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This paper considers the parameter identification of Wiener systems with colored noise. The difficulty in the identification is that
the model is nonlinear and the intermediate variable cannot be measured. Particle swarm optimization is an artificial intelligence
evolutionary method and is effective in solving nonlinear optimization problem. In this paper, we obtain the identification model of
the Wiener system and then transfer the parameter identification problem into an optimization problem. Then, we derive a particle
swarm optimization iterative (PSOI) identification algorithm to identify the unknown parameter of the Wiener system.
Furthermore, a gradient iterative identification algorithm is proposed to compare with the particle swarm optimization iterative
algorithm. Numerical simulation is carried out to evaluate the performance of the PSOI algorithm and the gradient iterative
algorithm. The simulation results indicate that the proposed algorithms are effective and the PSOI algorithm can achieve better
performance over the gradient iterative algorithm.

1. Introduction

Almost all practical systems are nonlinear [1–3]. Many
identification methods have been developed for linear sys-
tems [4, 5], bilinear systems [6–8], and nonlinear systems
[9]. The Wiener models are a typical class of nonlinear sys-
tems and are widely used in industrial production process
[10, 11]. The Wiener nonlinear system consists of a dynamic
linear subsystem and a static nonlinear subsystem and has
the characteristics of complex structure between subsystems
[12, 13]. One of the difficulties in identifying Wiener nonlin-
ear model parameters is that the intermediate variable (the
output of the linear subsystem) cannot be measured, and
the identification issues for Wiener systems have attracted
great attention [14].

The iterative identification method is generally used to
identify the system with unknown item in the model infor-
mation vector [15–17]. The basic idea of iterative identifica-
tion is to estimate the unknown items in the information
vector by using the iterative parameter estimation of the

previous step [18, 19]. The iterative identification method is
an important branch of system identification, which can be
realized by using gradient search, least squares principle,
and Newton optimization [20–22].

The particle swarm optimization algorithm is an evo-
lutionary computing technique which is based on the
simulation of birds’ flock [23, 24]. The basic idea of par-
ticle swarm optimization algorithm is to find the optimal
solution through collaboration and information sharing
among individuals in the group [25]. This algorithm has
attracted the attention of academia with the advantages
of easy implementation, high precision, and fast conver-
gence [26]. Compared with the conventional optimization
methods, it has excellent optimized performances and
characteristics [27]. The particle swarm optimization algo-
rithm has been widely used in function optimization, sys-
tem identification, and fuzzy control [28–30]. Recently,
Chen and Wang proposed a stochastic gradient algorithm
and a particle swarm optimization algorithm to estimate
all the unknown parameters of the Hammerstein system
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[31]. In this paper, we use the particle swarm optimiza-
tion algorithm and the gradient iterative algorithm to
identify the unknown parameters of the Wiener systems
with colored noise.

The rest of the paper is organized as follows. Section 2
gives the system description for the Wiener model. Section
3 gives the particle swarm optimization algorithm forWiener
nonlinear systems. Section 4 derives a gradient iterative
algorithm for the discussed system. Section 5 provides an
example for illustrating the results in this paper. Finally,
some conclusions are given in Section 6.

2. System Description

Consider the Wiener system shown in Figure 1 with the
following expressions:

y t ≔ f x t +D z v t ,

x t ≔
B z
A z

u t ,
1

where A z , B z , and D z are polynomials in the shift oper-
ator z−1 z−1y t = y t − 1 with

A z ≔ 1 + a1z
−1 + a2z

−1 +⋯ + anaz
−na ,

B z ≔ b1z
−1 + b2z

−2 +⋯ + bnbz
−nb ,

D z ≔ 1 + d1z
−1 + d2z

−2 +⋯ + dnd z
−nd

2

Assume that the degrees na, nb, and nd are known and
y t = 0, u t = 0, and v t = 0 for t ≤ 0

