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Although adaptive control for robotic manipulators has been widely studied, most of them require the acceleration signals of the
joints, which are usually difficult to measure directly. Although neural networks (NNs) have been used to approximate the
unknown nonlinear dynamics in the robotic systems, the conventional adaptive laws for updating the NN weights cannot
guarantee that the obtained NN weights converge to their ideal values, which could degrade the tracking control response. To
address these two issues, a new adaptive algorithm with the extracted NN weights error is incorporated into adaptive control,
where a novel leakage term is superimposed on the gradient method. By using the Lyapunov approach, the convergence of both
the tracking error and the estimation error can be guaranteed simultaneously. In addition, two auxiliary functions are
introduced to reformulate the robotic model for designing the adaptive law, and a filter operation is used to avoid measuring the
acceleration signals. Comparisons to other well-recognized adaptive laws are given, and extensive simulations based on a 2-DOF
SCARA robotic system are given to verify the effectiveness of the proposed control strategy.

1. Introduction

Robotic manipulators have been widely used to operate
some special or repetitive tasks, and accurate modeling
and control of robotic manipulators could promote their
practical applications. However, nonlinear time-varying
dynamics and coupling properties in the robotic systems
usually make them a nonlinear multi-input-multi-output
(MIMO) system, which is also taken as a preferable experi-
mental platform for researchers to verify different modeling
and control algorithms [1]. Hence, those facts stimulate sig-
nificant research interests from both industrial and academic
communities to study the modeling and control of robotic
manipulators. However, with the rapid and diverse applica-
tions of robotic technology, the working environments of
robots are becoming more complex and even harsh such that
the requirements for robust and flexible control strategies are
becoming increasingly demanding, especially in the case with
a changing environment, high-velocity motion, and varying
load [2].

In the past decades, many studies on the control design
for robotic manipulators have been reported in the literature,

such as [1, 3–7]. According to these studies, the tracking con-
trol system for robotic manipulators is usually composed of
the following elements: a desired path specifies the ideal
response of the controlled system; a numerical model
describes the robot dynamics and its interactions with sur-
roundings; a well-designed controller is used to generate
appropriate control signals to drive the actuators to create
the required torques. Then, in this way, the robotic manipu-
lator can follow the desired trajectory. In order to use
adaptive control techniques, the linear parameterization of
a robot with nonlinear dynamics was derived [3] since the
1980s. Subsequently, computed torque-based adaptive con-
trol [1, 3] was also proposed to guarantee the global error
convergence. However, the modeling uncertainties existing
in the robot manipulators are not considered. In [8–10],
adaptive tracking control was proposed for trajectory
tracking of robotic systems with uncertain kinematics and
dynamics. However, these results are usually based on the
assumption that uncertainties can be expressed in a linear
parameterization form. In this sense, the aforementioned
methods are mainly model-based control. Although they
can obtain a satisfactory control performance in theory, the
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requirements for an accurate mathematical model limit their
applications [11]. Moreover, in most of the conventional
adaptive control schemes, the joint acceleration signals are
assumed to be available to design the controller [1]. However,
the measurement of joint accelerations is not practically sen-
sible since it is generally sensitive to the external disturbance
and noise [12].

To relax the requirements of the robot model knowledge,
neural networks (NNs) [2, 13–15] have been used as an
effective tool to approximate the nonlinear uncertainties. As
it is shown in [16–18], any continuous functions can be
uniformly approximated by a NN with an arbitrary degree
of accuracy. In this framework, an adaptive law should be
designed to update the unknown NN weights and to retain
the system stability. There have been many adaptation
methods for updating the NN weights, such as the gradient
algorithm, least square (LS), σ-modification, and projection
algorithm [19]. Although these methods can achieve fair
tracking performance, only a few of them focus on the
learning performance and convergence of the estimated NN
weights. The authors of [20] pointed out that with inaccurate
and slow convergence of the estimated parameters, the effects
induced by the unknown robot dynamics cannot be sup-
pressed in transient time, which may degrade the control
performance. To guarantee the parameter convergence, the
authors of [21, 22] proposed a composite learning for param-
eter estimation. Recently, the authors of [6, 23] proposed a
novel adaptive law, in which both the tracking control and
parameter estimation convergence can be guaranteed simul-
taneously, while the linearly parameterized form should be
imposed again.

