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In this paper, the finite-time stabilization problem for memristive Cohen-Grossberg neural networks with time-varying delay is
discussed. By using the novel fixed point theory of set-valued maps, we establish the existence theorem of equilibrium point. In
order to realize the finite-time stabilization, two different kinds of discontinuous state feedback controllers whether including
time-varying delay are designed. Based on the extended Filippov framework and two different kinds of methods whether using
finite-time stability theory, some novel sufficient conditions and the upper bound of the settling time for finite-time stabilization
are proposed. Finally, two numerical examples are given to demonstrate the validity of theoretical results.

1. Introduction

Memristor, first hypothesized by Chua in 1971 [1], was
realized by Hewlett-Packard (HP) lab in 2008 [2]. The new
circuit possesses memory characteristic as biological neu-
rons, which is distinct from other circuit elements such as
resistor and capacitor. As a result, memristor is widely used
in artificial neural networks for emulating human brain [3].
When using memristor to replace other resistors, researchers
can construct a new kind of neural networks named
memristor-based neural networks (MNNs). Nowadays,
MNNs are widely used in the area of science and technology,
such as artificial intelligence, signal processing, and associate
memory [3–6].

Due to the state-dependent switching feature, MNNs can
be viewed as a differential equation with discontinuous right-
hand side. Thus, the differential inclusion theory is a new
kind of effective methods to study the dynamical behaviors
of various MNNs. There are already many theoretical results
about MNNs, such as stability and synchronization [7–12].
In [8], the authors proposed a new kind of complex-valued
memristor-based neural networks with time-varying delays
and studied their exponential stability by using some ana-
lytic techniques and constructing a Lyapunov functional.
However, due to the switching feature of memristor, the

dynamical behaviors of MNNs are always unstable such
as oscillation and chaos. Thereby, it is necessary and chal-
lengeable to investigate the stabilization problem of unstable
MNNs by designing suitable controllers.

In most researches about the stabilization of MNNs, the
converge time of system states is sufficiently large such as
exponential stabilization and asymptotic stabilization. How-
ever, researchers always hope the converge time can be
shortened in practice. It is worth noting that the finite-time
stability theorem is a very effective method to realize this
goal. The finite-time stabilization (FTS) indicates the system
states can keep in a certain range of equilibrium point
after a finite time. Besides the faster converge speed, FTS
also has other desirable advantages when compared with
the infinite-time stabilization, such as better robustness
and disturbance rejection properties [13, 14]. In recent
years, the finite-time synchronization and FTS of discontinu-
ous neural networks have received great attention [15–19]. In
[16], the finite-time synchronization of time-varying delayed
neural networks (DNNs) with discontinuous activations was
studied by using the famous finite-time stability theorem. In
[17], the authors studied the finite-time projective synchroni-
zation issue of memristor-based delay fractional-order neural
networks by using the definition of finite-time projective
synchronization. On the other hand, the discontinuous
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controllers were creatively designed to realize the FTS of neu-
ral networks with discontinuous right-hand side [18, 19].
However, there are a few papers concerning the finite-time
stabilization of MNNs [20–23]. In [20], the authors investi-
gated the FTS of MNNs by designing the discontinuous state
feedback controller, but they ignored time delay. In fact, time
delay is always inevitable in most neural networks due to the
finite transmitting speed between neuron signals. In [23], the
authors mainly studied the finite-time stability and synchro-
nization problems of memristor-based fractional-order fuzzy
cellular neural network with time delay. For realizing the FTS
of discontinuous neural networks, it is worth noting that
discontinuous controllers are always more effective than
conventional continuous controllers. This is mainly because
the uncertain differences of Filippov solutions can be well
handled by using discontinuous controllers. On the other
hand, Cohen-Grossberg neural networks that was introduced
by Cohen and Grossberg in 1983 is also an important kind of
neural networks [24]. There always exist many results about
the dynamical behaviors of Cohen-Grossberg neural net-
works [25–28]. In [26], the global and local finite-time
synchronization for a class of memristor-based Cohen-
Grossberg neural networks with time-varying delays are
discussed. In [28], the authors studied the finite-time stability
and synchronization problem of a class of memristor-based
fractional-order Cohen-Grossberg neural network with time
delay by using differential inclusion theory and Gronwalls
inequality. However, the time delay is constant and the
activation functions are bounded in [28]. To the best of our
knowledge, there are few papers concerning the FTS of
memristive Cohen-Grossberg neural networks with time-
varying delay.

The main contributions of this paper have three aspects.
First, the existence of equilibrium point is studied by using
the novel fixed point theory of set-valued maps. Second, there
are few results about the finite-time stabilization of neural
networks concerning the factor of memristor, amplification
function, and time-varying delay. Third, two discontinuous
controllers whether including time-varying delay and two
analysis methods whether using finite-time stability theory
are considered.

The structure of this paper is organized as follows. In
Section 2, the delayed memristive Cohen-Grossberg neural
networks and some preliminary knowledge are presented.
In Section 3, the existence theorem of equilibrium point is
obtained. In Section 4, main theorems and some sufficient
conditions about finite-time stabilization are provided. In
Section 5, we illustrate the effectiveness of theoretical results
by using numerical examples. Finally, conclusions and future
research topics are presented in Section 6.

Notations.ℝ andℝn denote the space of real number and the
n-dimensional Euclidean space, respectively. Let X ⊆ℝn,
Pkc X denotes the collection of all nonempty, compact,
and convex subset of X. For any column vector x =
x1, x2,… , xn

T ∈ℝn, the norm of x is defined as x 1 =
∑n

i=1 xi . Given vectors x = x1, x2,… , xn
T and y =

y1, y2,… , yn
T ∈ℝn, x, y = xTy =∑n

i=1xiyi denotes the

inner product of x and y, and the superscript T represents
the transposition of a vector or matrix. Finally, sign · stands
for the sign function.

