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The neural network has the advantages of self-learning, self-adaptation, and fault tolerance. It can establish a qualitative and
quantitative evaluation model which is closer to human thought patterns. However, the structure and the convergence rate of
the radial basis function (RBF) neural network need to be improved. This paper proposes a new variable structure radial basis
function (VS-RBF) with a fast learning rate, in order to solve the problem of structural optimization design and parameter
learning algorithm for the radial basis function neural network. The number of neurons in the hidden layer is adjusted by
calculating the output information of neurons in the hidden layer and the multi-information between neurons in the hidden
layer and output layer. This method effectively solves the problem that the RBF neural network structure is too large or too
small. The convergence rate of the RBF neural network is improved by using the robust regression algorithm and the fast
learning rate algorithm. At the same time, the convergence analysis of the VS-RBF neural network is given to ensure the
stability of the RBF neural network. Compared with other self-organizing RBF neural networks (self-organizing RBF (SORBF)
and rough RBF neural networks (RS-RBF)), VS-RBF has a more compact structure, faster dynamic response speed, and better
generalization ability. The simulations of approximating a typical nonlinear function, identifying UCI datasets, and evaluating
sortie generation capacity of an carrier aircraft show the effectiveness of VS-RBF.

1. Introduction

A carrier aircraft is an important part in the modern naval
warfare. The research on the warfare capacity of the carrier
aircraft has become a hot issue with the increasing attention
of the security in the territorial sea. The comparison of sortie
generation capacity of the carrier aircraft in different opera-
tional schemes is helpful to determine the final plan. There-
fore, the evaluation for sortie generation capacity of the
carrier aircraft has important theoretical significance and
application value [1].

The evaluation for sortie generation capacity of the car-
rier aircraft is complex, due to the mutual influence and com-
plex nonlinear of factors. The research of evaluation for the
sortie generation capacity of the carrier aircraft has been

studied recently. Xia et al. [2, 3] applied the principal compo-
nent reduction method and the nonlinear fuzzy matter-
element method to evaluate sortie generation capacity of
the carrier aircraft. Both methods did not consider the
mutual influence of factors. Gilchrist [4] proposed an evalu-
ation method of the suitability of LCOM for modeling. This
report studied the base-level munition production process
in LCOM. However, the common evaluation methods ignore
the correlation between the influencing factors. There is a
certain deviation between the evaluation results and the
actual situation.

The neural network has the advantages of self-learning,
self-adaptation, and fault tolerance. It can establish a qualita-
tive and quantitative evaluation model which is closer to
human thought patterns. The trained neural network can
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connect expert evaluation ideas with the neural network.
Thus, this neural network can not only simulate the expert
evaluation but also avoid the human errors in the evaluation
process and the subjective influence of the human to calcu-
late weight. The evaluation method based on the RBF neural
network has advantages of fast calculation speed, high effi-
ciency of problem solving, and strong self-learning ability.
However, there are two problems in the application of the
radial basis function (RBF) neural network.

The first problem is the structural design problem of the
RBF neural network. In recent years, many optimization
methods of the RBF neural network have been put forward.

(1) The pruning algorithm [5] was regarded as an effec-
tive way to optimize the network structure and
improve the generalization ability of the network,
but the parameters set in the pruning method
required experience and skills

(2) The growing algorithm [6] increased the number of
neurons and connections until the generalization
ability met the requirements, but it was difficult to
determine when to stop growing

(3) The pruning and growing algorithm: Kokkinos
and Margaritis [7] present a Hierarchical Markovian
Radial Basis Function Neural Network (HiMar-
kovRBFNN) model that enabled recursive opera-
tions. The hierarchical structure of this network was
composed of recursively nested RBF neural networks
with arbitrary levels of hierarchy. All hidden neurons
in the hierarchy levels were composed of truly RBF
neural networks with two weight matrices. The hid-
den RBF response units were recursive. However, this
method was affected by the initial value, and some-
times, the final RBF neural network was unstable.
However, the algorithm ignored the adjustment of
structural parameters, which led to the slow conver-
gence speed of the neural network learning algo-
rithm. Therefore, the RBF neural network structure
optimization design method is still an open problem,
and especially the convergence of the dynamic struc-
ture adjustment process has not been solved well

The second problem is the training method for the
weights of the RBF neural network and the learning rate. At
present, RBF neural network weights are usually trained by
the linear least square algorithm, but the least square esti-
mation is affected by outliers [8, 9]. Kadalbajoo et al. [10]
presented an RBF-based implicit explicit numerical method
to solve the partial integro-differential equation which
described the nature of the option price under the jump dif-
fusion model. But the sum of squared errors increased rap-
idly with the increase of squared error of each training
sample. At the same time, there is a problem to set the learn-
ing rate of the RBF neural network [11–14]. In the use of the
RBF neural network, the learning rate was often subjective to
set as a fixed value [15–20]. It remained unchanged through-
out the learning process. If the learning rate was set too high,
the convergence speed of the network might be very fast, and

it might cause network instability. If the learning rate was too
small, it would cause that the network convergence speed was
slow and consume a large amount of computing time. There-
fore, it is very difficult to choose a suitable learning rate for
the traditional RBF neural network.

In order to solve the problems above, this paper proposes
a variable structure RBF neural network (VS-RBF) with a fast
learning rate. The number of neurons in the hidden layer is
adjusted by calculating the output information (OI) of neu-
rons in the hidden layer and the multi-information (MI)
between neurons in the hidden layer and output layer. The
robust regression method is used to replace the linear least
square algorithm to reduce the influence of outliers on weight
training. Then, the fast learning rate method is used to adjust
the learning rate of the RBF neural network, which can guar-
antee the stable learning of the network and the convergence
speed. In this paper, the proposed VS-RBF neural network
can be used to grow or prune the neurons in the hidden layer
according to the actual system.

The rest of this paper is organized as follows. Section 2
describes the VS-RBF neural network with a fast learning
rate. Section 3 proves convergence of VS-RBF. In Section 4,
VS-RBF is compared with SORBF and RS-RBF in approxi-
mating a typical nonlinear function and identifying UCI
datasets. In Section 5, VS-RBF is used to evaluate sortie gen-
eration capacity of the carrier aircraft. Finally, conclusions
are presented in Section 6.

2. Sortie Generation Capacity of
Carrier Aircrafts

At present, the use of carrier aircrafts for domestic experience
is very little. In theory, the index system of sortie generation
capacity is established according to the foreign research
results. The index of the sortie generation capability system
established in this paper is based on the main factors pointed
out in the 1997 “Nimitz” carrier aircraft exercise report. The
factors are taken from the real environment and have high
reference value. During the four-day exercise period, the
equipment and environment did not affect the sorties. So
the selection of indexes did not include the corresponding
equipment and environment indexes [2, 3].

In this paper, when the index system of sortie genera-
tion capability is established, on one hand, we hope that
the factors will be more comprehensive. Thus the credibil-
ity of the evaluation results will be increased. On the other
hand, considering that if all the possible factors are added
to the index system, the modeling difficulty will be greatly
increased, and the evaluation system will also be proofread.
So we should select the evaluation index according to the
following principles:

(1) Considering the hierarchy and correlation between
the evaluation indexes, if the high-level indexes can
be obtained, the underlying indexes are not consid-
ered repeatedly. For example, one of the lowest levels
is the carrier deck design, but the impact of the car-
rier deck design on the sortie generation capability
is derived from the redeparture preparation time,
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ejection interval time, and recovery interval time. So
the corresponding high-level indexes will not be
included in the evaluation system

(2) Grasping the main indexes makes the evaluation sys-
tem easy to understand and operate. Environmental
factors have little impact on most operations, and
they are ignored

(3) The main purpose of this paper is to carry out quan-
titative evaluation. The indexes which are difficult to
quantify, such as the quality of the environment and
the ability of personnel, are not used to establish the
evaluation system in this paper

In summary, the index system for sortie generation
capacity of carrier aircrafts is established with related research
results [2]. A three-level index system with complexity,
hierarchy, contradiction, and relevance is established by
the recursive hierarchy method. The index system for sortie
generation capacity of carrier aircrafts is shown in Figure 1.