In this paper, an adaptive neural control based on a radial
basis function neural network (RBFNN) will be proposed for
robotic manipulators to achieve guaranteed tracking control
and estimation. Firstly, since the measurement of joint accel-
erations is sensitive to the external noise, we aim to avoid
using the acceleration signals directly by reformulating
the robotic model. Hence, two auxiliary variables are first
designed to reconstruct the robotic model. Then, a low-pass
filter is applied to the reformulated model such that the joint
acceleration can be avoided in the design of adaptive laws.
Moreover, to relax the requirement of system knowledge, a
RBFNN is employed to approximate the lumped unknown
nonlinear dynamics. To retain the control and estimation
convergence, the adaptive parameter estimation proposed
in [6] is further tailored and incorporated into an adaptive
neural control design. In this new framework, both the track-
ing error and the NN weight estimation error are used in the
adaptive law, and thus, the convergence of the tracking error
and weight estimation error can be guaranteed simulta-
neously. In addition, comparisons to other well-recognized
adaptive laws are presented in this paper, which show that
better estimation performance with the proposed algorithm
can be obtained. Numerical simulations based on a 2-DOF
SCARA robot are provided to show the efficiency of the
proposed methods.

This paper is organized as follows: The mathematical
model of robotic manipulators and a brief introduction of
the RBFNN are given in Section 2. An adaptive neural

control design based on RBFNN and the stability and
robustness analysis are presented in Section 3. Section 4
provides comparisons to other adaptive algorithms. Section
5 shows simulation results based on a 2-DOF SCARA
robot. Conclusions of this paper are given in Section 6.

2. Problem Formulation and Preliminaries

2.1. Robot Manipulator Dynamics. In this paper, we consider
robotic manipulators where a set of n rigid bodies are con-
nected in series with the final arm being fixed to the ground.
The model of such an n-degrees of freedom (DOF) nonlinear
robot manipulator can be expressed as

M q q + C q, q q +G q = τ, 1

where q, q, and q ∈ℝn are the robot joint position, velocity,
and acceleration, respectively; n is the number of DOF;
τ ∈ℝn is the control torque vector; M q ∈ℝn×n is the
inertia matrix; C q, q ∈ℝn×n denotes the lumped Coriolis/
centripetal torque, viscous and nonlinear damping; and
G q ∈ Rn represents the gravitational effect.

The problem to be addressed in this paper is to design a
proper adaptive control such that the output q of robotic
manipulator (1) can track a given reference qd , while the
convergence of the adaptive laws can be achieved.

According to [1], the following two properties used in the
subsequent control design should be presented:

Property 1. The matrix M q ∈ Rn×n is symmetric and
positive definite.

Property 2. The matrix M q − 2C q, q is skew-symmetric;
that is,

xT M q − 2C q, q , x = 0, ∀x, q, q ∈ℝn 2

2.2. RBF Neural Network. Neural networks (NNs) have been
widely used as a function approximator for unknown non-
linearities due to their elegant approximation abilities [24].
In this paper, a linearly parameterized radial basis function
NN (RBFNN) is employed to approximate a continuous
function f X : ℝl ⟶ℝ over a compact set Ωz as

f z = 〠
N

i=1
w∗

i ψi z + εi z =W∗Tψ z + ε, 3

where z = z1, z2,⋯, zl T ∈Ωz ∈ℝl is the input vector of
NN; N is the number of the NN nodes; ε ∈ℝN is the
approximation error; and W∗ = w∗

1 ,w∗
2 ,⋯,w∗

N
T ∈ℝN is

the ideal NN weights. As shown in [25], the ideal NN
weights W∗ are defined as

W∗ = arg min
W∈RN

sup
z∈Ωz

f z −W∗Tψ z , 4
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where ψ z = ψ1 z , ψ2 z ,⋯, ψN z T is a nonlinear func-
tion vector, the components of which can be presented as

ψi z = exp −
z − ςi

T z − ςi
ρ2i

, i = 1, 2,… ,N , 5

where ςi = ςi1, ςi2,⋯, ςil T ∈ℝl denotes the center of the ith
basis function and ρi is the ith variance.

The following assumptions and definition will be used:

Assumption 1. The ideal NN weights W∗ are bounded such
that W∗ ≤W holds for a positive constant W, and the
approximation error is bounded by ε ≤ ε∗ for a positive
constant ε∗.

Assumption 2. The reference signal qd and their derivative
qd are smooth and bounded.

Definition 1 (see [19]). A vector or matrix function ψ t is
persistently excited (PE) if there exist constants T > 0, ε > 0
such that t+T

t ψ τ ψT τ dτ ≥ ζI, ∀t ≥ 0.