2. System Description and Preliminaries

In this section, the memristive Cohen-Grossberg neural
networks with time-varying delay and some important
preliminaries are introduced. The neural network system
considered in this paper is described as follows [26]:

vi t = −ai vi t bi vi t − 〠
n

j=1
cij vi t f j vj t

− 〠
n

j=1
wij vi t gj vj t − τ t − Ii , i ∈ℕ,

1

where ℕ = 1, 2,… , n ; vi t represents the voltage of
capacitor Ci; ai vi t and bi vi t denote the amplification
function and self-inhibition function, respectively; τ t
represents the time-varying delay and 0 ≤ τ t ≤ τ, τ t ≤
τ < 1; f j vj t and gj vj t − τ t are the activation
functions without and with time-varying delay, respectively;
Ii represents the external input to the ith neuron; and
cij vi t and wij vi t represent memristive connection
weights satisfying

cij vi t =
Wij

Ci
× SGNij,

wij vi t =
Wij

Ci
× SGNij,

2

in which

SGNij =
1, if i ≠ j,

−1, if i = j
3

Wij and Wij stand for the memductances of memristors

Mij and Mij, respectively. Mij denotes the memristor

between the feedback function f j vj t and vi t . Mij

denotes the memristor between the time-delayed feedback
function gj vj t − τ t and vi t . According to the
current-voltage characteristic of memristor, cij vi t and
wij vi t satisfy the following properties:

cij vi t =
ĉij, vi t < γi,

č ij, vi t ≥ γi,

wij vi t =
ŵij, vi t < γi,

w̌ij, vi t ≥ γi,

4

where the switching jumps γi > 0, and ĉij, č ij, ŵij, and w̌ij are
constants, i, j ∈ℕ.
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Throughout this paper, we need the following
assumptions:

Assumption 1. ai v is continuous and bounded. There exist
positive constants ai and ai such that 0 < ai < ai v < ai,
v ∈ℝ, i ∈ℕ.

Assumption 2. bi v is differentiable, bi 0 = 0 and there exists
a positive constant li such that 0 < li ≤ bi′ v , v ∈ℝ, i ∈ℕ.

Assumption 3. For i ∈ℕ and any two different x, y ∈ℝ, the
activation functions f i and gi satisfy Lipschitz conditions,
i.e., there exist positive constants Li and Ki such that

f i x − f i y ≤ Li x − y ,

gi x − gi y ≤ Ki x − y
5

Assumption 4. For i ∈ℕ, there exist positive constants λi, βi,
δi, and θi such that the activation functions f i and gi satisfy
the following conditions

f i x ≤ λi x + βi,

gi x ≤ δi x + θi,

∀x ∈ℝ
6

By taking the equivalent transformation method [26, 27],
the amplification function in the delayed memristive Cohen-
Grossberg neural networks (1) can be well handled. Let us
choose a transformation function hi v such that

d
dv

hi v =
1

ai v
, hi 0 = 0, v ∈ℝ, i ∈ℕ 7

According to Assumption 1, 1/ ai v is continuous
and positive. Thus, hi v is a strictly increasing function.
Denoting xi t = hi vi t , thus xi t = vi t / ai vi t
and vi t = hi

−1 xi t .
Taking the above variable transformations, it follows

from (1) that

xi t = −bi hi
−1 xi t + 〠

n

j=1
cij hi

−1 xi t f j hj
−1 xj t

+ 〠
n

j=1
wij hi

−1 xi t gj hj
−1 xj t − τ t + Ii, i ∈ℕ

8

Next, we introduce some important definitions and
lemmas for subsequent analysis. For more relevant details,
we can refer to [29]. For τ > 0, C −τ, 0 ,ℝn represents the
collection of all continuous functions ϕ −τ, 0 ⟶ℝn and
denotes the Banach space equipped with the norm ϕ C =
sup−τ<t<0 ϕ t . If T ∈ 0, +∞ , for any continuous function
x t : −τ, T ⟶ℝn, xt can be defined as xt s = x t + s ,
s ∈ −τ, 0 for all t ∈ 0, T . Then, xt ∈ C −τ, 0 ,ℝn .

Definition 1 ([20]). Let set X ⊆ℝn, if for each point x of
X, there corresponds a nonempty set F x ⊆ℝn, then
x⟶ F x is said to be a set-valued map from X⟶
ℝn. A set-valued map F with nonempty values is said
to be upper semicontinuous (USC) at x0 ∈ X, if for any
open set N containing F x0 , there exists a neighbor-
hood M of x0, such that F M ⊆N .

Definition 2 ([30]). Consider a differential equation with
discontinuous right-hand side dx/dt = f t, xt . Let us
define a Filippov set-valued map F t, xt (i.e., Filippov
regularization) as follows:

ℱ t, xt =⋂
δ>0

⋂
meas N =0

co f t,ℬ xt , δ \N , 9

where meas N represents the Lebesgue measure of set
N ; co E represents the closure of the convex hull of
some set E; intersection is taken over all sets N of Lebesgue
measure zero and over all δ > 0; B xt , δ ≔ yt ∈ C −τ, 0 ,
ℝn : yt − xt C < δ . A vector-valued function x t defined
on a nongenerate internal I ⊆ℝ is said to be a Filippov
solution of the discontinuous differential equation, if it is
absolutely continuous on any compact subinterval t1, t2
of I , and also satisfies the differential inclusion dx/dt ∈
F t, xt , for almost all t ∈I .