These indexes are defined as follow:

(1) Emergency sortie generation rate (ESGR): the
maximum number of ready aircrafts taking off in a
few minutes

(2) Surge sortie generation rate (SSGR): the average
number of aircrafts per day in the surge operation
(4 days)

(3) Last sortie generation rate (LSGR): the average
number of aircrafts per day in the continuous oper-
ation (30 days)

(4) Performing tasks proportion (PTP): the time propor-
tion that the aircrafts can carry out one task at least
under a certain flight plan and logistics condition

(5) Missing tasks proportion waiting for parts
(MTPWP): the proportion of aircrafts missing the
tasks due to waiting for parts

(6) Missing tasks proportion waiting for repair
(MTPWR): the proportion of aircrafts missing the
tasks due to waiting for repair

(7) Scheduled completion proportion (SCP): the pro-
portion of the completed number in the planned
number of aircrafts

(8) Pilot utilization rate (PUR): the average utilization
rate of the pilots per day

(9) Plan implementation probability per aircraft
(PIPA): the plan implementation probability per
aircraft under the certain constraints in a given
period of time

(10) Sortie generation rate per aircraft (SGRA): the
sortie generation rate per aircraft under the certain
constraints

(11) Preparation time for next sortie (PTNS): the prepa-
ration time for next sortie under the condition of a
certain resource allocation

(12) Ejection interval (EI): the average time for ejecting a
single aircraft per catapult

(13) Take-off outage proportion (TOOP): the proportion
of the cancelled number in the ready number of
aircrafts

(14) Recovery interval (RI): the average time for recover-
ing a single aircraft

(15) Overshoot proportion (OP): the proportion of the
number of aircrafts failed to recover in the number
of aircrafts ready to recover

In the three-level recursive hierarchical graph of Figure 1,
there are interactions between the underlying indexes:

(1) In practice, the surge sortie generation rate and last
sortie generation rate are contradictory, and they
cannot reach the optimal value at the same time

(2) The preparation time for next sortie and the ejection
interval constitute one wave duration. If the prepa-
ration time is sufficient, the time spent on ejection
and recovery will be reduced. And the sortie gener-
ation capability will be reduced. If the time spent on
ejection and recovery is sufficient, the preparation
time may not be able to meet the carrier aircraft
support operations, resulting in the reduction of
the available carrier aircraft and the reduction of
sortie generation capability

Therefore, there are correlations and contradictions
among the indexes of sortie generation capability. The
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Figure 1: Index system for sortie generation of carrier aircrafts.
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evaluation of sortie generation capability shows complex
nonlinear relationship. Using the nonlinear mapping abil-
ity of the neural network to evaluate the complex nonlin-
ear sortie generation capability can avoid the subjectivity
of traditional evaluation methods and the complexity of
the evaluation process.

Some references used different methods to evaluate sortie
generation capacity of carrier aircrafts. Xie et al. [21] investi-
gated the complicated relation between the sortie generation
and aviation maintenance of the Nimitz class carrier aircraft.
It was observed that the state transition diagram was both
effective and efficient for system analysis. Liu et al. [22] pro-
posed that sortie generation was one of the critical indexes
which were used to characterize carrier and air wing capabil-
ities. In order to research the index system of sortie genera-
tion capacity and their effects on the embarked air wings,
attention was drawn to the analysis on the basic concept of
sortie generation rate (SGR) and a range of constraints for
launch and recovery, followed by a review of the definition
of the SGR index system that commonly applies in the assess-
ment of various types of carrier aircrafts commissioned in the
foreign navies (e.g., the USN, the RN, the French Navy, and
the Russian Navy). Analyses were also performed on the
SGR index system used for these typical carriers. The conclu-
sion was that the establishment of an effective index system
and setting for the relevant indexes must be accomplished
by actual operations and combat exercises. Zhou et al. [23]
considered that operational capability of the flight deck was
the critical factor to affect the sortie generation of a carrier-
based aircraft, including launch operation, recovery and
repot operations, and serving. The definition of an optimized
flight deck operation plan was given. A method to calculate
the number of sortie generation in the optimized flight deck
operation plan was proposed. Some factors including aircraft
number, launch time, repotted time, recovery time, and how
they affect the sortie generation were analysed. The results
showed that promoting the capability of the flight deck was
the key factor to increase the number of sorties. Wang and
Yan [24] summarized three evaluation methods of SGR of
embarked aircrafts according to the relevant exercise data
and papers released by the US Navy. And the characteristics
of them were analysed. The advantages of statistical analysis
were that the accuracy and credibility of the data were high.
The disadvantage was that it can only evaluate the carrier air-
craft in service. The cost was high, and the cycle was long.
The empirical formula method was based on the recovery
data of different carrier aircrafts at different times. It could
quickly predict the capacity of the carrier aircraft under typ-
ical combat tasks. But there must be a large number of the
actual operational data of the carrier aircraft. And the errors
of evaluation results were large. The experimental method is
based on the operation process of the carrier aircraft. And the
computer simulation method was used. It was characterized
by wide applicability. The evaluation was of high accuracy,
less cost, and short cycle. Zhang et al. [25] established a sys-
tem with models based on parameters to analyse effectiveness
about major factors of the swarming aircraft. The AHP
method was used to calculate the weight of each parameter.
The fuzzy synthetic evaluation method was applied to access

the operational performance. The result demonstrated that
the method was feasible to deliver a scientific evaluation
and presented a new perspective to judge the efficiency of
swarming aircrafts. References [26–28] used the AHP
method to evaluate antiship combat capability of the carrier
aircraft, the threat the of carrier-borne aircraft, and effective-
ness of the carrier-based aircraft in air defence.

3. VS-RBF Neural Network with the Fast
Learning Rate

The robust regression method is used to replace the linear
least square algorithm to reduce the influence of outliers on
weight training. Then, the fast learning rate method is used
to adjust the learning rate of RBF neural network, which
can guarantee the stable learning of the network and the con-
vergence speed. Finally, the proposed VS-RBF has better
nonlinear approximation ability, faster training speed, and
a more compact network structure compared with SORBF
and RS-RBF.

3.1. Structure of the RBF Neural Network. The structure of the
RBF neural network is similar to that of the multilayer for-
ward network. There are three layers: input layer, hidden
layer, and output layer. The topology of the RBF neural net-
work is shown in Figure 2.

Therefore, the output y can be described as (1) for multi-
input and single-output RBF neural networks,

y = 〠
m

i=1
wiϕi X = 〠

m

i=1
wie

− X−Ci
2/2δ2i , 1

where X = x1, x2,⋯, xn
T ∈ Rn is the input vector; n is the

node number in the input layer; W = w1,w2,⋯,wm
T ∈

Rm is the weight of the output layer; m is the neuron number
in the hidden layer; Φ = ϕ1, ϕ2,⋯, ϕm

T ∈ Rm is radial basis
function in the hidden layer, which is the Gauss function,

namely, ϕi X = e− X−Ci
2/2δ2i ; δi is the expansion constant of

radial basis function; ∗ is the Euclid norm; Ci is the data
center of ith hidden nodes; and y is the output of the RBF net-
work. i = 1, 2,… ,m. In Figure 2, the output information (OI)

is ϕi X = e− X−Ci
2/2δ2i , and the multi-information (MI) is the

intensity of information between Ci and y.
In the human cerebral cortex, the local accommoda-

tion and overlapping receptive fields are the characteristics
of human brain response. Φ has a strong response in a
part of the Ci surrounding area, which reflects the charac-
teristics of the cerebral cortex response. In this paper, the
OI intensity of neurons in the hidden layer and the MI
intensity between neurons are used to adjust the neurons
in the hidden layer. Thus, the topology structure of the
neural network is modified.