3. Adaptive Control Design Based on RBFNN

In this section, a constructive control design will be presented
for a robotic manipulator (1), which has two salient features
in comparison to the existing results. On the one hand, a new
filter operation and proper mathematical developments
are introduced to avoid measuring the joint accelerations
directly, which is preferable for applications. On the other
hand, a novel adaptive law is developed to update the NN
weights online, which can guarantee the exponential con-
vergence of the estimated weights.

3.1. Adaptive Controller Design. As shown in (1), the studied
robotic manipulator is modeled using Lagrange-Euler
functions, which usually contain the acceleration signal
q. This implies that the acceleration signal needs to be
available to design the controller. However, the direct
measurement or estimation of acceleration signals is gener-
ally difficult due to the induced noise. To avoid using the
acceleration signal directly, we first define an error variable
r q, q as

r q, q = e +Λe, 6

where e = q − qd and qd is the desired reference of the robot
joint; Λ ∈ℝn×n is a positive diagonal matrix.

According to Assumption 2 and the defined variable r in
(6), we have e = r −Λe = q − qd and e = r −Λe = q − qd . Then,
the velocity and acceleration can be expressed as

q = r −Λe + qd ,
q = r −Λe + qd

7

Substituting (6) and (7) into the controlled system (1),
we have

Mr + Cr =M Λe − qd + C Λe − qd −G + τ 8

However, the design of control law τ could not be
achieved based on (8) because of the nonlinear dynamics
induced by M q Λe − qd + C q, q Λe − qd −G q . To
accommodate this issue, an RBFNN is employed to approxi-
mate these lumped nonlinearities. Thus, system (8) can be
described as

M q r + C q, q r =W∗Tψ z + ε + τ, 9

whereW∗ is the ideal NN weights; ψ z is the basis function

with the input vector; z = qT , qT , qTd , qTd , qTd
T
; and ε is the

approximation error, which are defined in (3), (4), and (5).
In order to achieve the tracking control, an adaptive

neural controller is designed as

τ = −ŴT
ψ − Kr, 10

where K > 0 is a feedback gain matrix and Ŵ is the estimated
NN weights of the unknown ideal weightsW∗, which will be
online updated based on the designed adaptive law.

Substituting (10) into (8), the closed-loop control error
dynamics with RBFNN can be derived as

M q r + C q, q r + Kr =W
T
ψ + ε, 11

where W =W∗ − Ŵ is the NN weight error.
The problem to be solved is to design an adaptive law,

which can obtain the estimated RBFNN weights Ŵ with
guaranteed convergence for implementing the proposed
control (10).

Remark 1.Most of existing adaptive laws for updating Ŵ are
designed based on the gradient methods on the tracking error
dynamics (11), e.g., [1, 18, 26, 27] and the references therein.
However, the use of robust leakage terms (σ-modification
and projection algorithm) in this framework makes it diffi-
cult to retain the convergence of the NN weights. Hence,
we will develop a new adaptive algorithm, which guarantees
the convergence of the estimated NN weights Ŵ, while
retaining the robustness.

From the above analysis, the acceleration q is embed-
ded in the error signal r. To make adaptive law indepen-
dent of the joint acceleration, two auxiliaries are further
defined as

F1 z =Mr,
F2 z = −Mr + Cr

12
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Hence, (8) can be further written as

F1 z + F2 z =W∗Tψ z + ε + τ 13

It should be noted that the introduced term F1 z
contains the information of the joint acceleration q;
hence, it cannot be used directly to design the adaptive
law. In this case, inspired by [6], a filter operation is
applied on system (9) to eliminate the acceleration. We
define the filtered variables F1f , F2f , ψf , and τf with respect
to F1, F2, ψ, and τ as

kF1f + F1f = F1, F1 0 = 0,

kF2f + F2f = F2, F2 0 = 0,
kψf + ψf = ψ, ψ 0 = 0,
kτf + τf = τ, τ 0 = 0,

14

where k > 0 is a filtered parameter.
Then, applying a filter 1/ ks + 1 on system (9), we have

s
ks + 1 F1 + 1

ks + 1 F2 = 1
ks + 1 W∗Tψ + 1

ks + 1 ε

+ 1
ks + 1 τ ,

15

where s is the Laplace operator. From the first equation of
(14), we can obtain F1f = F1 − F1f /k such that (15) can be
rewritten as

W∗Tψf =
F1 − F1f

k
+ F2f − εf − τf , 16

where εf is the filtered version of NN error ε by using the
same filter operation as (14). Since the NN approximation
error ε is bounded, its filtered version εf is also bounded,
i.e., εf ≤ ε∗.