Definition 3 ([30]). A vector-valued function v t =
v1 t , v2 t ,… , vn t T −τ, T ⟶ℝn, T ∈ 0, +∞ is a
Filippov solution of system (1) if

(i) v t is continuous on −τ, T and absolutely continu-
ous on any compact subinterval of 0, T

(ii) for almost all t ∈ 0, T , v t satisfies the following
differential inclusion:

vi t ∈ −ai vi t bi vi t − 〠
n

j=1
co cij vi t f j vj t

− 〠
n

j=1
co wij vi t gj vj t − τ t − Ii

≜ℱi t, vt , i ∈ℕ,
10

where

co cij vi t =

ĉij, vi t < γi,

co cij, cij , vi t = γi,

č ij, vi t > γi,

co wij vi t =

ŵij, vi t < γi,

co wij,wij , vi t = γi,

w̌ij, vi t > γi,
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cij =min ĉij, č ij ,

cij =max ĉij, č ij ,

wij =min ŵij, w̌ij ,

wij =max ŵij, w̌ij 11

Obviously, the set-valued map t, v ⟶ F 1 t, vt ,
F 2 t, vt ,… , F n t, vt

T is USC and measurable. By using
themeasurable selection theorem [29], there exist measurable
functions γij vi t ∈ co cij vi t , ηij vi t ∈ co wij vi t ,
for a.e. t ≥ 0, such that

vi t = −ai vi t bi vi t − 〠
n

j=1
γij vi t f j vj t

− 〠
n

j=1
ηij vi t gj vj t − τ t − Ii

12

Based on Definition 3, we can obtain that the Filippov
solution x t = x1 t , x2 t ,… , xn t T of system (8) satisfies

xi t ∈ −bi hi
−1 xi t + 〠

n

j=1
co cij hi

−1 xi t f j hj
−1 xj t

+ 〠
n

j=1
co wij hi

−1 xi t gj hj
−1 xj t − τ t

+ Ii, i ∈ℕ,
13

where

co cij hi
−1 xi t =

ĉij, hi
−1 xi t < γi,

co cij, cij , hi
−1 xi t = γi,

č ij, hi
−1 xi t > γi,

co wij hi
−1 xi t =

ŵij, hi
−1 xi t < γi,

co wij,wij , hi
−1 xi t = γi,

w̌ij, hi
−1 xi t > γi

14

Equivalently, there exist

γij hi
−1 xi t ∈ co cij hi

−1 xi t ,

ηij hi
−1 xi t ∈ co wij hi

−1 xi t ,
15

for a.e. t ≥ 0, such that

xi t = −bi hi
−1 xi t + 〠

n

j=1
γij hi

−1 xi t f j hj
−1 xj t

+ 〠
n

j=1
ηij hi

−1 xi t gj hj
−1 xj t − τ t + Ii

16

Definition 4 ([20]). A constant vector x∗ = x∗1 , x∗2 ,… , x∗n
T

∈ℝn is said to be an equilibrium point of system (8), if
and only if,

0 ∈ −bi hi
−1 x∗i + 〠

n

j=1
co cij hi

−1 x∗i f j hj
−1 x∗j

+ 〠
n

j=1
co wij hi

−1 x∗i gj hj
−1 x∗j + Ii, i ∈ℕ,

17

or, equivalently, there exist γ∗ij ∈ co cij hi
−1 x∗i and

η∗ij ∈ co wij hi
−1 x∗i such that

0 = −bi hi
−1 x∗i + 〠

n

j=1
γ∗ij f j hj

−1 x∗j

+ 〠
n

j=1
η∗ijgj hj

−1 x∗j + Ii

18

Lemma 1 (Kakutani’s fixed point theorem [20]). Let Ω
be a compact convex subset of a Banach space X, if the set-
valued map ϕ Ω⟶ Pkc Ω is an upper semicontinuous
convex compact map, then ϕ has a fixed point inΩ, i.e., there
exists x ∈Ω such that x ∈ ϕ x .

Lemma 2 (Chain rule [20]). Suppose that V y : ℝn ⟶ℝ is
C-regular, and y t : 0, +∞ ⟶ℝn is absolutely continuous
on any compact subinterval of 0, +∞ . Then, y t and
V y t : 0, +∞ ⟶ℝ are differential for a.e. t ∈ 0, +∞
and

dV y t
dt

= ζ t ,
dy t
dt

, ∀ζ t ∈ ∂V y t 19

Here, ∂V y represents the Clarke’s generalized gradient
of V at point y ∈ℝn.

Lemma 3 ([31, 32]). Suppose that V y : ℝn ⟶ℝ is C-
regular, and that y t : 0, +∞ ⟶ℝn is absolutely contin-
uous on any compact interval of 0, +∞ . If there exists a
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continuous function γ 0, +∞ ⟶ℝ, with γ ρ > 0 for
ρ ∈ 0, +∞ , such that

dV y t
dt

≤ −γ V y t , for a e t ≥ 0, 20

and

V y 0

0

1
γ ρ

dρ = t∗ < +∞, 21

then, we have V y t = 0 for t ≥ t∗. Especially, we have the
following conclusions.

(i) If γ ρ = K1ρ + K2ρ
σ, for all ρ ∈ 0, +∞ , where

σ ∈ 0, 1 and K1, K2 > 0, then the settling time
is estimated by

t∗ =
1

K1 1 − σ
ln

K1V
1−σ y 0 + K2

K2
22

(ii) If γ ρ = Kρσ and K > 0, then the settling time is
estimated by

t∗ =
V1−σ y 0
K 1 − σ

23

Lemma 4 (Young inequality [33]). Assume that a > 0, b > 0,
p > 1, 1/p + 1/q = 1, then the following inequality holds

ab ≤
1
p
ap +

1
q
bq 24

Lemma 5 (Hardy inequality [20]). If a1, a2,… , an are positive
numbers and 0 < τ1 < τ2, then

〠
n

i=1
aτ2i

1/τ2

≤ 〠
n

i=1
aτ1i

1/τ1

25

3. Existence Analysis of Equilibrium Point

In this section, we discuss the existence of equilibrium point
of system (1) using the Kakutani’s fixed point theorem of set-
valued maps. For further analysis, the following Assumption
is needed.