Define the linear subsystem output x t as

x t ≔
B z
A z

u t , 3

and the noise model output w t as

w t ≔D z v t 4

The static nonlinear block is a nonlinear function

f x t ≔ γ1 f1 x t + γ2 f2 x t +⋯ + γnγ f nγ x t , 5

where the basis g≔ f1, f2,… , f nγ are known nonlinear

functions of x t , the unknown parameters γi are the coef-
ficients of the nonlinear functions and assume that the
degree nγ is known. Without loss of generality, let the first
coefficient of nonlinear block γ1 be unity and rewrite the
f x t as

f x t = x t + γ2x
2 t +⋯ + γnγx

nγ t 6

In the above equations, u t and y t are the system input
and output, respectively, and v t is a Gaussian distributed
white noisewith zeromean and varianceσ2. From (3), we have

x t = 1 − A z x t + B z u t

= −a1x t − 1 −⋯− anax t − na

+ b1u t − 1 +⋯ + bnbu t − nb

= φT
1 t θ1,

7

where

φ1 t ≔ −x t − 1 ,… , − x t − na , u t − 1 ,… , u t − nb
T

∈ℝna+nb ,

θ1 ≔ a1, a2,… , ana , b1, b2,… , bnb
T

∈ℝna+nb

8

From (4), we can obtain

w t =D z v t

= d1v t − 1 + d2v t − 2 +⋯ + dndv t − nd

= φT
d t θd ,

9

where

φd t ≔ v t − 1 , v t − 2 ,… , v t − nd
T ∈ℝnd ,

θd ≔ d1, d2,… , dnd
T ∈ℝnd

10

Thus, the Wiener nonlinear system model can be written
as follows:

y t = f x t +w t

= x t + γ2x
2 t +⋯ + γnγx

nγ t +D z v t

= φT
1 t θ1 + φT

2 t θ2 + φT
d t θd + v t

= φT t θ + v t ,

11

where

φ2 t ≔ x2 t , x3 t ,… , xnr t T ∈ℝnγ−1,

θ2 ≔ γ2, γ3,… , γnγ
T
∈ℝnγ−1,

φ t ≔ φT
1 t , φT

2 t , φT
d t

T ∈ℝn,

θ≔ θT1 , θ
T
2 , θ

T
d

T
∈ℝn,

n≔ na + nb + nγ − 1 + nd

12

3. The Particle Swarm Optimization Algorithm

With the development of optimization theory, some new
intelligent algorithms have been proposed to solve the
problem of traditional system identification, such as the
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A (z) f (.) +

x (t) y (t)

D (z)
v (t)

w (t)
u (t)

Figure 1: The Wiener system model.
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genetic algorithm [32], the ant colony algorithm [33], and
the particle swarm algorithm [34, 35], these algorithms
enrich the system identification technology. Particle swarm
optimization algorithm is a nature-inspired evolutionary
algorithm, and it has been successful in solving a wide
range of real-value optimization problems [36]. In the
following, the particle swarm optimization algorithm is
used to identify the unknown parameters of the Wiener
nonlinear systems.

Suppose that the search space is n-dimensional and a
particle swarm consists of M particles.

Define the information vector as

φ t ≔ −x t − 1 ,… , − x t − na , u t − 1 ,… ,

u t − nb , x2 t , x3 t ,… , xnr t ,

v t − 1 , v t − 2 ,… , v t − nd
T ∈ℝn

13

Let p represent the data length. Define the stacked output
vector Y p and the stacked information matrix Φ p as

Y p ≔ y p , y p − 1 ,… , y 1 T ∈ℝp,

Φ p ≔ φ p , φ p − 1 ,… , φ 1 ∈ℝn×p
14

Define the independent position of each particle θi and
the independent velocity Qi as follows:

θ i
≔ â1i, â2i,… , ânai, b̂1i, b̂2i,… , b̂nbi, γ2i

,

γ3i,… , γnγi , d1i, d2i, … , d̂ndi
T
∈ℝn,

Qi ≔ q1i, q2i,… , qni
T ∈ℝn, i = 1, 2,… ,M

15

Let θ k denote the estimates of θ at iteration k k = 1, 2,
3,… Define θih k as the best position of each particle at
iteration k