Through the above filter operations, only the variable F1
with q, q and its filtered version F1f is used in (16), where the
acceleration q can be avoided. Thus, we can design an adap-
tive law based on (16) rather than the original tracking error
(11). Hence, the rest of this section will present a novel
adaptive algorithm based on (16), where a new leakage term
containing the estimation error is introduced to achieve a
guaranteed convergence of NN weights.

By using the above-filtered variables F1f , F2f , ψf , and τf ,
two auxiliary matrices P ∈ℝN×N and Q ∈ℝN×n are defined as

P = −lP + ψfψ
T
f , P 0 = 0,

Q = −lQ + ψf

F1 − F1f
k

+ F2f − τf

T

, Q 0 = 0,

17

where l > 0 is a positive constant serving as the forgetting
factor to retain the boundedness of P and Q.

The solution of matrix equation (17) is derived as

P t =
t

0
e−l t−τ ψf r ψT

f r dr,

Q t =
t

0
e−l t−τ ψf r

F1 − F1f
k

+ F2f − τf

T

dr

18

Then, by using the obtained auxiliary matrices P and Q,
we further define an auxiliary matrix H as

H = PŴ −Q 19

It is shown in (19) that the matrix H can be online calcu-
lated based on the auxiliary matrices P and Q by using the
filtered variables F1f , F2f , ψf , and τf and the estimated NN

weights Ŵ. Hence, it can be used to design the following
adaptive law.

Now, an adaptive law with H being a new leakage term is
given as

Ŵ = Γ ψrT − κH , 20

where Γ ∈ℝN×N is a positive diagonal matrix and κ > 0 is a
positive parameter.

To show the merit of the proposed adaptive law (20), we
fist present the following fact.

Lemma 1. The defined variable in (19) is equivalent to

H = −PW + φ, 21

where φ t = − t
0e

−l t−τ ψf r εTf dr is a bounded residual error

and W =W∗ − Ŵ is the estimation error.

Proof 1. By substituting (16) into the second equation of (18),
we can verify the fact Q = PW∗ + φ. Then, by substituting it
into (19), the fact shown in (21) can be verified. Moreover,
since the RBFNN regressor ψ is Lipschitz and the error ε is
bounded, the residual error φ is also bounded, i.e., φ ≤ ϖ
for a positive constant ϖ > 0.

As shown in (21), one may find that the explicit formula-
tion of the unknown NN weight estimation error W is
embedded in the matrix H, which can be online calculated
based on the known or measurable robotic dynamics.
Specially, when the approximation error is null, i.e., ε = 0,
we can verify that H = −PW holds. In this case, H contains
the NN weight error to be minimized. Hence, the use of H
in the adaptive law can help to guarantee the convergence
of the RBFNN weights Ŵ to the ideal unknown value W∗.
This will be proved in the next subsection.

Remark 2. In the proposed adaptive law (20), the first term
ψrT is the conventional gradient term, and the second part
κH is the newly introduced leakage term containing the
weight error W. With the help of this new leakage term, a
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quadratic term of the NN weights errorW will be included in
the derivative of the Lyapunov function as shown in the next
subsection, such that the convergence of tracking error and
NN weights error can be guaranteed simultaneously. This is
clearly different to other existing adaptive laws.

Remark 3. Although some solutions have been reported
to avoid using the acceleration signals q (e.g., [1]) or
to use differentiators in the design of adaptive laws, we
provide an alternative feasible method by reformulating
the robotic model with new variables F1 and F2. In this
case, the acceleration signals are not required and the extra
differentiator is not required, which leads to a simplified
control implementation.

3.2. Stability and Convergence Analysis. Before proving the
convergence of the closed-loop system, we first show the
positive definiteness of the introduced matrix P. For the sake
of simplicity, we define λmin ⋅ and λmax ⋅ as the minimum
and maximum eigenvalues, respectively, of the correspond-
ing matrices. Then, we can present the following lemma.

Lemma 2 (see [28, 29]). The matrix P defined in (17) is
positive definite (i.e., λmin P > σ > 0) if the RBFNN regressor
ψ in (9) is persistently excited (PE). On the other hand, the
positive definiteness of P also implies that ψ is PE.