There are many methods to change the RBF structure.
Zheng et al. [29] proposed a meshfree or meshless local
RBF collocation method to calculate the band structures of
two-dimensional antiplane transverse elastic waves in pho-
nonic crystals. Three new techniques were developed for
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calculating the normal derivative of the field quantity
required by the treatment of the boundary conditions, which
improved the stability of the local RBF collocation method
significantly. The pruning was at the end of the training
rather than in the learning process. Therefore, it would be
limited in application. Sarimveis et al. [30] presented a new
method for extracting the valuable process information from
input/output data. The proposed methodology produced
dynamical RBF neural network models based on a specially
designed genetic algorithm (GA), which was used to auto-
configure the structure of the networks and obtain the model
parameters. But this algorithm was a global optimization
algorithm, which took longer time in the training process.
Han et al. [31] presented a flexible structure RBF neural net-
work (FS-RBFNN). The FS-RBFNN could vary its structure
dynamically in order to maintain the prediction accuracy.
The hidden neurons in the RBF neural network could be
added or removed online based on the neuron activity and
mutual information, to achieve the appropriate network
complexity and maintain overall computational efficiency.
However, the algorithm ignored the implicit relationship
between neurons, which might cause an overfitting phenom-
enon. Wu et al. [32] adopted the cloud RBF neural network
as the function approximation structure of approximate
dynamic programming, and it had the advantage of the fuzz-
iness and randomness of the cloud model. But the cloud
method was a global search algorithm, which would reduce
the overall learning speed. Fu and Wang [33] proposed a
novel separability-correlation measure (SCM) document to
rank the importance of attributes. According to the attribute
ranking results, different attribute subsets were used as inputs
to a classifier, such as an RBF neural network. Those attri-
butes that increase the validation error were deemed irrele-
vant and were deleted. The complexity of the classifier
could thus be reduced, and its classification performance
improved. But the initial values were set with the global sam-
ple data, which were hard to obtain in practical applications.
Peng et al. [34] proposed a novel hybrid forward algorithm

(HFA) for the construction of RBF networks with tunable
nodes. The set neural main objective was to efficiently and
effectively produce a parsimonious RBF neural network that
generalizes well. It was achieved through simultaneous net-
work structure determination and parameter optimization
on the continuous parameter space. However, the parameters
of this method were too complex. Han et al. [35] proposed a
new growing and pruning algorithm for RBF neural network
structure design, which was named as self-organizing RBF
(SORBF). The growing and pruning algorithm was used to
design the structure of the RBF neural network automati-
cally. But the overall training time of SORBF was too long.
Ding et al. [36] combined rough set theory with neural net-
work (RS-RBF). The model overcame the shortcoming that
when neural network inputs too many dimensions, the struc-
ture of the network was too big. In order to solve the prob-
lems above, this paper proposes a variable structure RBF
neural network (VS-RBF) with a fast learning rate. The num-
ber of neurons in the hidden layer is adjusted by calculating
the output information (OI) of neurons in the hidden layer
and the multi-information (MI) between neurons in the hid-
den layer and output layer. The convergence of the final net-
work in the structural adjustment process is proved. In this
paper, the proposed VS-RBF neural network can be used to
grow or prune the neurons in the hidden layer according to
the actual system.

3.2. VS-RBF Neural Network. VS-RBF is used to adjust its
structure based on information intensity. Firstly, the activity
of the neurons in the hidden layer is determined by OI inten-
sity of neurons in the hidden layer. And the neurons with
strong activity are decomposed. Secondly, the connection
strength between the neurons in the hidden layer and in out-
put layers is analyzed by calculating MI intensity between the
neurons. Then the network structure is modified according
to MI intensity. Finally, the parameters of the neural network
are adjusted. Therefore, the structure of the RBF neural net-
work can be divided into two parts: the decomposition of
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Figure 2: Topology structure of the RBF neural network.
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the neurons in the hidden layer and the interconnection
adjustment between the neurons in the hidden layer and in
the output layer.

3.2.1. Decomposition of Neurons in the Hidden Layer. The
activity of the neuron denotes the information capacity of
the neuron. When the neuron provides higher activities, it
means that the neuron includes more information. In order
to increase the accuracy of RBF, the information should be
evenly distributed in neurons. Thus, if the neuron provides
higher activities, it should be decomposed to higher number
of neurons.

The activity of neurons in the hidden layer is calcu-
lated by

Ai X =
ϕi

∑m
j=1ϕ j X − Ci + α

, 2

where i, j = 1, 2,… ,m, Ai X is the activity of the ith neu-
ron in the hidden layer, m is the number of neurons in
the hidden layer, ϕi is the output of the ith neuron in
the hidden layer, ϕj is the output of the jth neuron in
the hidden layer, and α is a small real number. The activ-
ity of neurons in the hidden layer is inversely proportional
to the Euclid distance between X and Ci. The closer the
distance is, the higher the activity value is. The activity
of neurons Ai X is obtained from the output of the hid-
den layer, which denotes the need of decomposition.

When activity Ai X of the neuron in the hidden layer is
strong, the neuron is decomposed, and the neuron is decom-
posed to l new neurons. The main idea behind this decompo-
sition is to evenly distribute information in neurons in order
to increase the accuracy of VS-RBF. When the activity of the
ith neuron in the hidden layer is greater than the threshold of
activity A0 = max 100ed , 1/m (ed is the expected error), the
connection between the ith neuron and the output neuron is
broken down as shown in Figure 3.

In Figure 3, if the activity between the ith neuron and
the output neuron y is greater than the threshold of activ-
ity A0, the connection between the ith neuron and the
output neuron y is broken down. After decomposition, the
ith neuron is decomposed to l new neurons, and each of
l new neurons connects to the output neuron y. l = integer
Ai/ ∑

m
i=1Ai X /m .

After the connection between the ith neuron and the
output neuron is broken down, there will be l new neu-
rons connecting to the output neuron. The initial center
and variance of the new neurons are Cij and δij, which can
be obtained from

i y y

1

2

l

Figure 3: Decomposition of the neuron in the hidden layer.

Cij = λiCi + μiX, 3

δij = λiδi, 4

where 0 9 ≤ λi ≤ 1 1, 0 ≤ μi ≤ 0 2, and Ci and δi are the center
and variance of the ith neuron in the hidden layer, respec-
tively, and Cij and δij are the center and variance of the jth
neuron decomposed from the ith neuron. j = 1, 2,… , l. l is
the number of the new neurons. l is the integer part of Ai/A
V . AV =∑m

i=1Ai X /m.
The weight wij between the new neuron and the output

neuron is

wij = βj
wiϕi X − e

ϕij X
, 5

where βj is the decomposition parameter of the jth neuron;

∑l
j=1βj = 1, βj = 1/l; ϕij X is the output of the new neuron;

and e is the output error of the neural network before
decomposition.

3.2.2. Interconnection Adjustment between the Neurons in the
Hidden Layer and in the Output Layer. The MI function I
a ; y of neuron a in the hidden layer and neuron y in the out-
put layer is obtained from (6). I a ; y depends on the inten-
sity of information between a and y,

I a ; y =〠
a,y

f a ; y log2 f
a ; y
f

a f y , 6

where f a ; y is the joint distribution density function of a
and y. f a ; y = f a f y ∣ a , where f a and f y are the
probability densities of a and y, respectively. According to
the Shannon entropy theory, f a ; y , f a , and f y are not
calculated in fact, and the entropies are calculated instead.

