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Estimating the real-time pose of a free flight aircraft in a complex wind tunnel environment is extremely difficult. Due to the
high dynamic testing environment, complicated illumination condition, and the unpredictable motion of target, most general
pose estimating methods will fail. In this paper, we introduce a cross-field of view (FOV) real-time pose estimation system, which
provides high precision pose estimation of the free flight aircraft in the wind tunnel environment. Multiview live RGB-D streams
are used in the system as input to ensure the measurement area can be fully covered. First, a multimodal initialization method
is developed to measure the spatial relationship between the RGB-D camera and the aircraft. Based on all the input multimodal
information, a so-called cross-FOV model is proposed to recognize the dominating sensor and accurately extract the foreground
region in an automatic manner. Second, we develop an RGB-D-based pose estimation method for a single target, by which the
3D sparse points and the pose of the target can be simultaneously obtained in real time. Many experiments have been conducted,
and an RGB-D image simulation based on 3D modeling is implemented to verify the effectiveness of our algorithm. Both the real

scene’s and simulation scene’s experimental results demonstrate the effectiveness of our method.

1. Introduction

Aircraft attitude estimation plays a crucial role in aircraft
control systems of the wind tunnel. During the flight of the
aircraft, it is essential to adjust the flight parameter according
to the real-time attitude of the aircraft [1]. And while verifying
the flight performance of aircraft, it is also necessary to check
the performance of the aircraft in different attitudes. Attitude
estimation is an important part of this [2]. In computer
vision task, aircraft attitude estimation can be regarded as
an object pose estimation task. Vision system is the most
widely used technique for measurements in the wind tunnel,
which can provide crucial data that can be compared with
computational fluid dynamics (CFD) predictions to assist
validating design geometries.

However, it is hard to get satisfying precision measure-
ment results in a low-speed wind tunnel when the target is
flying freely. The main reason is that the wind tunnel is a
high dynamic testing environment and there often exist a
complex illumination condition and unpredictable motion

of the target. These will heavily decrease the measurement
accuracy of the estimation system.

The size of a low-speed wind tunnel is eight meters long,
six meters wide, and six meters high. Thus, multiview live
RGB-D streams are needed in the system as input to ensure
the measurement area can be fully covered. Furthermore, a
multimodal initialization method is developed to measure
the spatial relationship between the RGB-D camera and the
aircraft. Based on all the input multimodal information, our
cross-FOV model is proposed to recognize the dominating
sensor and accurately extract the foreground region in an
automatic manner.

The object pose estimation task has been extensively
studied [3]. Traditional methods of object attitude measure-
ment are mainly divided into template matching and feature
matching [4]. Template matching methods [5] are usually
applied to weakly textured scenes. Such methods need to
reconstruct 3D objects and then match real scenes with 3D
models to find the best pose. The classic ICP algorithm [3] and
RANSAC algorithm solve the current pose by minimizing the
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FIGURE 1: Overview of our method showing the data-flow starting from RGB-D streams. RGB streams are used to calibrate the initial pose
of the aircraft. Our cross-FOV model can process multiple RGB-D streams and output the target stream. By tracking the target, our method

can get the pose and point cloud of the target.

distance between corresponding points of the actual scene
and the model [6]. Many people believe that, in computer
vision applications [7-11], the contour of an object is the
most reliable information, because feature-based recognition
methods [12-15] are likely to fail when recognizing poses of
weakly textured objects.

In this paper, to overcome those problems, we propose
a cross-field pose estimation framework based on local
features to estimate the pose of an aircraft in real time
and deal with cross-field problems. By acquiring the relative
positional relationship between the camera and the aircraft,
we transform the relative pose of the camera into the relative
pose of the aircraft. According to the experiment results, the
pose estimation system with the cross-FOV model can get
accurate measurement results in a wind tunnel. And we run
our pose estimation system to measure the pose of an aircraft
model. We will apply our system on the low-speed wind
tunnel of China Aerodynamics Research and Development
Centre (CARDC).

2. Overview of QOur Method

We proposed a cross-FOV RGB-D pose estimation system
that processes each new frame in real time. Also maintaining
high precision pose estimation our system reconstructs the
sparse point cloud for the object in the scene and can track the
target motion continuously when the target moves across the
different field of view. Figure 1 illustrates the frame-to-frame
operation of our system and Figure 2 illustrates the structure
diagram of our system in a real scene.

2.1. Pose Initialization. In this section, a relative attitude
measurement module is utilized to obtain the relative attitude

between the aircraft and initial camera. We set two tags at the
X-axis of the aircraft shown in Figure 3. The center of the tags
is the center of the aircraft. Once the tag’s location is detected,
the center of the aircraft is localized. Then the system can
transform it into relative attitude between the aircraft and
initial camera.

2.1.1. Tag Recognition. This module is used to detect the
position of tags in Figure 3. We use a tag detector to detect tags
following the proposed method AprilTag [5]. The first step
is adopting an adaptive thresholding approach to threshold
the input grayscale image into a black-and-white image. The
next step is segmenting the edges based on the characteristic
of the black-and-white components from which they arise to
find edges which might form the boundary of a tag. Finally,
the method computes a proximate partition by searching for
a small number of corner points and then iterates through all
possible combinations of corner points to find all fitting quad.
After this whole operation, a tag is localized in the image
coordinate system and the center of two tags represents the
center of the aircraft.