Proof 2. Please refer to [28, 29] for the detailed proof.

The stability of the closed-loop system and the conver-
gence of the tracking and estimation errors can be given as

Theorem 1. Consider robotic manipulator (1) with controller
(10) and adaptive law (20), if the RBFNN regressor ψ z is PE
(i.e. λmin P t > σ > 0, t > 0); then, all signals in the closed-
loop system are bounded, and the error variable r, tracking
error e, and the NN weights error W all converge to a small
compact set around zero.

Proof 3. Select a Lyapunov function as

V1 =
1
2 r

TMr + 1
2 tr W

TΓ−1W 22

Based on Property 2 shown in Section 2, we can calculate
its derivative V1 along (11) and (20) as

V1 = rTMr + 1
2 r

TMr + tr W
TΓ−1W

= rT −Cr − Kr +W
T
ψ + ε + 1

2 r
TMr

− tr W
TΓ−1 ΓψrT + κΓPW − κΓφ

= 1
2 r

T M − 2C r − rTKr + rTε − κtr WPW
T + κtr W

T
φ

≤ −λmin K r 2 − κλmin P W
2 + rTε + κtr W

T
φ

23

By using Young’s inequality [30] for the last two terms in
(23), we have

V1 ≤ − λmin K −
1
2η1

r 2 − κλmin P −
κ

2η2
W

2

+ η1
2 ε∗2 + κη2

2 ϖ2 ≤ −α1V1 + β1,

24

where α1 = min 2λmin K − 1/η1 /λmax M , 2κσ − κ/2
η2 /λmax Γ−1 , and β1 = η1/2 ε∗2 + κη2/2 ϖ2 are all posi-
tive constants since the constants η1 and η2 can be designed
to satisfy the condition η1 ≥ 1/2λmin K and η2 > 0. Conse-
quently, based on the Lyapunov stability theory, we can
obtain that the error variable r and the NN weight error W
are bounded. From the (6), we can verify that the tracking
error e is also bounded. In addition, since the regressor ψ is
bounded, we know that the control signal τ is also bounded
based on (10).

Furthermore, the solution of inequality (24) satisfies
V t ≤ V 0 − β1/α1 e−α1t + β1/α1 . Hence, the control
error r and the NN weights error W will converge to a
compact set around zero defined by Ωw ≔ L W, r ∣ W ≤

V 0 e−α1t + β1/α1 /λmin P , r ≤ V 0 e−α1t + β1/α1 ,
whose size depends on the RBFNN approximation error ε∗,
the persistent excitation level σ, and the learning gain Γ. Con-
sequently, based on (6), the tracking error ewill also converge
to a compact set around zero. Hence, the system output q will
converge to a neighborhood around the desired reference qd .
This completes the proof.

Remark 4. The online validation of the PE condition through
directly checking the regressor vector ψ z is generally diffi-
cult in particular for nonlinear robotic systems, because the
definition of PE is indeed an integral within a shifting time
interval. However, according to Lemma 2, the PE condition
of the RBFNN regressor ψ z is equivalent to the positive
definiteness of the introduced auxiliary matrix P, such that
testing for the positive definiteness of P (e.g., calculate the
minimum eigenvalue or rank of matrix P) allows to numeri-
cally verify the PE condition online. Thus, this new adaptive
algorithm provides a feasible method for online verification
of PE condition. Specifically, as shown in [25], the RBFNN-
based control system with periodical reference signal allows
the PE condition partially fulfilled.

3.3. Robust Analysis against Exogenous Disturbance. In this
subsection, we further study the robustness of the proposed
adaptive control methods for robotic systems with bounded
exogenous disturbance. For this purpose, the robotic manip-
ulator (1) can be represented as

M q q + C q, q q +G q = τ + d t , 25

where d t denotes a bounded exogenous disturbance, i.e.,
d t ≤ ƛ, ƛ > 0.
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The proposed control (10) is used, while the tracking
error (11) is modified as

M q r + C q, q r + Kr =W
T
ψ + ε + d 26

Moreover, to analyze the convergence of the proposed
adaptive law (20), (9) can be replaced by

F1 z + F2 z =W∗Tψ z + ε + τ + d 27

In applying the same filter operations given in (14) on
(27) and defining the same auxiliary matrices Ρ and Q in
(17), then the matrix H in (19) used to drive the adaptive
law (20) can be given as

H = −PW −Ψ, 28

where Ψ t = t
0e

−l t−τ ψf r εTf + dTf dr is a modified resid-
ual error and df is the filtered version of disturbance d given

by kdf + df = d, df 0 = 0. Since d is bounded, the filtered
version df is also bounded. Hence, we know that the residual
term Ψ is bounded because of the boundedness of ψf , εf , and
df ; i.e., Ψ ≤ ϑ holds for a constant ϑ > 0.