Assuming that a and y are interconnected neurons,
I a ; y depends on the intensity of information between
a and y.

According to the Shannon entropy theory, the connec-
tion strength I a ; y between a and y can be calculated by

I a ; y = EN a − EN a y = EN y − EN y a , 7

where EN a is the entropy of a and EN a ∣ y is the entropy
of a in the condition of y. When a and y are independent, I
a ; y = 0. Otherwise, I a ; y > 0. Therefore, I a ; y ≥ 0.
The range of I a ; y is shown in

I a ; y ≤min EN a , EN y 8

Then, based on (8), the normalized MI is obtained from

Is a ; y = I a ; y /min EN a , EN y , 9

where Is a ; y ∈ 0, 1 . The calculation of Is is able to deter-
mine the interaction strength between a and y.
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In the RBF neural network, when Is is large, the interac-
tion strength between a and y is strong and the connection
of a and y exists. When Is approaches 0, it indicates that
the interaction strength between a and y is weak. Then the
connection of a and y can be deleted in the structure adjust-
ment. It can reduce the redundancy of the neural network.

In Figure 4, when Is ≤ I0 (I0 = 0 01ed), the connection
between a and y is disconnected. In the hidden layer, the
nearest neuron b with a is found. The new neuron b contains
neurons a and b. Thus, a new layer is not added to the net-
work, and there is no weight between neurons a and b. The
parameters of neuron b are adjusted from (10)–(12). Cb′ is
the same as Ca. δb′ is the same as δa:

Cb′ = Ca, 10

δb′ = δa, 11

wb′ =wb +wa ⋅ ϕa
X
ϕb

X , 12

where Cb′, δb′, and wb′ are the center, variance, and weight
between b and y in the new output layer, respectively.

VS-RBF can not only increase the number of neurons in
the hidden layer but also remove redundant neurons. The
optimal number of RBF neurons is obtained by adjusting
the output information of neurons in the hidden layer and
the multi-information between neurons in the hidden layer
and output layer. When the error of output meets the
demand, the optimal number of RBF neurons is obtained.

3.3. Robust Regression Training Method for Weights in the
Output Layer. At present, RBF neural network weights are
usually trained by the linear least square algorithm, but the
least square estimation is affected by outliers. In order to
reduce the influence of outliers, the robust regression method
is applied to train weights in the output layer.

The output of the RBF network is the weighted sum of the
output of the hidden layer. The aim of the training is to make
the sum of squared error E W between the output of the
whole network and the actual output least. The sum of
squared error E W is obtained from

E W =min 〠
N

t=1
yt −ΦT

t W
2 = min 〠

N

t=1
σ2t , 13

where yt is the value of actual output;ΦT
t is the output sample

vector of the hidden layer;W t is the weight vector; N is the
number of samples; and t = 1, 2,… ,N .

In order to reduce the influence of outliers, we hope to
find a function θ σt , which increases with the increase of

σt and the growth rate is slower than σ2
t . Then the sum of

squared error E W can be expressed as

E W =min 〠
N

t=1
θ σt 14

θ σt is an Andrews function, which can be expressed as
(15). And the derivative of θ σt can be expressed as

θ σt =
K2 − K2 cos

σt

K
, σt ≥ πK ,

2K2, σt < πK ,
15

θ′ σt =
K sin

σt
K
, σt ≥ πK ,

0, σt < πK ,
16

where θ′ σt is the derivative of θ σt and K is a threshold
constant.

Therefore, robust regression can be written in recursive
form, which is expressed in

W t =W t − 1 − η
∂θ σt
∂W

, 17

where W is the estimated weight and η is the training coeffi-
cient, which can be determined according to the actual situa-
tion. Then W t is transferred to

W t =W t − 1 − η
∂θ σt
∂σt

⋅
∂σt
∂W

=W t − 1 − ηθ′ σt ⋅ −ΦT
t

=W t − 1 + ηθ′ yt −ΦT
t W t ΦT

t

18

It can reduce the influence of outliers on neural network
training by using the robust regression method.

3.4. Fast Learning Rate. In the use of the RBF neural network,
the learning rate was often subjective to set as a fixed value. It
remained unchanged throughout the learning process. If the
learning rate was set too high, the convergence speed of the
network might be very fast and it might cause network insta-
bility. If the learning rate was too small, it would cause that
the network convergence speed was slow and consume a
large amount of computing time. Therefore, it is very difficult
to choose a suitable learning rate for the traditional RBF neu-
ral network. In order to solve this problem, this paper pro-
poses a new fast learning rate. The fast learning rate is
suitable for each step of the iteration, which can ensure the
stability of the network. At the same time, the convergence
speed of the network and the efficiency of the network can
be improved.

a

y y

a

bb

b y

Figure 4: Disconnection of the neuron in the hidden layer and the
neuron in output layers.
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Set

Φ =

ϕ11 ϕ12 ⋯ ϕ1m

ϕ21 ϕ22 ⋯ ϕ2m

⋮ ⋮ ⋱ ⋮

ϕN1 ϕN2 ⋯ ϕNm

19

N is the number of samples. m is the number of nodes in
the hidden layer. ŷ is the output calculated by the network.
Then the cost function E t of the tth train can be defined in

E t =
1
2
〠
N

j=1
yj t − ŷ j t

2
=
1
2
〠
N

j=1
e2j t 20

The output error is e t = e1 t , e2 t ,⋯, eN t T . ΔW
t =W t −W t − 1 is the change of the weight in the
tth train. According to (18), ΔW t is obtained in

ΔW t = η t θ′ yt −ΦT
t W t ΦT

t 21

The increase of error can be expressed as

Δe t = e t − e t − 1
= y t − ŷ t − y t − 1 + ŷ t − 1

22

Δy t = y t − y t − 1 is the change of the actual out-
put. Δŷ t = ŷ t − ŷ t − 1 is the change of the network
output. In general, the absolute value of the change of
the actual output is far less than the absolute value of the
change of the network output. Δy t ≪ Δŷ t . The change
of the actual output is negligible compared with the change of
the network output, because the actual output is often con-
strained by many conditions, and the network output will
not be limited. This assumption has practical significance.
Thus, (22) can be approximated as

Δe t = e t − e t − 1 ≈ −Δŷ t 23

Considering (21), the change of error Δe t is
expressed in

Δe t ≈ −Δŷ t = −ΦΔW t

= −η t Φθ′ y −ΦTW t ΦT
24

Then, e t is expressed in (25) considering (24):

e t = e t − 1 + Δe t

≈ e t − 1 − η t Φθ′ y −ΦTW t ΦT
25

The cost function E t of the tth train can be obtained
from (25). E t is expressed in

E t =
1
2
eT t e t

≈
1
2

e t − 1 − η t Φθ′ y −ΦTW t ΦT
T

⋅ e t − 1 − η t Φθ′ y −ΦTW t ΦT

26

This cost function can be considered as a function of
the learning rate η t . The optimal value of learning rate
η t can be obtained by minimizing E t . The first order
condition of (26) is expressed in

∂E t
∂η t η t =η∗ t = −

1
2

Φθ′ y −ΦTW t ΦT
T

⋅ e t − 1 − η t Φθ′ y −ΦTW t ΦT

−
1
2

e t − 1 − η t Φθ′ y −ΦTW t ΦT
T

⋅Φθ′ y −ΦTW t ΦT = 0
27

The second order condition of (26) is expressed in

∂2E t
∂η2 t η t =η∗ t

=
1
2

Φθ′ y −ΦTW t ΦT
T
Φθ′ y −ΦTW t ΦT

+
1
2

Φθ′ y −ΦTW t ΦT
T
Φθ′ y −ΦTW t ΦT

= Φθ′ y −ΦTW t ΦT
T
Φθ′ y −ΦTW t ΦT > 0

28

The second order condition (28) holds as Φ is positive
definite. And the fast learning rate η∗ t can be obtained
by (27). η∗ t is expressed in