θ ih k ≔ â1ih k ,… , ânaih k , b̂1ih k ,… , b̂nbih k ,

γ2ih k ,… , γnγih k , d̂1ih k ,… , d̂ndih k
T
∈ℝn

16

Let φ1,k t and φk t denote the estimates of φ1 t and
φ t at iteration k

φ1,k t ≔ −x̂k−1 t − 1 ,… , − x̂k−1 t − na ,

u t − 1 ,… , u t − nb
T ∈ℝna+nb ,

φk t ≔ −x̂k−1 t − 1 ,… , − x̂k−1 t − na ,

u t − 1 ,… , u t − nb , x̂2k−1 t ,

x̂3k−1 t ,… , x̂nrk−1 t , v̂k−1 t − 1 ,

v̂k−1 t − 2 ,… , v̂k−1 t − nd
T ∈ℝn

17

Then, the estimates Φk p can be obtained as follows:

Φk p = φk p , φk p − 1 ,… , φk 1 18

According to the basic principle of the particle swarm

algorithm, the best position of each particle θih k satisfies
the following cost function:

θ ih k ≔ arg min

Y p −ΦT
k p θi k , Y p −ΦT

k p θih k − 1

19

Let θg k denote the global best position of all the
particles

θg k ≔ â1g k ,… , ânag k , b̂1g k ,… , b̂nbg k ,

γ2g k ,… , γ
nγg

k , d̂1g k ,… , d̂ndg k
T
∈ℝn,

20

where θg k satisfies

θg k = arg min Y p −ΦT
k p θih k 21

Define θg1 k ≔ â1g k ,… , ânag k , b̂1g k ,… , b̂nbg k
T

According to (7), we can obtain the estimation of x̂k t

x̂k t = φT
1,k t θg1 k 22

According to the principle of particle swarm optimiza-
tion, each particle goes to a new position and a new velocity
at iteration k + 1 as follows:

θi k + 1 = θi k + Q̂i k + 1 ,

Q̂i k + 1 = βQ̂i k + ξ1ζ1 θih k − θi k

+ ξ2ζ2 θg k − θi k

23

Replacing φ t and θ with φk t and θg k in (11), we can

obtain the estimate v̂k t = y t − φT
k t θg k Thus, we can

obtain the particle swarm optimization iterative (PSOI) iden-
tification algorithm as follows:

θi k + 1 = θi k + Q̂i k − 1 , i = 1, 2,… ,M, 24

Q̂i k + 1 = βQ̂i k + ξ1ζ1 θih k − θi k

+ ξ2ζ2 θg k − θi k , i = 1, 2,… ,M,
25

φ k t = −x̂k−1 t − 1 ,… , − x̂k−1 t − na ,

u t − 1 ,… , u t − nb , x̂2k−1 t ,

x̂3k−1 t ,… , x̂nrk−1 t , v̂k−1 t − 1 ,

v̂k−1 t − 2 ,… , v̂k−1 t − nd
T,

26

3Complexity



Start

Initialize: k = 0

Set 𝜃i (0), Qi(0), 𝜃ih (0), 𝜃g(0)ˆ ˆ ˆˆ

Collect u (t) and y(t)
Form Фk(p), Y(p)ˆ

Update Qi (k + 1)

ˆUpdate 𝜃i (k + 1)

Compute 𝜃ih (k + 1)ˆ

Compute 𝜃g (k + 1)ˆ

k = k + 1

Figure 2: The flowchart of PSOI algorithm.

φ 1,k t = −x̂k−1 t − 1 ,… , − x̂k−1 t − na ,

u t − 1 ,… , u t − nb
T,

27

x̂k t = φT
1,k t θ

g1 k , 28

θ ih k = â1ih k ,… , ânaih k , b̂1ih k ,… , b̂nbih k ,

γ2ih k ,… , γnγih k , d̂1ih k ,… , b̂ndih k
T
,

29

θg k = â1g k ,⋯, ânag k , b̂1g k ,⋯, b̂nbg k ,

γ2g k ,⋯, γ
nγg

k , d̂1g k ,⋯, d̂ndg k
T,

30

Y p = y p , y p − 1 ,… , y 1 T, 31

Φk p = φk p , φk p − 1 ,… , φk 1 , 32

θ ih
k = arg min

Y p −ΦT
k p θi k , Y p −ΦT

k p θih k − 1 ,

33

θg k = arg min Y p −ΦT
k p θih k , 34

θ g1 k = â1g k ,… , ânag k , b̂1g k ,… , b̂nbg k
T
, 35

v̂k t = y t − φT
k t θg k 36

The steps of the PSOI algorithm are listed as follows:

(1) Let k = 0, set the initial values as θi 0 , Q̂i 0 , θih 0 ,
and θg 0 , i = 1, 2,… ,M Set the initial factor β, ξ1,
ξ2 and give a small positive number ε. Set x̂0 t =
1/p0, p0 = 106, and v̂0 t = 0.

(2) Collect the input and output data u t and y t , t =
1, 2,… , p, form φ1,k t by (27) and φk t by (26).
Construct Y p and Φk p by (31) and (32),
respectively.

(3) Update the velocity of each particle Q̂i k + 1 , i = 1,
2,… ,M, according to (25).

(4) Update the position of each particle θi k + 1 by (24).

(5) Compute the best position of each particle θih k + 1
by (33).

(6) Determine the best position of all the particles

θg k + 1 by (34).

(7) Compute v̂k+1 t by (36). Form θg1 k + 1 by (35),
compute x̂k+1 t by (28).

(8) Compare θg k + 1 and θg k : if θg k + 1 − θg k
≤ ε, then terminate the procedure and obtain the

estimate θg k + 1 ; otherwise, increase k by 1 and go
to Step 2.

The flowchart of PSOI algorithm is shown in Figure 2.

Remark 1. The major factors that influence the performance
of the particle swarm optimization include ξ1,ξ2, and β. ξ1
and ξ2 are positive constants between 0 and 2. ξ1 is the step
size that adjusts the particle to its own best position. ξ2 is
the step size that regulates the particle to the global best posi-
tion. β is called the inertia factor and is an important adjust-
ing parameter of the PSOI algorithm. A larger β can facilitate
global optimization; otherwise, a smaller one can facilitate
local optimization. It can be chosen as a constant between
0.1 and 0.9 generally. ζ1 and ζ2 are two independent random
numbers uniformly distributed in the range of [0, 1].

4. Gradient Iterative Algorithm

The gradient search is a very basic and ancient searchmethod
[37, 38]. It is widely used in parameter identification of non-
linear systems [39–41]. In the following, based on the gradi-
ent search principle, a gradient iterative identification
algorithm for Wiener nonlinear model is derived.
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Consider the latest p group data from i = t − p + 1 to i = t
and define the stacked output vector Y t , the stacked infor-
mation matrix Φ t , and the stacked noise vector V t as
follows:

Y t ≔ y t , y t − 1 ,… , y t − p + 1 T ∈ℝp,

Φ t ≔ φ t , φ t − 1 ,… , φ t − p + 1 T ∈ℝp×n,

V t ≔ v t , v t − 1 ,… , v t − p + 1 T ∈ℝp

37

From (11), we have

Y t =Φ t θ +V t 38

Define the criterion function

J1 θ ≔ Y t −Φ t θ 2 39

Let k = 1, 2, 3,… , n as an iterative variable and θk t is
the kth iterative estimation of parameter vector θ at time t
For the optimization problem (39), the gradient iterative
algorithm is obtained by using the negative gradient search

θk t = θk−1 t −
μk t
2

grad J1 θk−1 t

= θk−1 t + μk t ΦT t Y t −Φ t θk−1 t ,
40

where μk t is the iterative step-size. However, in the upper for-

mula of (40), the gradient iterative estimate θk t impossible to
calculate because the stacked information vector Φ t contains
unknown intermediate variables x t and v t The solution is
to replace the unknown variables x t and v t by x̂k−1 t and
v̂k−1 t , respectively. Let φ1,k t , φ2,k t , and φk t denote the
estimates of φ1 t , φ2 t , and φ t at iteration k, respectively