Assumption 5. mini∈ℕ liai − 2 maxj∈ℕ ∑n
i=1c

+
ijλjaj,∑

n
i=1w

+
ij

δjaj > 0, where c+ij =max ĉij , č ij and w+
ij =max ŵij ,

w̌ij .

Theorem 1. Under the Assumptions 1, 2, 4, and 5, the
discontinuous differential system (1) has at least one
equilibrium point.

Proof. From Assumption 2, we can obtain bi v is a mono-
tone increasing function. On the other hand, h−1i v is also
a monotone increasing function due to the monotone
increasing property of hi v . Thus, if x∗ = x∗1 , x∗2 ,… , x∗n

T

is an equilibrium point of system (8), it follows from
(17) that

x∗i ∈ hi bi
−1 〠

n

j=1
co cij hi

−1 x∗i f j hj
−1 x∗j

+ 〠
n

j=1
co wij hi

−1 x∗i gj hj
−1 x∗j + Ii , i ∈ℕ

26

Let us denote X =ℝn and x 1 be the norm of x,
∀x ∈ X. Obviously, X is a Banach space with the norm
· 1. Next, we define a compact convex subset Ω ⊆ X

as follows:

Ω = x1, x2,… , xn
T ∈ X x 1 ≤ r , 27

where

r =
∑n

j=1∑
n
i=1 c+ijβj +w+

ijθj +∑n
i=1 Ii

min
i∈ℕ

liai − 2 max
j∈ℕ

∑n
i=1c

+
ijλjaj,∑

n
i=1w

+
ijδjaj

28

Now, let us define a set-valued map φ X⟶ Pkc X
as follows:

φ x = φ1 x , φ2 x ,… , φn x T , ∀x ∈ X, 29

where

φi x = hi bi
−1 〠

n

j=1
co cij hi

−1 xi f j hj
−1 xj

+ 〠
n

j=1
co wij hi

−1 xi gj hj
−1 xj + Ii , i ∈ℕ

30
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Obviously, the set-valued map φ x is USC with
nonempty compact convex values. In other words, φ x
is an upper semicontinuous convex compact map.

For any x = x1, x2,… , xn
T ∈Ω and v = v1, v2,… ,

vn
T ∈ φ x , then there exist γij ∈ co cij hi

−1 xi and

ηij ∈ co wij hi
−1 xi such that

vi = hi bi
−1 〠

n

j=1
γij f j hj

−1 xj

+ 〠
n

j=1
ηijgj hj

−1 xj + Ii , i ∈ℕ
31

Because bi · and h−1i · are all monotone increasing
functions, it follows that

bi h
−1
i vi = 〠

n

j=1
γij f j hj

−1 xj

+ 〠
n

j=1
ηijgj hj

−1 xj + Ii, i ∈ℕ
32

Thus,

bi h
−1
i vi ≤ 〠

n

j=1
γij f j hj

−1 xj + 〠
n

j=1
ηijgj hj

−1 xj

+ Ii , i ∈ℕ
33

Since bi · and h−1i · are differentiable, and bi 0 =
hi 0 = 0, we can obtain

bi hi
−1 vi = bi hi

−1 vi − bi hi
−1 0

= bi′ ϱ1 hi
−1 vi − hi

−1 0

= bi′ ϱ1 hi
−1 ϱ2 ′ vi − 0 ≥ liai vi ,

34

where ϱ1 is between h−1i 0 and h−1i vi , ϱ2 is between 0
and vi.

Under Assumption 4, we can get

γij f j hj
−1 xj = γij f j hj

−1 xj

≤ c+ij λj hj
−1 xj + βj

= c+ijλj hj
−1 xj − hj

−1 0 + c+ijβj

= c+ijλj hj
−1 ϱ3 ′ xj − 0 + c+ijβj

≤ c+ijλjaj xj + c+ijβj,

35

where ϱ3 is between 0 and xj. Similarly,

ηijgj hj
−1 xj ≤w+

ijδjaj xj +w+
ijθj 36

It follows from (32)–(36) that

liai vi ≤ 〠
n

j=1
c+ijλjaj xj + 〠

n

j=1
w+

ijδjaj xj

+ 〠
n

j=1
c+ijβj +w+

ijθj + Ii

37

By summing up the above inequity, we can get

〠
n

i=1
liai vi ≤ 〠

n

j=1
〠
n

i=1
c+ijλjaj xj + 〠

n

j=1
〠
n

i=1
w+

ijδjaj xj

+ 〠
n

j=1
〠
n

i=1
c+ijβj +w+

ijθ j + 〠
n

i=1
Ii

38

Under Assumption 5, it follows that

min
i∈ℕ

liai 〠
n

i=1
vi ≤ 2 max

j∈ℕ
〠
n

i=1
c+ijλjaj, 〠

n

i=1
w+

ijδjaj 〠
n

j=1
xj

+ 〠
n

j=1
〠
n

i=1
c+ijβj +w+

ijθj + 〠
n

i=1
Ii

≤ 2 max
j∈ℕ

〠
n

i=1
c+ijλjaj, 〠

n

i=1
w+

ijδjaj r

+ 〠
n

j=1
〠
n

i=1
c+ijβj +w+

ijθj + 〠
n

i=1
Ii

=min
i∈ℕ

liai r

39

It is easy to obtain ∑n
i=1 vi ≤ r, i.e., v 1 ≤ r.

Thus, v ∈Ω and φ x ∈ Pkc Ω for any x ∈Ω. Up to
now, φ x satisfies all the conditions in Lemma 1. There-
fore, the set-valued map φ x exists at least one fixed
point x∗ ∈Ω, i.e., x∗ ∈ φ x∗ . Then, it is easy to obtain that
the discontinuous neural networks (1) exists at least one

equilibrium point v∗ = h1
−1 x∗1 , h2

−1 x∗2 ,… , hn
−1 x∗n

T
.