η∗ t =
1
2

Φθ′ y −ΦTW t ΦT
T
e t − 1

Φθ′ y −ΦTW t ΦT
T
Φθ′ y −ΦTW t ΦT

+
1
2

eT t − 1 Φθ′ y −ΦTW t ΦT

Φθ′ y −ΦTW t ΦT
T
Φθ′ y −ΦTW t ΦT

29

3.5. Learning Algorithm of VS-RBF with the Fast Learning
Rate. VS-RBF with the fast learning rate can not only
increase the number of neurons in the hidden layer but
also remove redundant neurons. At the same time, the
use of the robust regression algorithm can avoid the influ-
ence of the abnormal sample on the neural network. And
the fast learning rate can ensure that the learning rate is
appropriate in the iterative process. In this paper, the steps
of the learning algorithm are shown in Figure 5.
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Step 1. For a given RBF neural network, the number of
neurons in the hidden layer is a small natural
number. Considering that VS-RBF can adjust
the number of neurons in the hidden layer, the
number of initial neurons in the hidden layer is
defined as the neurons in the input layer or a little
more. In this paper, we consider that the number
of initial neurons in the hidden layer is equal to
the neurons in the input layer. The neural net-
work center C and variance δ are selected by
using the least square method. Φ is calculated.
The learning accuracy ed and the maximum
number of iterations max T are set. The number
of neurons in the input layer is the number of
input. The number of neurons in the output layer
is the number of output. A0 = max 100ed , 1/m ,
I0 = 0 01ed

Step 2. The initial weights between the hidden layer and
the output layer W0 are set. The network output
ŷ =ΦW is calculated. And the root mean square
error e between the actual output and the net-
work output is calculated

Step 3. If e < ed or the number of iterations reaches max
T , go to Step 7. Otherwise, the fast learning rate
η∗ t is calculated by (29). The weights are
updated by W t =W t − 1 + η∗ t θ′ yt −ΦT

t

W t ΦT
t

Step 4. The activity Ai X i = 1, 2,⋯,m of the neu-
ron in the hidden layer is calculated. If Ai X
is greater than the threshold A0, the neuron i
is decomposed, and the network structure is
adjusted. The initial parameters of the new
neuron are set according to (3) and (4)

(1) The initial weights are set.
(2) The network output is calculated.
(3) The root mean square error is calculated.

(1) The optimal learning rate is calculated.
(2) The weights are updated.

If the number of iterations
reaches maximum?

(1) If the activity of the neuron is greater than the
threshold , the neuron is decomposed.
(2) The initial parameters of the new neuron are set.

(1) The network output value is updated.
(2) The root mean square error is updated.

The root mean square error and the network output are calculated.

(1) The neural network center and variance
are selected by using least squares method.
(2) The learning accuracy and the maximum
number of iterations are set.

Yes

Yes

No

No

(1) The connection strength between neurons in
hidden layer and output layer is calculated.
(2) When Is ≤ I0, the connection is disconnected.
(3) In the hidden layer, the nearest neuron is found.
The parameters of nearest neuron are adjusted.

e < ed?

Figure 5: Learning algorithm of VS-RBF with the fast learning rate.
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Step 5. The connection strength Is between neuron a in
the hidden layer and neuron y in the output layer
is calculated. When Is ≤ I0, the connection of a
and y is disconnected. In the hidden layer, the
nearest neuron b with a is found. The parameters
of neuron b are adjusted as (10)–(12)

Step 6. The network output value ŷ =ΦW is updated.
The root mean square error between the actual
output and the network output e is updated.
Return to Step 3

Step 7. The root mean square error e and the network
output ŷ are calculated

VS-RBF with fast learning rate can realize the self-
organization of the structure and determine whether to grow
or prune the neurons in the hidden layer by calculating the
information intensity. A new RBF neural network structure
design method is proposed. It not only can adjust the weights
of neural network online but also can grow or prune the neu-
rons in the hidden layer. From the biological point of view,
this neural network structure is more similar to the mecha-
nism of human brain neuron information processing.

3.6. Comparison of VS-RBF, SORBF, and RS-RBF. The advan-
tages, main novelties, and disadvantages of SORBF [35] and
RS-RBF [36] are as follows:

(1) SORBF: neither the number of nodes in the hidden
layer nor the parameters need to be predefined and
fixed. They are adjusted automatically in the learning
process by comparing vx − P k = min

x=1,2,…,N
vx −

P k and βrx. This type of SORBF-based approach
offers a promisingly inexpensive approach to real-
time measurement of variables that have typically
proved difficult to measure reliably using hardware.
However, this algorithm ignores the adjustment of
structural parameters, which leads to the slow con-
vergence speed of the neural network learning
algorithm

(2) RS-RBF: by processing multiple nodes of the network
at one time, multiple hidden nodes can be cut off, and
the core nodes in the hidden nodes can be found by
calculating the output of the network as Dn =
outputn −OUTPUT /OUTPUT. Adaptive princi-
ple is introduced to make the segmentation change
with pruning. The memory function is to remember
the most important nodes for each pruning, and the
most important nodes will be not deleted in the sub-
sequent pruning even if the output of these nodes is
small. However, this method was affected by the
initial value, and sometimes, the final RBF neural
network was unstable

4. Proof of Convergence

The convergence of VS-RBF with the fast learning rate affects
the performance of the final network.

4.1. Fixed Neural Network Structure. When the neural net-
work structure is fixed, it can be concluded that VS-RBF with
the fast learning rate can guarantee the convergence of the
final neural network referring to [31].

Theorem 1. According to the changed neural network struc-
ture of VS-RBF, the error after decomposition is 0, and the
error after interconnection adjustment is equal to the error
of the fixed neural network structure.

4.2. Changed Neural Network Structure. At the moment t,
VS-RBF with the fast learning rate has m neurons in the hid-
den layer. Current error is em t .

4.2.1. Decomposition of the Neuron in the Hidden Layer.
When the neuron a in the hidden layer is decomposed,
the number of new neurons is l after decomposition. Then
the number of neurons in the hidden layer becomes m +
l − 1 after decomposition. The error after decomposition
em+l−1′ t is expressed in

em+l−1′ t = 〠
m+l−1

i=1
wiϕi X t − yd t

= 〠
m

i=1
wiϕi X t + 〠

l

j=1
wa,jϕj X t

−waϕa X t − yd t ,

30

where yd t is expected output at the moment t and X t
is a sample at the moment t. It can be obtained from (3)
and (4).

In (30), two terms in the middle can be expressed in Eq.
(31). ∑l

j=1βj = 1,

〠
l

j=1
wa,jϕj X t −waϕa X t

= 〠
l

j=1
βj

waϕa X t − em t
ϕj X t

ϕj X t −waϕa X t

= 〠
l

j=1
βj waϕa X t − em t −waϕa X t

=waϕa X t − em t −waϕa X t = −em t ,
31

where X t = x1, x2,⋯, xn
T ∈ Rn is the input vector.

According to (30) and (31), the error of the neural net-
work after decomposition em+l−1′ t is expressed in

em+l−1′ t = 〠
m

i=1
wiϕi X t − yd t − em t

= em t − em t = 0
32
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After adjusting the structure, the error of network output
at the time t is zero. The convergence of average error E is
speeded up (E = 1/2N∑N

i=1e
2 i , N is the number of samples).

It reflects the decomposition of neurons can improve neural
network learning efficiency.