Then, we have the following corollary.

Corollary 1. Considering the robotic manipulator (25) subject
to bounded disturbances, the controller (10) and adaptive law
(20) are adopted. If the RBFNN regressor ψ z is PE (i.e.,
λmin P t > σ > 0, t > 0), the closed-loop system is stable.
Moreover, the error variable r and the NN weight error W
are bounded; converge to a compact set around zero, of which
the bound depends on the disturbance bound.

Proof 4. The proof of Corollary 1 can be carried out by

selecting the same Lyapunov function V1 = 1/2 rTMr +
1/2 tr W

TΓ−1W and calculating its derivative along (26)
and (20) with (28). The detailed proof is similar to that of
Theorem 1 and thus will not be repeated again. The main dif-
ference is that the disturbance is involved in the error dynam-
ics (26) and also the residual error Ψ in (28). Hence, the
ultimate bound determined by the constant β1 in the
Lyapunov function (24) will be affected by the bound of
disturbance ƛ, apart from the NN approximation error ε∗.

Remark 5. In practical control implementation, there may be
also measurement noise and modeling uncertainties, which
could be lumped into the NN approximation error ε∗. Hence,
(27) can be further replaced as

F1 z + F2 z =W∗Tψ z + τ + Δ, 29

where Δ = ε + d ∈ℝn denotes the lumped disturbance
containing the NN approximation error ε and the effect of

disturbance and measurement noise d. Then, the robustness
of the proposed control and adaptive law can be analyzed
similarly. The only difference is that the residual term Ψ in
(28) is modified as Ψ t = t

0e
−l t−τ ψf r ΔT

f dr, where Δf is

the filtered version of Δ given by kΔf + Δf = Δ, Δf 0 = 0.

4. Comparison to Other Adaptive Laws

To show the advantages and superior performance of this
new adaptation over classical methods, we will compare it
with a widely recognized gradient-based adaptive algorithm
and the σ-modification method [31].

4.1. Gradient Method. The classical gradient-based adaptive
law is solely driven by the control error r, which is
given by

Ŵ = ΓψrT 30

Considering the fact W = −Ŵ, the estimation error of
(30) is derived as

W = −ΓψrT 31

Then, selecting VG = 1/2 rTMr + 1/2 tr W
TΓ−1W ,

we have its derivative along (11) and (31) as

VG = rTMr + 1
2 r

TMr + tr W
TΓ−1W

= 1
2 r

T M − 2C r − rTKr + rTε ≤ −α2 r 2 + β2,
32

where α2 = λmin K − 1/2η3 and β2 = η3/2 ε∗2, with η3 >
1/2λmin K .

Based on the Lyapunov stability theory, the control error
r will converge to a compact set around zero. However, the
convergence of the NN weights error W cannot be guaran-
teed, especially in the absence of PE condition. More spe-
cifically, when the system is subject to disturbance and
uncertainties, the online obtained NN weights Ŵ may even
be unbounded; i.e., it could lead to parameter drift and burst-
ing phenomena [32]. Hence, the convergence and robustness
of the gradient algorithm (30) are questionable.

4.2. σ-Modification [31]. To guarantee the boundedness of
the estimated NN weights, a leakage term σŴ is added
in the gradient algorithm, leading to the following σ-
modification method:

Ŵ = Γ ψrT − κŴ 33

Then, its estimation error dynamics can be given as

W = −ΓψrT + κΓŴ = −ΓψrT + κΓW∗ − κΓW 34
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We select the Lyapunov function as Vσ = 1/2 rTMr +
1/2 tr W

TΓ−1W , and its derivative along (11) and (34)
can be derived as

Vσ = rTMr + 1
2 r

TMr + tr W
TΓ−1W

= −rTKr − κtr W
T
W + rTε + κtr W

T
W

≤ − λmin K −
1
2η4

r 2 − κ −
κ

2η5
W

2 + η4
2 ε∗2

+ κη5
2 W2 ≤ −α3Vσ + β3,

35

where the constants α3 = min 2λmin K − 1/η4 /λmax
M , 2κ − κ/2η5 /λmax Γ−1 and β3 = η4/2 ε∗2 + κη5/
2 W2 are positive by setting the design parameters
η4 > 1/2λmin K and η5 > 1/2 . Based on the Lyapunov
theory, we can obtain that the error variable r and the estima-
tion errorW are all bounded; i.e., the σ-modification method
has guaranteed robustness.