The proof is completed.

Remark 1. The novel Kakutani’s fixed point theorem of
set-valued maps is used to discuss the existence of equi-
librium point for memristive Cohen-Grossberg neural
networks with time-varying delay [20, 32]. Compared
with [20, 32], the factor of amplification function are
considered and the activation functions can be unbounded
in the neural networks (1). Thus, the neural networks in this
paper is more general. On the other hand, the method by
using the equivalent transformation system (8) is effective
and novel. In one word, the method of proof and theoretical
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results in Theorem 1 are novel and extend the scope of the
previous work.

4. Finite-Time Stabilization

In this section, we will discuss the FTS of system (1), i.e.,
stabilize the system states to the equilibrium point in finite
time. In order to realize this goal, two kinds of discontinuous
controllers are designed. By adding the discontinuous
controller ui t , we obtain the following discontinuous
controlled system from (1)

vi t = −ai vi t bi vi t − 〠
n

j=1
cij vi t f j vj t

− 〠
n

j=1
wij vi t gj vj t − τ t − Ii − ui t , i ∈ℕ

40

By taking the variable transformation y t = x t − x∗ =
y1 t , y2 t ,… , yn t T , it follows from (40) that

yi t = − bi hi
−1 xi t − bi hi

−1 x∗i

+ 〠
n

j=1
γij hi

−1 xi t f j hj
−1 xj t

− γ∗ij f j hj
−1 x∗j

+ 〠
n

j=1
ηij hi

−1 xi t gj hj
−1 xj t − τ t

− η∗ijgj hj
−1 x∗j + ui t , i ∈ℕ

41

For further analysis, the following important inequalities
are needed. Let e t = e1 t , e2 t ,… , en t T , where ei t =
vi t − v∗i , i ∈ℕ. Since h−1i · is differentiable, we can get

ei t = hi
−1 xi t − hi

−1 x∗i

= hi
−1 ξ ′ xi t − x∗i

= hi
−1 ξ ′yi t ,

42

where ξ is between xi t and x∗i . From (42) and hi
−1 ξ ′ =

ai ξ > 0, it follows that sign ei t = sign yi t .
Similar to (42), we can get

− ei t − τ t = − hi
−1 xi t − τ t − hi

−1 x∗i

= − hi
−1 ξ ′ xi t − τ t − x∗i

≤ −ai yi t − τ t ,

43

where ξ is between xi t − τ t and x∗i .

Using (42), it follows that

−ei t sign yi t = − hi
−1 ξ ′yi t sign yi t

≤ −ai yi t
44

Since bi · and h−1i · are all differentiable, bi h
−1
i · is

also differentiable. By using the Lagrange mean value
theorem, it follows that

−sign yi t bi hi
−1 xi t − bi hi

−1 x∗i

= −sign yi t bi′ ξ1 hi
−1 xi t − hi

−1 x∗i

= −sign yi t bi′ ξ1 hi
−1 ξ2 ′ xi t − x∗i

≤ −liai yi t ,

45

where ξ1 is between h−1i xi t and h−1i x∗i , ξ2 is between
xi t and x∗i .

From the proof of Theorem 1, we can know that the equi-
librium point x∗ = x∗1 , x∗2 ,… , x∗n

T ∈Ω. Therefore, there
exist positive constants Mi and Ni such that

f i hi
−1 x∗i ≤Mi, gi hi

−1 x∗i ≤Ni, i ∈ℕ 46

Under the Assumption 3 and (46), we can obtain

γij hi
−1 xi t f j hj

−1 xj t − γ∗ij f j hj
−1 x∗j

≤ γij hi
−1 xi t f j hj

−1 xj t

− γij hi
−1 xi t f j hj

−1 x∗j

+ γij hi
−1 xi t f j hj

−1 x∗j − γ∗ij f j hj
−1 x∗j

≤ c+ijLjaj y j t + ĉij − č ij Mj

47

Similar to (47), it follows that

ηij hi
−1 xi t gj hj

−1 xj t − τ t − η∗ijgj hj
−1 x∗j

≤w+
ijK jaj y j t − τ t + ŵij − w̌ij N j

48

4.1. Discontinuous State Feedback Controller with Time-
Varying Delay. In order to realize the FTS of system (1), the
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following discontinuous state feedback controller with time-
varying delay is designed.

ui t = −piei t − qi sign ei t

− ri sign ei t 〠
n

j=1
ej t − τ t , i ∈ℕ,

49

where pi, qi, and ri are positive constants to be determined
later. In this section, we will use the famous finite-time
stability theory to study the FTS of system (1). In the
following, we further assume

Assumption 6. riǎ≥maxj∈ℕ w+
ijK jaj , i ∈ℕ, where ǎ=

mini∈ℕ ai .

Theorem 2. Suppose that Assumptions 1–6 hold. If p > 1,
ϖ1 = p mini∈ℕ liai + piai − n · maxi,j∈ℕ c+ijLjaj > 0, and
ϖ2 = p mini∈ℕ qi −∑n

j=1 ĉij − č ij Mj + ŵij − w̌ij N j > 0.
Then, the discontinuous neural networks (1) can be stabi-
lized in a finite time with the discontinuous state feedback
controller (49). The settling time for FTS can be estimated by