4.2.2. Interconnection Adjustment between the Neurons in the
Hidden Layer and in the Output Layer. At the moment t, the
connections between the neuron a in the hidden layer and
neuron y in the output layer need to be disconnected. And
the nearest neuron with a is b. Then error of network output
em−1′ t will become (33) after disconnection,

em−1′ t = 〠
m

i=1
wiϕi X t − yd t −waϕa X t 33

According to (10)–(12), (33) can be rewritten as

em−1′ t = 〠
m

i=1,i≠b
wiϕi X t − yd t

−waϕa X t +wb′ϕb X t

= 〠
m

i=1,i≠b
wiϕi X t − yd t −waϕa X t

+ wb +wa
ϕa X t
ϕb X t

ϕb X t

= 〠
m

i=1,i≠b
wiϕi X t − yd t −waϕa X t

+wbϕb X t +waϕa X t

= 〠
m

i=1
wiϕi X t − yd t = em t

34

Therefore, the disconnection of the neurons in the hid-
den layer and the neurons in output layers cannot affect the
error of network output. Thus, the optimization process of
the RBF structure does not affect the convergence of the neu-
ral network.

To sum up, VS-RBF with the fast learning rate can guar-
antee the convergence of the final network. At the same time,
the algorithm is simple. The neural network can not only
realize the structure and parameter adjustment but also con-
sider the weight changes in the structure of the optimization
process.

5. Experimental Validation

VS-RBF with the fast learning rate can adjust the number of
neurons in the hidden layer on the basis of the complexity of
the object and improve the performance of the RBF neural
network. Compared with other self-organizing RBF neural
networks (SORBF and RS-RBF), VS-RBF has a more com-
pact structure, faster dynamic response speed, and better
generalization ability in approximating a typical nonlinear

function, identifying UCI datasets, and evaluating sortie gen-
eration capacity of the carrier aircraft.

5.1. Nonlinear Function Approximation. The nonlinear func-
tion SIF is selected as

y = 2x21 sin 4x1 + x22 + sin 3x2 + x1 sin 4x2 , 35

where x1 ∈ −2, 2 and x2 ∈ −2, 2 . The nonlinear function
SIF is commonly used to test the performance of the neural
network [37].

Data points are randomly sampled adding white Gauss-
ian noise with a standard deviation of 0.01 to produce train-
ing and validation datasets, each containing 300 samples.
Thus, 600 groups of samples are selected. 300 groups are
used for training and the other 300 groups are used to test.
The simulation environment is a computer with Intel Core
i3–4160 CPU, 4.00GB RAM and 64 bit operation system.
The software is Matlab R2016b.

The main steps on the identification of VS-RBF are
as follows:

Step 1. The structure of the neural network is 2-3-1. The
initial number of neurons in the hidden layer is
set as 3. The neural network center C is selected
as [−2, 0, −2; −2, 0, −2]. The variance δ is 3.
The initial function width is 1. The learning accu-
racy ed is 0.01. The maximum number of itera-
tions max T is set as 10,000

Step 2. The initial weights between the hidden layer and
the output layerW0 are set as 1. The network out-
put ŷ =ΦW is calculated. And the root mean
square error e between the actual output and the
network output is calculated

Step 3. If e < ed or the number of iterations reaches max
T , go to Step 7. Otherwise, the fast learning rate
η∗ t is calculated by (29). The weights are
updated by W t =W t − 1 + η∗ t θ′ yt −ΦT

t

W t ΦT
t

Step 4. The activity Ai X i = 1, 2,⋯,m of the neuron
in the hidden layer are calculated. If Ai X is
greater than the threshold A0, the neuron i is
decomposed, and the network structure is
adjusted. The initial parameters of the new neu-
ron are set according to (3) and (4)

Step 5. The connection strength Is between neuron a in
the hidden layer and neuron y in the output layer
is calculated. When Is ≤ I0, the connection of a
and y is disconnected. In the hidden layer, the
nearest neuron b with a is found. The parameters
of neuron b are adjusted as (10)–(12)

Step 6. The network output value ŷ =ΦW is updated.
The root mean square error between the actual
output and the network output e is updated.
Return to Step 3
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Step 7. The root mean square error e and the network
output ŷ are calculated

Under this condition, the comparison of performances of
VS-RBF, SORBF [35], and RS-RBF [36] is shown in Table 1.
The remaining neurons in the hidden layer in the SIF
approximation are shown in Figure 6. The approximation
effect of SIF is shown in Figure 7. The error surface is shown
in Figure 8.

Figure 6 shows the changes of the number of remaining
neurons in the training process. We can find that the

structure adjustment of VS-RBF is stable, and the structure
is most compact. A neuron of VS-RBF can be decomposed
into several at one time. VS-RBF structure adjustment is
quicker. The information processing ability of the RBF neural
network is improved.

Figure 7 shows that VS-RBF can well approximate the
nonlinear function SIF after training. And the output value
of VS-RBF coincides with the actual value.

Figure 8 shows the error surface of VS-RBF in approxi-
mation. The test error is less than 0.015. Table 1 gives the
comparison of VS-RBF, SORBF, and RS-RBF. Under the
same initial conditions, the training times of SORBF and
RS-RBF are more than that of VS-RBF. The structures of
SORBF and RS-RBF after training are more complex than
that of VS-RBF.

In addition, when using the trained neural network
for function approximation, the test errors of SORBF
and RS-RBF are larger than that of VS-RBF. The VS-
RBF neural network has faster training speed, more com-
pact network structure, and stronger nonlinear function
approximation ability.

5.2. UCI Datasets. In order to show the effectiveness of VS-
RBF, the identification effect is justified on UCI datasets.
Istanbul Stock Exchange Dataset is selected in UCI datasets.
Data is collected from http://imkb.gov.tr and http://finance
.yahoo.com. Data is organized with regard to working days
in Istanbul Stock Exchange. The selected datasets include
returns of Istanbul Stock Exchange (ISE) with seven other
international indexes: Standard & Poor’s 500 return index
(SP), stock market return index of Germany (DAX), stock
market return index of UK (FTSE), stock market return
index of Japan (NIK), stock market return index of Brazil
(BVSP), MSCI European Index (EU), and MSCI Emerging
Markets Index (EM) from June 5, 2009, to February 22,
2011. There are 536 groups in this dataset. The first 436
groups are used to train the network, and the last 100 groups
are used to test the network. The input number is 7, and the
output (ISE) number is 1.

The main steps on the identification of VS-RBF on UCI
datasets are as follows:

Table 1: Comparisons of performances in approximating SIF.

Algorithm
Learning
accuracy

Actual
error

Node number of the
final hidden layer

Training
time (s)

VS-RBF 0.01 0.0148 14 213.41

SORBF 0.01 0.0164 16 221.37

RS-RBF 0.01 0.0206 21 459.12
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Figure 6: Number of remaining neurons in SIF training.
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Step 1. The structure of the neural network is 7-10-1.
The initial number of neurons in the hidden layer
is set as 10. The neural network center C is
selected as [−3, −3, −3, −3, −3, −3, −3, −3, −3,
−3; −2, −2, −2, −2, −2, −2, −2, −2, −2, −2; −1,
−1, −1, −1, −1, −1, −1, −1, −1, −1; 0, 0, 0, 0, 0, 0,
0, 0, 0, 0; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; 2, 2, 2, 2, 2, 2,
2, 2, 2, 2; 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,]. The variance
δ is 2. The initial function width is 2. The learning
accuracy ed is 0.01. The maximum number of
iterations max T is set as 10,000

Step 2. The initial weights between the hidden layer and
the output layerW0 are set as 1. The network out-
put ŷ =ΦW is calculated. And the root mean
square error e between the actual output and the
network output is calculated