In fact, compared with (31), it is shown in (34) that a
forgetting factor term −κΓW is involved, such that the
estimation error dynamics in (34) are bounded-input-
bounded-output (BIBO) stable. Hence, the σ-modification
can guarantee the boundedness of the control error r and
the NNweight errorW. However, since a pure damping term
κŴ is added to (33), the estimated NN weights Ŵ will stay in
a neighborhood of a preselected value only but will not
converge to their true values, because the upper bound W
of the unknown NN weights W∗ is involved in the error
bound β3 in (35) and thus β3 ≠ 0 even when the NN weight
error and tracking error are null (i.e., ε∗ = r = 0). This can
also be observed from the estimation error (34) represented
as a transfer function as W = 1/ s + κΓ −ΓψrT + κΓW∗ .

4.3. Proposed Adaptive Law.With the help of the new leakage
term κH, the NN weight error of the proposed adaptive law
(20) can be given as

W = −ΓψrT + κΓH = −ΓψrT − κΓPW + κΓφ 36

As shown in (36), a forgetting factor −κΓPW stemming
from the new leakage term κH is involved to retain its
BIBO stability, and thus the boundedness of the NN
weight error can be guaranteed. In addition, the estimation
error dynamics (36) can be further rewritten as a transfer
function as W = 1/ s + κΓP −ΓψrT + κΓφ . Consequently,
the bound of the NN weight error mainly depends on the
residual error φ, which is a function of the NN approxima-
tion error ε as shown in (21). Consequently, the NN weight
error will converge to zero as long as the control error and
the NN approximation error are null (i.e., ε∗ = r = 0). This
implies that the proposed adaptive law achieves better
estimation performance compared with the other two

adaptive laws, while retaining the same robustness as
the σ-modification method.

Remark 6. Compared to the conventional adaptive laws, the
proposed adaptive law (20) uses filter operations (14) to
extract the information of the NNweight error. In this frame-
work, the filter coefficient k (14) should be set small to retain
fast convergence. On the other hand, the constant k defines
the bandwidth of the filter 1/ ks + 1 . Hence, the robustness
and transient convergence should be managed when we set
this constant. The forgetting factor l in (17) aims to guarantee
the boundness of the auxiliary matrices P and Q; thus, l
cannot be set too large. The constant κ in (20) affects
the convergence of the NN weight error W; in general, κ
should not be set too large since the residual term κΓφ
may be large with a large κ. Finally, the selection of the
learning gain Γ in (20), the diagonal matrix Λ in (6),
and the feedback gain matrix K in (10) should be considered
the tradeoff between the convergence of the tracking error
and the robustness of the closed-loop system.

5. Simulation

In this paper, a 2-DOF SCARA robot designed in our lab is
used to show the validity of the proposed control schemes.
The diagram of the 2-DOF SCARA robot can be found in
Figure 1, and its schematic diagram can be found in Figure 2.

According to [33], the kinetic energy E and the potential
energy Z of the 2-DOF SCARA robot can be given as

E = 1
8m1 +

1
2m2 +

1
2m3 l21q

2
1 +

1
8m2 +

1
2m3 l22 q1 + q2

2

+ 1
2m2 +m3 l1l2 q21 + q1q2 cos q2 ,

37

where m1 = 2 3Kg, m2 = 0 8Kg, m3 = 0 6Kg, l1 = 0 25m, and
l2 = 0 25m, since the 2-DOF SCARA robot is moving in the
horizontal plane such that the potential energy Z = 0. Based
on [1], the Lagrange kinetic equation of this robotic system
is given as d/dt ∂L/∂q − ∂L/∂q = τ, where L = E − Z is
the Lagrangian.

m2 m3

l1 l2

m1

Figure 1: 2-DOF SCARA robot structure.
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Then, the dynamics of the 2-DOF SCARA robot are
described by

τ =
al21 + bl22 + 2cl1l2 cos q2 bl22 + cl1l2 cos q2

cl22 + cl1l2 cos q2 bl22

M q

q

+
−2cl1l2q2 sin q2 cl1l2q2 sin q2

l1l2q1 sin q2
C q,q

,

38

where a = 1/4 m1 +m2 +m3, b = 1/4 m2 +m3, and c =
1/2 m2 +m3.

