
more delay on insulin secretion, insulin cannot track glucose
and the concentration of blood glucose rises which results
in diabetes disorder. Technically speaking, the time lag of
insulin response in glucose-insulin negative feedback con-
trolling mechanism is shown to be the main reason for this
disease. Computer simulation of Figure 2 is done by the
following parameters r1 = 0 472, r2 = 0 25, R3 = 0 82, R4 =
0 6, R5 = 0 3, R6 = 0 3, R7 = 0 2, c1 = 0 1, C2 = 0 8, ŷ = 1 42,
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Figure 1: Two time delays in glucose-insulin system [11].
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T = 1 5, N = 1 27, and τi = 0 05. The values of the param-
eters are the same as the values presented by Chuedoung
et al. [11].

With the increase in glucose response time caused by
insulin secretion (τi), the system behaves chaotically
(Figure 3). Figure 3 is the bifurcation diagram of the sys-
tem for different values of τi. It shows that if there is more
delay on response of glucose to insulin secretion, the sys-
tem behaves in a chaotic manner. Note that the goal of
this study is not to investigate the parameters quantita-
tively, but rather to show that a minute change in the
quantities of parameters of the model can bring about
changes in the behavior of the system. Computer simula-
tion of Figure 3 is done by the following parameters r1
= 0 472, r2 = 0 25, R3 = 0 82, R4 = 0 6, R5 = 0 3, R6 = 0 3,
R7 = 0 2, c1 = 0 1, C2 = 0 8, ŷ = 1 42, T = 1 5, N = 1 27,
and τg = 0 56. The values of the parameters are the same
as the values presented by Chuedoung et al. [11].

In the present study, we used the insulin-glucose model
involving β-cells presented by Chuedoung et al. [11] and
the effect of delays on insulin-glucose model have been inves-
tigated. The system is stable for small delays, and when the
delays increase, the system exhibits chaotic behavior.
According to the claim made by Bertram and Pernarowski
[35], 1-2min lag, representative of insulin secretion, is a
common incident after bath application of glucose in islet
electrical activity when investigating islet porosity and the
permeability of a surrounding layer of acinar cells on the time
required for glucose to diffuse through an isolated pancreatic
islet of Langerhans and reach an equilibrium. And, based on
a report by Forrest et al. [36], instantaneous insulin reflection
was recorded in 14 out of the 20 monitored Jamaican chil-
dren rehabilitated from malnutrition. The response time
was about 1 minute for them; whereas, this delay ranged
from 5 to 10 minutes for the other children. Hence, these
observations support our claim about the range of τg and τi.
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Figure 2: The model bifurcation diagrams based on different values of parameter τg.
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Figure 3: The model bifurcation diagrams based on different values of parameter τi.
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4. Adaptive Sliding Mode Control

A new sliding mode control scheme for a class of uncertain
time-delay chaotic systems is proposed in [37]. It is shown
that a linear time-invariant system with the desired system
dynamics is used as a reference model for the output of a
time-delay chaotic system to track. Chaos control for
scalar-delayed chaotic systems using sliding mode control
strategy is achieved in [38]. Sliding surface design is based
on delayed feedback controller, and it is shown that the pro-
posed controller can achieve stability for an arbitrary unsta-
ble fixed point (UPF) or unstable periodic orbit (UPO) with
an arbitrary period.

In this section, we design the adaptive sliding mode con-
trollers to suppress the chaotic oscillations in the model pre-
sented in (3). For the uncertainties, we assume that the
parameters r1, r2, c1, and c2 are unknown. The entire control
algorithm is designed with the delay elements as described in
(3), and hence the sliding surface initialization is accounted
with the respective time delays. Let us redefine the model in
(3) with the controllers ui, where i = x, y, z as given in

x = r1y t − τg z t − τg − r2x + c1z t − τg + ux,

y = R3N
z

− R4x t − τi + c2 + uy ,

z = R5 y − y T − z + R6z T − z − R7z + uz

4

We define the integral sliding mode surface as

sx = x + kx
t

0
x τ dτ,

sy = y + ky
t

0
y τ dτ,

sz = z + kz
t

0
z τ dτ

5

The sliding surface dynamics can be derived as

sx = x + kxx,
sy = y + kyy,
sz = z + kzz

6

The parameter estimation errors are defined as

er1 = r̂1 − r1,
er2 = r̂2 − r2,
ec1 = ĉ1 − c1,
ec2 = ĉ2 − c2

7

The first derivatives of the estimation errors are

er1 = r̂1,

er2 = r̂2,

ec1 = ĉ1,

ec2 = ĉ2

8

Consider the following Lyapunov function:

V = 1
2 s2x + s2y + s2z + e2r1 + e2r2 + e2c1 + e2c2 9

The first derivative of the Lyapunov candidate function is

V = s1s1 + s2s2 + s3s3 + er1er1 + er2er2 + ec1ec1 + ec2ec2 10

Applying (4), (6), and (8) in (10), we have

V = sx r1y t − τg z t − τg − r2x + c1z t − τg + ux + kxx

+ sy
R3N
z

− R4x t − τi + c2 + uy + kyy

+ sz R5 y − y T − z + R6z T − z − R7z + uz + kzz

+ er1 r 1 + er2 r 2 + ec1 c 1 + ec2 c 2

11

By introducing uncertainties without changing the defi-
nition in (11),

V = sx
r1y t − τg z t − τg + r 1y t − τg z t − τg − r 1y t − τg z t − τg

−r2x + r 2x − r 2x + c1z t − τg + c 1z t − τg − c 1z t − τg + ux + kxx

+ sy
R3N
z

− R4x t − τi + c2 + c 2 − c 2 + uy + kyy

+ sz R5 y − y T − z + R6z T − z − R7z + uz + kzz + er1 r 1 + er2 r 2 + ec1 c 1 + ec2 c 2