T∗ =
p
ϖ1

ln
ϖ1V

1/p 0 + ϖ2
ϖ2

50

Proof. Let us consider the Lyapunov function

V t = 〠
n

i=1
yi t

p 51

It can be easily verified that V t is C-regular. Therefore,
we can calculate the derivative of V t along the solution of
(41) by using Lemma 2,

dV t
dt

= 〠
n

i=1
p yi t

p−1 sign yi t yi t

= 〠
n

i=1
p yi t

p−1 sign yi t − bi hi
−1 xi t

− bi hi
−1 x∗i + 〠

n

j=1
γij hi

−1 xi t f j hj
−1 xj t

− γ∗ij f j hj
−1 x∗j

+ 〠
n

j=1
ηij hi

−1 xi t gj hj
−1 xj t − τ t

− η∗ijgj hj
−1 x∗j − piei t − qi sign ei t

− ri sign ei t 〠
n

j=1
ej t − τ t

52

Under Assumption 6 and expressions (42)–(48), we
can get

dV t
dt

≤ 〠
n

i=1
p yi t

p−1 − liai + piai yi t

+ 〠
n

j=1
c+ijLjaj y j t +max

j∈ℕ
w+

ijK jaj 〠
n

j=1
y j t − τ t

− riǎ〠
n

j=1
y j t − τ t + 〠

n

j=1
ĉij − č ij Mj

+ ŵij − w̌ij N j − qi

≤ −min
i∈ℕ

liai + piai · p〠
n

i=1
yi t

p +max
i,j∈ℕ

c+ijLjaj

· p〠
n

i=1
〠
n

j=1
yi t

p−1 y j t

− p min
i∈ℕ

qi − 〠
n

j=1
ĉij − č ij Mj

+ ŵij − w̌ij N j 〠
n

i=1
yi t

p−1

53

According to Lemma 4,

yi t
p−1 y j t ≤

p − 1
p

yi t
p +

1
p
y j t

p
54

Then,

p〠
n

i=1
〠
n

j=1
yi t

p−1 y j t ≤ n p − 1 〠
n

i=1
yi t

p + n〠
n

j=1
y j t

p

= np〠
n

i=1
yi t

p

55

By Lemma 5, we can deduce the following inequality

〠
n

i=1
yi t

p−1 ≥ 〠
n

i=1
yi t

p

p−1 /p

56
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It follows from (53)–(56) that

dV t
dt

≤ −p min
i∈ℕ

liai + piai − n · max
i,j∈ℕ

c+ijLjaj 〠
n

i=1
yi t

p

− p min
i∈ℕ

qi − 〠
n

j=1
ĉij − č ij Mj + ŵij

− w̌ij N j 〠
n

i=1
yi t

p

p−1 /p

= −ϖ1V t − ϖ2V t p−1 /p

57

Under the conditions ϖ1 > 0 and ϖ2 > 0, the FTS of
discontinuous neural networks (8) can be realized using
Lemma 3. In addition, the settling time can be calculated
as follows:

T∗ =
p
ϖ1

ln
ϖ1V

1/p 0 + ϖ2
ϖ2

58

In other words, V t = 0, ∀t ≥ T∗. It follows that

y t = x t − x∗ = 0, ∀t ≥ T∗ 59

It follows from (42) that

ei t = hi
−1 ξ ′yi t ≤ ai yi t , i ∈ℕ 60

Thus, e t = 0, ∀t ≥ T∗. Therefore, the FTS of delayed
memristive Cohen-Grossberg neural networks (1) with
the discontinuous state feedback controller (49) can be
realized with the settling time T∗.

The proof is completed.

Similar to Theorem 2, it is easy to obtain the following
corollary by a similar proof.

Corollary 1. Suppose that Assumptions 1–6 hold. If p > 1,
ϖ1 = p mini∈ℕ liai + piai − n · maxi,j∈ℕ c+ijLjaj = 0, and
ϖ2 = p mini∈ℕ qi −∑n

j=1 ĉij − č ij Mj + ŵij − w̌ij N j > 0.
Then, the discontinuous neural networks (1) with the
discontinuous state feedback controller (49) can realize FTS.
The settling time for FTS can be estimated by

T∗ =
pV1/p 0

ϖ2
61

Remark 2. When compared with conventional continuous
state feedback controllers, the discontinuous state feedback

controller (49) contains discontinuous terms −qi sign ei t
and −ri sign ei t ·∑n

j=1 ej t − τ t . It is easy to obtain that
different terms in this controller play different roles. In other
words, −ri sign ei t ∑n

j=1 ej t − τ t can handle the influ-
ence of time-varying delay, −piei t and −qi sign ei t are
used to guarantee the FTS. It is worth noting that the
expressions (59) and (60) are important to obtain the
FTS of the system (1) when we have proved the FTS of
the discontinuous system (8).

Remark 3. It is effective to handle the uncertain differences of
Filippov solutions by designing discontinuous controllers
[16, 20, 27, 32]. From (50) and (61), we can know that
the settling time for FTS can be controlled by the tunable
constant p. However, this goal was realized by adding the
related term in the controllers in [16, 27, 32], such as the
term −niei t ei t

σ−1 in [16]. On the other hand, the neural
networks in this paper is more general than [16, 20, 27, 32].
Thus, the discontinuous controller (49) and theoretical
results obtained in Theorem 2 are novel.

4.2. Discontinuous State Feedback Controller without Time-
Varying Delay. In this section, we design the following
discontinuous state feedback controller without time-
varying delay,

ui t = −siei t − πi sign ei t , i ∈ℕ, 62

where si and πi are the gain coefficients to be determined
later. Besides, the analysis method without using the finite-
time stability theory will be presented to investigate the FTS
of (1).

Based on Assumption 1, we need to further assume that

Assumption 7. ai < 1, for v ∈ℝ, i ∈ℕ.