Step 3. If e < ed or the number of iterations reaches max
T , go to Step 7. Otherwise, the fast learning rate
η∗ t is calculated by (29). The weights are
updated by W t =W t − 1 + η∗ t θ′ yt −ΦT

t

W t ΦT
t

Step 4. The activity Ai X i = 1, 2,⋯,m of the neuron
in the hidden layer is calculated. If Ai X is
greater than the threshold A0, the neuron i is
decomposed, and the network structure is
adjusted. The initial parameters of the new neu-
ron are set according to (3) and (4)

Step 5. The connection strength Is between neuron a in
the hidden layer and neuron y in the output layer
is calculated. When Is ≤ I0, the connection of a
and y is disconnected. In the hidden layer, the
nearest neuron b with a is found. The parameters
of neuron b are adjusted as (10)–(12)

Step 6. The network output value ŷ =ΦW is updated.
The root mean square error between the actual
output and the network output e is updated.
Return to Step 3

Step 7. The root mean square error e and the network
output ŷ are calculated

Under this condition, the comparison of performances of
VS-RBF, SORBF [35], and RS-RBF [36] is shown in Table 2.
The identification effect in the test is shown in Figure 9. The
identification error is shown in Figure 10.

In Table 2, the remaining node number in the hidden
layer of VS-RBF is the least. And the actual error and training
time of VS-RBF are less than those of SORBF and RSRBF.

Figure 9 shows that VS-RBF can well identify the test
data. And the output value of VS-RBF coincides with the
actual value.

Figure 10 shows the identification error of VS-RBF. The
test error is less than 0.014.

Thus, when using the trained neural network for identifi-
cation, the test errors of SORBF and RS-RBF are larger than
that of VS-RBF. The VS-RBF neural network has faster

training speed, more compact network structure, and stron-
ger identification ability in Istanbul Stock Exchange Dataset.

6. Evaluation for Sortie Generation Capacity of
the Carrier Aircraft

The inputs of the neural network are the evaluation indexes
of sortie generation capacity of the carrier aircraft. The out-
put of the neural network is the evaluation value of sortie
generation capacity of the carrier aircraft by the expert scor-
ing method. This paper selects the surge operation of the
“Nimitz” carrier in 1997 as the object [1].

Table 2: Comparisons of performances in UCI datasets.

Algorithm
Learning
accuracy

Actual
error

Node number of the
final hidden layer

Training
time (s)

VS-RBF 0.01 0.0131 20 230.56

SORBF 0.01 0.0208 24 292.30

RS-RBF 0.01 0.0263 33 441.52
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Figure 9: Justification of UCI datasets.
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500 groups of data are selected excluding abnormal data.
400 groups are used in training, and 100 groups are used in
testing. The inputs of the neural network are x1 ∼ x15, which
are corresponding to the 15 indexes of the evaluation index
system, respectively.

The number of output is 1, which value is 0, 1 . The data
of each group in the 500 groups of samples included 15 nor-
malized lowest level indexes and one evaluation value in the
range of 0, 1 for sortie generation capacity of the carrier air-
craft evaluated by experts. Due to limitation of space, 10
groups of samples are given in Tables 3–6.When the evalua-
tion for sortie generation capacity of the carrier aircraft is
closer to 1, it is indicated that the allocation of the sortie gen-
eration scheme under the current indexes is more reasonable,
and the sortie generation capacity of the carrier aircraft is
higher. Otherwise, when the evaluation for sortie generation
capacity of the carrier aircraft is closer to 0, it indicates that
the allocation of the sortie generation scheme under the cur-
rent indexes is more unreasonable. And the sortie generation
capacity of the carrier aircraft is lower, which means that the
scheme should be advanced.

The main steps on the identification of VS-RBF are as
follows:

Step 1. The number of neurons in the hidden layer is set
to 15 initially. The structure of neural network is
15-15-1. The initial number of neurons in the

hidden layer is set as 15. The neural network cen-
ter C is selected as 0.1∗[−7, −7, −7, −7, −7, −7, −7,
−7, −7, −7, −7, −7, −7, −7, −7; −6, −6, −6, −6, −6,
−6, −6, −6, −6, −6, −6, −6, −6, −6, −6; −5, −5, −5,
−5, −5, −5, −5, −5, −5, −5, −5, −5, −5, −5, −5; −4,
−4, −4, −4, −4, −4, −4, −4, −4, −4, −4, −4, −4, −4,
−4; −3, −3, −3, −3, −3, −3, −3, −3, −3, −3, −3, −3,
−3, −3, −3; −2, −2, −2, −2, −2, −2, −2, −2, −2, −2,
−2, −2, −2, −2, −2; −1, −1, −1, −1, −1, −1, −1, −1,
−1, −1, −1, −1, −1, −1, −1, −1; 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2; 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3; 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4;
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5; 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6; 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7]. The variance δ is 0.5. The initial function
width is 1. The learning accuracy ed is 0.001.
The maximum number of iterations max T is
set as 10,000

Step 2. The initial weights between the hidden layer and
the output layer W0 are set as 0.5. The network
output ŷ =ΦW is calculated. And the root mean
square error e between the actual output and the
network output is calculated

Table 3: Sortie generation rate capacity.

Group x1 (sortie) x2 (sortie/day) x3 (sortie/day) Evaluation

1 30 250 200 0.8622

2 31 240 180 0.2943

3 29 235 210 0.8112

4 33 260 220 0.5285

5 32 210 170 0.1656

6 29 245 194 0.6020

7 27 267 230 0.9630

8 32 211 183 0.6541

9 25 261 201 0.6892

10 32 232 196 0.5482

Table 4: Aircraft availability capacity.

Group x4 (%) x5 (%) x6 (%) Evaluation

1 80 11 9 0.8622

2 85 20 5 0.2943

3 90 4 6 0.8112

4 75 11 14 0.5285

5 82 10 18 0.1656

6 91 3 5 0.6020

7 78 23 9 0.9630

8 84 9 7 0.6541

9 85 1 4 0.6892

10 72 2 16 0.5482

Table 5: Task completion capacity.

Group x7 (%)
x8

(sortie/day)
x9 (%)

x10
(sortie/day)

Evaluation

1 85 2.5 90 6 0.8622

2 74 2.2 80 7 0.2943

3 81 2.0 84 5 0.8112

4 90 1.8 75 6 0.5285

5 61 1.5 68 5 0.1656

6 86 1.9 86 8 0.6020

7 78 2.1 88 5 0.9630

8 65 2.3 94 6 0.6541

9 79 2.4 81 7 0.6892

10 83 1.7 82 5 0.5482

Table 6: Support, ejection, and recovery capabilities.