In the simulations, the initial joint position q 0 and the
initial velocity q 0 are set as q 0 = 0 2 0 3 T and q 0 =
0 0 T , respectively. The desired trajectories to be tracked
are qd1 = 0 5 sin t and qd2 = cos 0 5t . The number of the
NN node is set as N = 16, and the initial RBFNN weights
are set as Ŵ 0 = zeros 16, 2 . The center ςi in (5) is uni-
formly distributed in 1, −1 , and the variance ρ2i is set as
50. The other parameters used in the control and the
adaptive law are Λ = 5I2, k = 0 0001, l = 90, κ = 1, K = 5I2,
and Γ = 100I16.

Figures 3–6 show the tracking performance of robot joint
position and velocity. As it is shown in these simulation
results, the adaptive control (10) with both the proposed
adaptive law (20) and σ-modification method can achieve
satisfactory tracking performance. However, as it can be seen
from Figures 4 and 6, smaller steady-state errors can be
achieved by using the proposed adaptive law (20) in com-
parison with that of the σ-modification method. This
result validates the analysis in Theorem 1 and the discus-
sions in Section 3; that is, a quadratic term of the NN
weights error W induced by the proposed leakage term
H is incorporated into the derivative of the Lyapunov
function, such that the convergence of both the tracking
error and the NN weights error can be guaranteed

simultaneously. It can be also observed from Figure 7 that
the NN weights Ŵ updated by the proposed adaptive law
(20) can achieve convergence after a short transient stage,

y

x

m1

m2

(x2, y2)

(x4, y4)

q1

q2

l1

l2

(0,0)

(x1, y1)

(x3, y3)

m3

Figure 2: Schematic diagram of the 2-DOF SCARA robot.
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Figure 3: Tracking performance of robotic joint position q1 and q2.
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Figure 4: Tracking error of robotic joint position q1 and q2.
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while the NN weights with σ-modification have fair oscil-
lations even when the tracking errors reach the steady
state. Therefore, the proposed adaptive neural control with

a new adaptive algorithm can improve both the transient
and steady-state tracking performances.

Moreover, to test the robustness of the proposed method,
the bounded exogenous disturbance signals d t = 0 5 sin
16t e−0 2t + 0 03 ; cos 8t e−0 4t + 0 02 are added in the
measured position signals of joint 1 and joint 2, respectively.
Simulation results given in Figures 8 and 9 show that the
proposed adaptive neural control is robust against the
modeling uncertainties and disturbances as that achieved
by using the σ-modification scheme. From these simulation
results, one can claim that the proposed adaptive neural
control for robot manipulators can achieve better conver-
gence performance and comparative robustness against the
external disturbances.

Reference qd1 Proposed adap. q1
Proposed adap. q2Reference qd2

0 2 4 6 8 10 12 14
Time (s)
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0

−1q
1, 
q

2 r
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q
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q
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ad

/s

6 8 10 12 14
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1

0

−1

−2

(b)

Figure 8: Tracking performance of the proposed adaptive law with
bounded exogenous disturbances.
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Figure 5: Tracking performance of robotic joint velocity q1 and q2.
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Figure 6: Tracking error of robotic joint velocity q1 and q2.
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6. Conclusions

In this paper, we introduce a new adaptive algorithm to
achieve the guaranteed estimation convergence and improve
the tracking performance of adaptive neural control for robot
manipulators. Two auxiliary functions are first introduced to
reconstruct the robotic model such that the acceleration sig-
nals are not used in the control implementation and online
learning. The unknown nonlinear system dynamics can be
effectively approximated by using a RBFNN, where a novel
leakage term is superimposed on the gradient-based adaptive
law, which is used to online update the RBFNN weights.
Through rigorous stability analysis based on the Lyapunov
theory, it is proved that the proposed adaptive control could
guarantee the convergence of both the tracking error and the
NN weight error simultaneously. Therefore, improved track-
ing control performance can be achieved in comparison to
other adaptive methods. In addition, it is shown that even
in the presence of bounded disturbances, the proposed
algorithm can retain the robustness. Simulations based on
a 2-DOF SCARA robotic manipulator are given to validate
the efficiency of the proposed adaptive neural control. A
future work will focus on relaxing the required PE condition
for the adaptive control design.
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