Theorem 3. Suppose Assumptions 1–5 and 7 hold. The gain
coefficients si and πi satisfy the following conditions,

ϖ =min
i∈ℕ

liai + siai − n max
i,j∈ℕ

c+ijLjaj +
αijaj
1 − τ

≥ 0, 63

and

ϖ∗ = n min
i∈ℕ

πi − 〠
n

j=1
ĉij − č ij Mj + ŵij − w̌ij N j > 0,

64

where αij =w+
ijK jaj/aj. Then, the memristive Cohen-

Grossberg neural networks with time-varying delay (1) can
be finite-time stabilized via the discontinuous state feedback
controller without time-varying delay (62). Furthermore, the
settling time can be calculated as follows:

T∗ =
V 0
ϖ∗ 65
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Proof. Consider the following Lyapunov function

V t = 〠
n

i=1
yi t + 〠

n

i=1
〠
n

j=1

αij
1 − τ

t

t−τ t
ej s ds 66

It is easy to verify that V t is C-regular. The derivative of
V t along the solution of (41) can be calculated by using
Lemma 2,

V t = 〠
n

i=1
sign yi t yi t + 〠

n

i=1
〠
n

j=1

αij
1 − τ

ej t

− 〠
n

i=1
〠
n

j=1

αij
1 − τ

ej t − τ t 1 − τ t

≤ 〠
n

i=1
sign yi t − bi hi

−1 xi t − bi hi
−1 x∗i

+ 〠
n

j=1
γij hi

−1 xi t f j hj
−1 xj t

− γ∗ij f j hj
−1 x∗j

+ 〠
n

j=1
ηij hi

−1 xi t gj hj
−1 xj t − τ t

− η∗ijgj hj
−1 x∗j − siei t − πi sign ei t

+ 〠
n

i=1
〠
n

j=1

αij
1 − τ

ej t − 〠
n

i=1
〠
n

j=1
αij ej t − τ t

67

By using (42)–(48), we can get

dV t
dt

≤ 〠
n

i=1
− liai + siai yi t + 〠

n

j=1
c+ijLjaj y j t

+ 〠
n

j=1
w+

ijK jaj y j t − τ t

+ 〠
n

j=1
ĉij − č ij Mj + ŵij − w̌ij N j − πi

+ 〠
n

i=1
〠
n

j=1

αijaj
1 − τ

y j t − 〠
n

i=1
〠
n

j=1
αija j y j t − τ t

≤ − min
i∈ℕ

liai + siai − n max
i, j∈ℕ

c+ijLjaj +
αijaj
1 − τ

〠
n

i=1
yi t

− n min
i∈ℕ

πi − 〠
n

j=1
ĉij − č ij Mj + ŵij − w̌ij N j

≤ −ϖ∗

68

Next, the FTS of discontinuous system (1) can be
studied without using the finite-time stability theory. As
proposed in [34], we can get V t = 0 for t ≥ T∗ = V 0 /
ϖ∗. By taking a similar analysis in Theorem 2, we can
obtain that the FTS of discontinuous neural networks (1)
can be realized via the discontinuous controller without
time-varying delay (62) with the settling time T∗. The
proof is completed.

Remark 4. In this paper, we design two different kinds of state
feedback controllers whether including time-varying delay.
When compared with the discontinuous controller with
time-varying delay (49), the discontinuous controller without
time-varying delay (62) is simpler. However, in Theorem 2,
we do not need the conditions τ t ≤ τ < 1 and Assumption
7, which are essential conditions in Theorem 3. Thus, the
results in Theorem 2 are less conservative. Besides, two
different kinds of analysis methods whether using finite-
time stability theory are utilized. In practice, the researchers
can choose the suitable controller and analysis method
according to practical needs. On the other hand, it is worth
noting that the expressions (42)–(44) are important to con-
nect the discontinuous systems (1) and (8) in the proof of
Theorem 2 and Theorem 3.

Remark 5. There exist a few papers considering the FTS
of memristor-based neural networks [20, 23, 28, 35].
However, the authors in [20, 23, 35] did not consider
the factor of time-varying delay and amplification function
simultaneously. In [28], the finite-time stability and syn-
chronization of a class of memristor-based fractional-order
Cohen-Grossberg neural network with time delay was dis-
cussed. However, the activation functions are bounded and
the time delay is constant in [28]. To the best of our knowl-
edge, there is little work concerning the FTS of memristive
Cohen-Grossberg neural networks with time-varying delay.
Therefore, the theoretical results obtained in this paper
are novel.

5. Numerical Examples

In this section, we take two numerical examples to
illustrate the correctness of theoretical results provided
in this paper.

Example 1. Consider the 2-D delayed memristive Cohen-
Grossberg neural networks as follows:

vi t = −ai vi t bi vi t − 〠
2

j=1
cij vi t f j vj t

− 〠
2

j=1
wij vi t gj vj t − τ t − Ii ,

69
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Figure 1: (a) The trajectories of state variables v1 t and v2 t in (69) without any controllers. (b) The trajectories of state variables v1 t and
v2 t in (69) with the discontinuous state feedback controller (49).

where

ai vi t = 1 5 + 0 5 sin vi t ,

f i θ = tanh θ ,

gi θ = 2 tanh θ ,

τ t = 1,

Ii = 0, θ ∈ℝ,

i = 1, 2,

b1 v1 t = v1 t ,

b2 v2 t = v2 t ,

c11 v1 t = 1

c12 v1 t =
−0 5, v1 t < 0,

−0 3, v1 t ≥ 0,

c21 v2 t =
−0 2, v2 t < 0,

−0 6, v2 t ≥ 0,

c22 v2 t =
1 2, v2 t < 0,

1 5, v2 t ≥ 0,

w11 v1 t =
−1 1, v1 t < 0,

−0 8, v1 t ≥ 0,

w12 v1 t =
1 3, v1 t < 0,

−2, v1 t ≥ 0,

w21 v2 t =
0 4, v2 t < 0,

0 6, v2 t ≥ 0,

w22 v2 t =
1, v2 t < 0,

−0 5, v2 t ≥ 0
70

It is obvious that 1 ≤ ai vi t ≤ 2, b1′ · = b2′ · = 1,
f i ui − f i vi ≤ ui − vi , gi ui − gi vi ≤ 2 ui − vi , f i
ui ≤ 1 and gi ui ≤ 2, λi = δi = 0, for any ui, vi ∈ℝ,
i = 1, 2. Thus, it is easy to obtain that the system (69)
satisfies Assumptions 1–5. Taking initial values v1 t = −2 5
and v2 t = 3 for t ∈ −1, 0 , the dynamical behavior of sys-
tem (69) without any controller can be shown in the case
of Figure 1(a).