12
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After some mathematical simplifications, let us define the
adaptive sliding mode controllers as

ux = − r 1y t − τg z t − τg + r 2x − c 1z t − τg

− kxx − ηx sgn sx − ρxsx,

uy = −
R3N
z

+ R4x t − τi − c 2 − kyy − ηy sgn sy − ρysy ,

uz = −R5 y − y T − z − R6z T − z + R7z − kzz

− ηz sgn sz − ρzsz
13

The parameter estimate laws can be defined as

r 1 = sxy t − τg z t − τg ,

r 2 = −sxx,

c 1 = sxz t − τg ,

c 2 = sy

14

Using (13) and (14) in (12), we simplify the Lyapunov
candidate function dynamics to

V ≤ −ηx sx − ηy sy − ηz sz − ρxs
2
x − ρys

2
y − ρzs

2
z 15

As ρi and ηi are positive for i = x, y, z, the Lyapunov first
derivative (15) is a negative definite function which infers
that the controller is stable as per the theorem discussed in
[39, 40] and is valid for any bounded initial conditions. For
numerical simulations, the initial conditions are taken as
2.6, 1, and 0.825 and the sliding surface initial conditions
are defined as −2.6, −1, and −0.825 with the time delays

τg = 3 56 and τi = 3 35. The initial conditions of the parame-

ter estimates are defined as r 1 = 1, r 2 = 3, c 1 = 6, and c 2 = 7.
Figures 4 and 5 show the time history of states controlled
with adaptive sliding mode controllers in action at t = 0 s
and t = 35 s, respectively. Figure 6 shows the estimated
parameters with parameter update laws and controllers in
action at t = 0 s.

5. FPGA Implementation

Implementation of chaotic and hyperchaotic systems using
Field Programmable Gate Arrays (FPGA) has been widely
investigated [41–43]. Chaotic random number generators
have been implemented in FPGA for applications in image
cryptography [44]. FPGA-implemented Duffing oscillator-
based signal detectors have been proposed by Rashtchi
et al. [45]. Digital implementations of chaotic multiscroll
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attractors have been extensively investigated [41, 46].
Memristor-based chaotic system and its FPGA circuits have
been proposed by Ya-Ming et al. [47]. A FPGA implementa-
tion of fractional order chaotic system using approximation
method has been investigated by Rajagopal et al. [48–50].

In this section, we implement a circuit for the model
(3) by FPGA. To the best of our knowledge, only a few lit-
eratures [51, 52] have implemented delay chaotic systems.
However, those works discuss about indirect realizations
which will increase the time slack factor as the programs
run sequentially on the processor. But we use a direct real-
ization, and hence the power utilization and the time slack

delays are reduced. For the design of delay chaotic model
(3), first, we configure the available built-in blocks of the
System generator toolbox. The Add/Sub blocks are config-
ured with zero latency and 32/16 bit fixed point settings.
The delays are introduced by an additional delay block
introduced with the defined time delays as in (3). The out-
put of the block is configured to rounded quantization in
order to reduce the bit latency. Then, we design the inte-
ger order integrator which is not a readily available block
in the System Generator. Hence, we implement the inte-
grators using the mathematical relation dxi/dt = limh→0
xi n + 1 − xi n /h and the value of h is taken as 0 001.
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The initial conditions are fed into the forward register.
Figure 7 shows the overall RTL schematics of the system with
time delays. Figure 8 shows the RTL schematics of the imple-
mented delay (3). Figure 9 shows the Xilinx RTL schematics
of the controllers with sliding surfaces and parameter esti-
mate laws. Figures 10 and 11 show the controlled states of
the delay systems and estimated parameters with the control
in action at t = 0 5 s, respectively.

6. Discussion and Conclusion

By studying presented mathematical models for glucose-
insulin interaction, according to the value of parameters, a
chaotic model for describing the glucose-insulin regulatory
system was found. In the present study, it is expected to

observe periodic behavior in the proposed system under nor-
mal metabolic conditions and chaotic behavior under abnor-
mal metabolic conditions. It is noteworthy to say that the
chaotic behavior of a system is a sign of a faulty condition
in the biological systems [18–23].

The effect of two time delays on glucose-insulin regula-
tory system was investigated. Two main results of this study
are listed as below.

(i) If the time lag of insulin response to glucose increases,
system exits from periodic region and enters to cha-
otic region, and if there is more delay on response
of glucose to insulin secretion, the system displays
chaotic manner, which was in line with previous
studies [35, 36]

Figure 9: Xilinx RTL schematics of the controllers with sliding surfaces and parameter estimate laws.
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(ii) If there is more delay on the response of glucose to
insulin secretion, the behavior of system alters from
periodic to chaotic

The proposed system can explain the interaction between
glucose and insulin concentration in both normal and abnor-
mal (diabetes disease) situations. Also, a control method was
investigated with the hope of possible clinical applications.
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