Group
x11

(minute)
x12

(minute)
x13
(%)

x14
(minute)

x15
(%)

Evaluation

1 30 1 1 1.5 3.3 0.8622

2 32 2 0.5 1.8 5 0.2943

3 28 1.4 1.2 1.4 1 0.8112

4 25 1.6 1.6 1.9 7 0.5285

5 33 2.5 2 2.2 6 0.1656

6 45 1.1 3 1.1 2 0.6020

7 27 0.6 0.6 1.2 10 0.9630

8 26 0.7 0.8 1.6 3 0.6541

9 36 0.5 1.6 1.7 4.5 0.6892

10 29 1.2 0.4 2.1 6 0.5482
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Step 3. If e < ed or the number of iterations reaches max
T , go to Step 7. Otherwise, the fast learning rate
η∗ t is calculated by (29). The weights are
updated by W t =W t − 1 + η∗ t θ′ yt −ΦT

t

W t ΦT
t

Step 4. The activity Ai X i = 1, 2,⋯,m of the neuron
in the hidden layer is calculated. If Ai X is
greater than the threshold A0, the neuron i is
decomposed, and the network structure is
adjusted. The initial parameters of the new neu-
ron are set according to (3) and (4)

Step 5. The connection strength Is between neuron a in
the hidden layer and neuron y in the output layer
is calculated. When Is ≤ I0, the connection of a
and y is disconnected. In the hidden layer, the
nearest neuron b with a is found. The parameters
of neuron b are adjusted as (10)–(12)

Step 6. The network output value ŷ =ΦW is updated.
The root mean square error between the actual
output and the network output e is updated.
Return to Step 3

Step 7. The root mean square error e and the network
output ŷ are calculated

The trained VS-RBF neural network makes the final eval-
uation results closer to the evaluation results of the expert,
which indicates that VS-RBF can not only replace experts
to evaluate the sortie generation capacity of the carrier aircraft
but also guarantee the high efficiency of evaluation. What is
more, the trained VS-RBF can avoid human errors and the
subjective effect on the evaluation process. At the same time,
the trained VS-RBF neural network is used to establish the
complex nonlinear relationship between the 15 indexes and
the evaluation result. By using the nonlinear model of the
indexes and the evaluation result, the influence of each index
on the evaluation result can be further determined so as to
provide the reference and suggestion for improving the sortie
generation capacity of the carrier aircraft.

The linear transformation method is used to convert the
original sample to the sample in 0, 1 , which is divided into
two cases:

(1) When the index value is bigger, the sortie generation
capacity of the carrier aircraft is better. Linear trans-
formation is expressed in

Y =
X −min

max −min
36

(2) When the index value is smaller, the sortie generation
capacity of the carrier aircraft is better. Linear trans-
formation is expressed in

Y =
max − X
max −min

, 37

where Y is the normalized sample value, X is the orig-
inal sample value, and max and min are the maxi-
mum value and the minimum value of the current
system, respectively

The initial parameters of VS-RBF, SORBF, and RS-RBF
are the same. The initial weights are arbitrary values. The ini-
tial center is arbitrary value from 0 to 1. The initial function
width is given to 1. The learning accuracy of the neural net-
work is 0.001. The maximum number of iterations is 10,000.

The average performances of VS-RBF, SORBF, and RS-
RBF after 50 trains are shown in Table 7. The mean square
errors of VS-RBF, SORBF, and RS-RBF in the training pro-
cess are shown in Figure 11. The changes of the number of
neurons in the hidden layer of VS-RBF, SORBF, and RS-
RBF are shown in Figure 12. The comparisons of the network
output values and the actual output values of VS-RBF,
SORBF, and RS-RBF in the testing process are shown in
Figure 13. The errors between the network output values
and the actual output values for VS-RBF, SORBF, and RS-
RBF are shown in Figure 14.

The simulation shows that VS-RBF can accurately evalu-
ate the sortie generation capacity of the carrier aircraft.
Figures 13 and 14 show that evaluation value of VS-RBF
agrees with the actual evaluation value. The error is less than
0.01. The evaluation error of VS-RBF is less than those of
SORBF and RS-RBF. It proves the effectiveness of the evalu-
ation of the sortie generation capacity of the carrier aircraft
with VS-RBF.

Table 7: Comparisons of average training performance.

Algorithm
Learning
accuracy

Actual
error

Node number of the
final hidden layer

Training
time (s)

VS-RBF 0.001 0.0024 31 195.38

SORBF 0.001 0.0037 42 202.42

RS-RBF 0.001 0.0041 66 418.45
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Figure 11: Error variations during training.
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Figure 12 and Table 7 show that the average training
time of VS-RBF is shorter than those of the other two neu-
ral network algorithms. And the final structure of the net-
work of VS-RBF is most compact, which illustrates the
effectiveness of VS-RBF in structural adjustment of neural
networks. Table 7 shows that the evaluation error of VS-
RBF is smallest, which shows that VS-RBF has good gener-
alization ability.

6.1. Analysis for Sortie Generation Capacity of Carrier
Aircrafts. The nonlinear VS-RBF model of the indexes and
evaluation result not only can be used for evaluating a given
sortie generation scheme but also can further determine the
effect of various indexes on the evaluation result. The scheme
with basic configuration of surge operation of “Nimitz”

carrier in 1997 is selected as a reference scheme, which is
shown in Table 8.

On this basis, the index xi i = 1, 2,⋯, 15 is, respectively,
adjusted as 0, 0.25, 0.5, 0.75, 1, and sortie generation capacity
of the carrier aircraft is evaluated.

The 15 indexes are adjusted, respectively, and the influ-
ence curve and slope of each index on the sortie generation
capacity are obtained, which are shown in Figure 15 and
Table 9.

The simulations show that the VS-RBF model can be
used to quickly get the influence curve of each index on the
sortie generation capacity, which can be used to directly
determine the factors which have a great influence on the sor-
tie generation capacity.

Table 9 shows the fitting slope and absolute value of slope
for each index. The greater the absolute value of the slope, the
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Figure 12: Number of remaining neurons during training.
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Table 8: The reference scheme.

No. Index Unit
Basic

configuration
Normalized

result

1 ESGR Sortie 30 0.76

2 SSGR Sortie/day 250 0.87

3 LSGR Sortie/day 200 0.79

4 PTP % 80 0.91

5 MTPWP % 11 0.64

6 MTPWR % 9 0.58

7 SCP % 85 0.87

8 PUR Sortie/day 2.5 0.94

9 PIPA % 90 0.95

10 SGRA Sortie/day 6 0.86

11 PTNS Minute 30 0.83

12 EI Minute 1 0.94

13 TOOP % 1 0.87

14 RI Minute 1.5 0.74

15 OP % 3.3 0.90
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greater the influence of the index on the sortie generation
capacity. Otherwise, the smaller the absolute value of the
slope, the smaller the influence of the index on the sortie gen-
eration capacity is.

Figure 15 shows that when PTP, SCP, PIPA, SGRA, or
RI changes, the change of sortie generation capacity is
great. So these indexes should be allocated at first in plan-
ning the scheme and guaranteed to remain the good state
in the exercise or war, which will keep the sortie genera-
tion capacity high.

At the same time, Figure 15 also shows that when ESGR,
SSGR, MTPWP, MTPWR, or PUR changes, the change of
sortie generation capacity is small. The requirements of these
indexes can be lightly reduced, which will ensure that the
limited resources focus on those indexes with great influence

on the sortie generation capacity and achieve the reasonable
allocation of resources with low cost.

7. Conclusions

This paper proposes a VS-RBF network with the fast learning
rate aimed at structuring optimization design and parameter
learning algorithm of RBF. At the same time, the conver-
gence analysis of VS-RBF is given to ensure the accuracy of
the RBF neural network. By comparing with other self-
organizing RBF neural networks, the following conclusions
are obtained:

(1) VS-RBF can automatically adjust the structure of the
RBF neural network according to the complexity of
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the object. It obtains a compact RBF neural network
and strong dynamic response capability

(2) The learning algorithm of parameters adapted to the
structure adjustment is obtained. The fast learning
rate algorithm and the robust regression algorithm
improve the convergence speed of the RBF neural
network

(3) The convergence analysis of the VS-RBF neural net-
work is given. And VS-RBF has good convergence
and stability

(4) Compared with several other self-organizing RBF
neural networks, the proposed VS-RBF has the
advantages of a compact structure, strong approxi-
mation ability, and self-organization ability. The
evaluation of sortie generation capacity of the carrier
aircraft with VS-RBF provides technical support for
the evaluation of complex systems

To sum up, the VS-RBF proposed in this paper can effec-
tively solve the problem of structure design and parameter
learning algorithm of the RBF neural network. And the
approximation of the typical nonlinear function and the eval-
uation of the sortie generation capacity of the carrier aircraft
are realized.
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