φ1,k t ≔ −x̂k−1 t − 1 ,… , − x̂k−1 t − na ,

u t − 1 ,… , u t − nb
T ∈ℝna+nb ,

φ2,k t ≔ x̂2k−1 t , x̂3k−1 t ,… , x̂nrk−1 t
T ∈ℝnγ−1,

φd,k t ≔ v̂k−1 t − 1 , v̂k−1 t − 2 ,… , v̂k−1 t − nd
T ∈ℝnd ,

φk t ≔ φT
1,k t , φT

2,k t , φT
d,k t

T
∈ℝn

41

Let Φk t denote the estimates of Φ t at iteration k

Φk t ≔ φk t , φk t − 1 ,… , φk t − p + 1 T ∈ℝp×n, 42

and let θ1,k t denote the estimates of θ1 at iteration k

θ1,k t ≔ â1,k t , â2,k t ,… , âna ,k t , b̂1,k t ,

b̂2,k t ,… , b̂nb ,k t
T
∈ℝna+nb

43

Thus, x̂k t can be calculated by the following:

x̂k t ≔ φT
1,k t θ1,k t 44

Define θk t = θT1,k t , θT2,k t , θTd,k t
T
as the estimates of

θ = θT1 , θT2 , θTd
T
at iteration k and then the estimates of vk t

can be obtained by the following:

v̂k t ≔ y t − φT
k t θk t 45

Replacing Φ t by Φk t in (40) and rewriting θk t give

θk t = θk−1 t + μk t ΦT
k t Y t −Φk t θk−1 t

T
46

Thus, we can obtain the gradient iterative (GI) estimation
algorithm for Wiener models

θk t = θk−1 t + μk t ΦT
k t

Y t −Φk t θk−1 t , k = 1, 2, 3,… ,
47

Φk t = φk t , φk t − 1 ,… , φk t − p + 1 T, 48

Y t = y t , y t − 1 ,… , y t − p + 1 T, 49

φk t = φT
1,k t , φT

2,k t , φT
d,k t

T
, 50

φ 1,k t = −x̂k−1 t − 1 ,… , − x̂k−1 t − na ,

u t − 1 ,… , u t − nb
T,

51

φ2,k t = x̂2k−1 t , x̂3k−1 t ,… , x̂nrk−1 t
T, 52

φd,k t = v̂k−1 t − 1 , v̂k−1 t − 2 ,⋯, v̂k−1 t − nd
T, 53

v̂k t = y t − φT
k t θk t , 54

x̂k t = φT
1,k t θ1,k t , 55

θ1,k t = â1,k t , â2,k t ,… , âna ,k t ,

b̂1,k t , b̂2,k t ,… , b̂nb ,k t
T
,

56

0 < μk t ≤
2

λmax ΦT
k t Φk t

57

The steps of the GI algorithm are listed as follows:

(1) Let k = 1, θ0 t = 1/p0, x̂0 t = 1/p0, and p0 = 106 and
give a small positive number ε.

(2) Collect the input and output data μ t and y t and
form Y t by (49) and φ1,k t by (51).

(3) Form θ1,k t by (56), compute x̂k t by (55), and form
φ2,k t by (52).

(4) Compute v̂k t by (54) and form φd,k t by (53).

(5) Form φk t by (50) and form Φk t by (48).

(6) Choose a suitable μk t by (57) and compute θk t by
(47).
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(7) Compare θk t and θk−1 t : if θk t − θk−1 t ≤ ε,
then terminate the procedure and obtain θk t ; other-
wise, increase k by 1 and go to Step 2.