Using the discontinuous state feedback controller (49),
we take pi = qi = 8, ri = 10, and p = 2, i = 1, 2. By simple
computation, we can get Assumption 6 hold and ϖ1 = 6,
ϖ2 = 1 2. Thus, all the conditions in Theorem 2 are satis-
fied. Therefore, the considered discontinuous system (69)
can be stabilized in finite time by using the discontinuous
state feedback controller (49). We choose the initial values
as v1 t = −2 5 and v2 t = 3, for t ∈ −1, 0 . The case of
Figure 1(b) shows the dynamical behavior of system (69)
with the controller (49). The numerical simulations illustrate
the correctness of theoretical results in Theorem 2.
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Example 2. Consider the following 3-D delayed memristive
Cohen-Grossberg neural networks:

vi t = −ai vi t bi vi t − 〠
3

j=1
cij vi t f j vj t

− 〠
3

j=1
wij vi t gj vj t − τ t − Ii ,

71

where

ai vi t = 0 85 + 0 1 tanh vi t ,

f i θ = tanh θ ,

gi θ = 3 tanh θ ,

τ t = 1,

Ii = 0,

θ ∈ℝ,

i = 1, 2, 3,

b1 v1 t = v1 t ,

b2 v2 t = v2 t ,

b3 v3 t = v3 t ,

c11 v1 t =
0 5, v1 t < 0,

1, v1 t ≥ 0,

c12 v1 t =
−0 3, v1 t < 0,

−0 1, v1 t ≥ 0,

c21 v2 t =
1, v2 t < 0,

−1, v2 t ≥ 0,

c33 v3 t =
−0 6, v3 t < 0,

−0 2, v3 t ≥ 0,

w11 v1 t =
−1, v1 t < 0,

−0 5, v1 t ≥ 0,

w12 v1 t =
0 8, v1 t < 0,

−1, v1 t ≥ 0,

w21 v2 t =
0 1, v2 t < 0,

1, v2 t ≥ 0,

w22 v2 t =
0 5, v2 t < 0,

−0 8, v2 t ≥ 0,

w32 v3 t =
0 3, v3 t < 0,

−0 6, v3 t ≥ 0,

w33 v3 t =
1, v3 t < 0,

−0 6, v3 t ≥ 0,

c13 v1 t = c22 v2 t = c23 v2 t = c31 v3 t = 0,

c32 v3 t =w13 v1 t =w23 v2 t =w31 v3 t = 0 72

It is straightforward to obtain that

0 75 ≤ ai vi t ≤ 0 95,

f i ui − f i vi ≤ ui − vi ,

gi ui − gi vi ≤ 3 ui − vi ,

f i ui ≤ 1,

gi ui ≤ 3,

λi = δi = 0,

b1′ · = b2′ · = b3′ · = 1,

ui, vi ∈ℝ, i = 1, 2, 3

73

Thus, it is easy to obtain that Assumptions 1–5 and 7 are
satisfied. By taking initial values v1 t = 1, v2 t = 2, and
v3 t = −2 for t ∈ −1, 0 , the case of Figure 2(a) shows the
dynamical behavior of system (71) without any controllers.

Using the discontinuous state feedback controller with-
out time-varying delay (62), we take si = 20 and πi = 10, i =
1, 2, 3. By simple computation, we can get ϖ > 0 and ϖ∗ > 0.
Thus, all the conditions in Theorem 3 are satisfied. Therefore,
the finite-time stability of the discontinuous system (71) with
the discontinuous controller (62) can be realized. We choose
the initial values as v1 t = 1, v2 t = 2, and v3 t = −2 for
t ∈ −1, 0 . The case of Figure 2(b) shows the trajectories
of the discontinuous system (71) with the discontinuous
controller (62). The numerical simulations indicate our
theoretical results in Theorem 3 are valid.

6. Conclusion

In this paper, the FTS of memristive Cohen-Grossberg neural
networks with time-varying delay has been discussed. Based
on the novel Kakutani’s fixed point theorem of set-valued
maps, we have obtained the existence theorem of equilibrium
point without assuming the boundedness of the activation
functions. Due to the existence of memristor, amplification
function, and time-varying delay, the FTS control of memris-
tive Cohen-Grossberg neural networks with time-varying
delay is not an easy work. Thus, we have considered two
different kinds of discontinuous state feedback controllers
whether including time-varying delay and two different
analysis methods whether using finite-time stability theory.
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Under the extended Filippov framework and some inequality
techniques, several sufficient conditions for guaranteeing
the FTS have been obtained. In addition, the settling time
for FTS are also proposed. Finally, two numerical examples
have been used to illustrate the validity of theoretical
results. On the other hand, it is a very effective method to
investigate the FTS of the discontinuous system (1) by
using the equivalent transformation system (8). The
approaches in this paper can also be extended to study
the fixed-time stabilization and fixed-time synchronization
of other types of Cohen-Grossberg neural networks.
Besides, it is well known that the factor of impulse has an
important effect on the neural networks. In the future
research, we hope to study the fixed-time stabilization and
fixed-time synchronization problem of other more complex
Cohen-Grossberg neural networks, such as concerning the
factor of impulse or mixed delays [36–40]. Meanwhile,
how to design more simple and effective controllers is also
our future research topic.

Data Availability

In the numerical examples, we have verified that all the
conditions in Theorem 2 and Theorem 3 are hold. Then,
the correctness of theoretical results is illustrated by using
MATLAB programming. If the data used in MATLAB
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theorems, the numerical simulations are incorrect and can-
not verify the correctness of theoretical results. Or available
from the corresponding author upon request.
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