5. Examples

Consider the following Wiener nonlinear systems:

y t = f x t +D z v t ,

x t =
B z
A z

u t ,

A z = 1 + a1z
−1 + a2z

−2 = 1 − 0 43z−1 + 0 35z−2,

B z = b1z
−1 + b2z

−2 = 0 76z−1 + 0 62z−1,

D z = 1 + d1z
−1 + d2z

−2 = 1 + 0 20z−1 − 0 10z−2,

f x t = γ1x t + γ2x
2 t + γ3x

3 t

= x t + 0 98x2 t + 1 15x3 t ,

θ = a1, a2, b1, b2, γ2, γ3, d1, d2
T

= −0 43, 0 35, 0 76, 0 62, 0 98, 1 15, 0 20, −0 10 T

58

In simulation, the input u t is taken as an uncorrelated
stochastic signal sequence with zero mean and unit variance
and v t as a Gaussian white noise sequence with zero mean
and variance σ2 = 0 102 Applying the GI algorithm and the
PSOI algorithm to estimate the parameters of this system,
the parameter estimates and their errors are shown in
Tables 1 and 2 and Figures 3 and 4. In the PSOI algorithm

Table 1: The GI estimates and errors (σ2 = 0 102).

k α1 α2 b1 b2 γ2 γ3 d1 d2 δ (%)

1 0.00000 0.00000 0.58390 0.68393 0.00000 0.00000 −0.04169 −0.02620 86.40246

5 −0.02316 0.00425 0.61143 0.71531 0.02417 0.09941 0.13680 −0.03462 80.62844

10 −0.05236 0.01690 0.65537 0.75735 0.06610 0.28009 0.31492 −0.05635 72.44222

50 −0.19707 0.17193 0.77823 0.85545 0.55958 1.11096 0.34000 −0.01365 31.03963

100 −0.26799 0.23558 0.76378 0.81452 0.78248 1.08091 0.26414 −0.03625 18.93492

500 −0.40949 0.33611 0.75852 0.64487 0.96516 1.14748 0.20235 −0.07345 2.45484

700 −0.42263 0.34486 0.75695 0.62722 0.98006 1.16077 0.20205 −0.07432 1.59965

True values −0.43000 0.35000 0.76000 0.62000 0.98000 1.15000 0.20000 −0.10000 0.00000

Table 2: The PSOI estimates and errors (M = 60).

k α1 α2 b1 b2 γ2 γ3 d1 d2 δ (%)

10 −0.70817 0.59244 0.68145 0.44089 0.69816 1.06690 0.32058 −0.04582 27.79105

20 −0.74261 0.64034 0.84768 0.63585 0.98413 1.08805 0.19259 0.03973 24.33881

30 −0.58252 0.36827 0.80718 0.54617 0.99907 1.13505 0.10336 −0.10655 10.69988

60 −0.42770 0.35023 0.74459 0.60637 0.98132 1.15542 0.19161 −0.09934 1.21353

90 −0.43027 0.35147 0.75416 0.61506 0.97971 1.15157 0.19172 −0.09235 0.72682

120 −0.43132 0.35162 0.75594 0.61617 0.97964 1.15089 0.19158 −0.09109 0.71978

True values −0.43000 0.35000 0.76000 0.62000 0.98000 1.15000 0.20000 −0.10000 0.00000

0 100 200 300 400 500 600 700
k

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

δ

Figure 3: The GI estimation errors versus k.
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Figure 4: The PSOI estimation errors versus k.
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simulation, each swarm generation contains 10 position par-
ticles. The coefficients β, ξ1, and ξ2 in (25) are set to 0.8, 1.2,
and 1.8, respectively.

From the simulation results in Tables 1 and 2 and
Figures 3 and 4, we can draw the following conclusions:

(i) As k increases, the parameter estimation errors given
by the GI algorithm and PSOI algorithm gradually
become smaller (see Tables 1 and 2).

(ii) The PSOI algorithm has a faster convergence rate
than the GI algorithm (see Figures 3 and 4).

(iii) The PSOI algorithm has a higher estimation accu-
racy than the GI algorithm, which can be seen from
Tables 1 and 2.

6. Conclusions

In this paper, we derived the particle swarm optimization
iterative algorithm and the gradient iterative algorithm
for Wiener nonlinear systems. Compared with the gradient
iterative algorithm, the particle swarm optimization algo-
rithm has a higher estimation accuracy and has a faster
convergence rate. The proposed approaches in the paper
can be combined with other mathematical tools [42–47]
to study the performances of some parameter estimation
algorithms and can be applied to other multivariable sys-
tems with different structures and disturbance noises and
other literature [48–52].
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