2.1.2. Aircraft Center Localization. We transform the coor-
dinate (u, v) of aircraft center in image coordinate with its
corresponding depth value d into a 3D coordinate so that
relative attitude between the aircraft and initial camera is
obtained:

d
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FIGURE 2: The structure diagram of our system.
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FIGURE 3: The location of visual tag on the aircraft model.
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FIGURE 4: Multiple RGB stream inputs.

where (f,, f,) is the focal length and (1, v,) is the principal
point and all can be known from calibration. (X, Y,, Z,) is
the 3D coordinate of aircraft center.

2.2. Cross-FOV Model. In the wind tunnel, as shown in
Figure 4, the cross-field of view measurement is needed. Thus,
we designed a cross-FOV model. For camera 7 in camera set
N at the time 7, we have the color frame f;" and depth frame

d’. To choose the best input camera ;, we need to backtrack
M frames to get the maximum frame score camera set /.
The frame score can be expressed by

S(d) =YY p(xy), ©)

x=1y=1
L, dl(xy)<#,
p(xy)= (3)
0, d'(x,y)>%,

where p(x, y) is the depth score at d” (x, y) that fit the depth
constraint #. X and Y are, respectively, the frame width and
height.

The best input camera #; is chosen from the camera set N
to find the maximum score

n; = arg max {S () %} ; (4)
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TABLE 1: RMSE of estimate translation and rotation for synthetic sequences.

Sequence Ours Co-fusion [3]

Eypane (m) Erorae () Eypane (m) Eygrae ()
rotatel 0.0016 0.4205 - -
rotate2 0.0017 0.3391 - -
rotate3 0.0027 1.5700 - -
translatel 0.0032 0.3941 0.0263 -
translate2 0.0075 1.3766 0.0560 -
translate3 0.0091 0.6858 0.0412 -
translateesrotate 0.0245 0.4706 - -

TABLE 2: Parameters of the 6-Axis Hexapod.

Parameter Name Value Unit
Travel range X, Y +50 mm
Travel range Z +25 mm
Travel range 0y, 6y +15

Travel range 0, +30

Min. incremental motion X, Y 3 um
Min. incremental motion Z 1 um
Min. incremental motion 6y, 0y, 0, 5 urad

where y(n) is a proportion calculate function, which will
calculate the amount of camera number 7 in camera set /.

2.3. Feature Extraction. The system utilizes a fast binary
descriptor called ORB for the feature extracting task. This
descriptor is rotation invariant and resistant to noise and
illumination changes. Simultaneously, it is fast to extract
and match which makes ORB suitable for real-time pose
estimation work in a complex environment.

Our system handles RGB-D input. We extract ORB
features on the RGB image for tracking and, for each feature
with coordinates (¢, v) and its corresponding depth value d,
we transform them into a world coordinate system according
to (1).

2.4. Bundle Adjustment. After the initialization operation,
our system performs bundle adjustment, to minimize the
reprojection error between the 3D point X' and its corre-
sponding 2D point x. to estimate the camera’s instantaneous
pose {R, t} relative to previous frame

(Rt = arg mind'p (|, -9 (X +Of,). 5
IEX

where p is the robust Huber cost function and X the
covariance matrix associated with the scale of the keypoint.
The projection function ¢ is defined as follows:

X X
fxz + Uy
z fyz

where (f,, f,) is the focal length and (1, v,) is the principal
point, both known from the calibration.

3. Experiments

In the evaluation stage, we carry out a quantitative evaluation
on both synthetic and real sequences with ground truth
data. Our synthetic experimental sequences which imitate
a real experimental environment are specifically designed
for this work. In the synthetic scene, we set up ambient
light and multiple light sources to simulate the real complex
lighting conditions. As for camera settings of synthetic data,
we set it up with settings of an Asus Xtion camera with
resolution of 6400480 pixels and field of view in 58°H, 45°V,
70°D.

3.1. Synthetic Experiments. Appropriate synthetic sequences
were specifically created for this work. In Figure 5, the
left image is a synthetic color image, middle image is the
corresponding depth image, and right image is the output of
our system. Point cloud is sparsely reconstructed from the
model, and the coordinate axis at the center of the model is
the current pose of the target. We set three kinds of translate
sequences.

For each synthetic scene, we compare the estimated
and ground truth trajectories of the aircraft by computing
the root-mean-square errors (RMSE). Results on synthetic
sequences are shown in Table 1 and Figure 6. We also make
a comparison with Co-fusion [3] in translate sequences.
Co-fusion [3] only supports translation output; as Table 1
shows, rotation result of Co-fusion [3] is not given. Co-
fusion [3] failed in sequences rotatel, rotate2, rotate3, and
translateerotate.

As shown in Figures 6-8, the estimated trajectories of the
proposed method fit well with ground truth in all scenes.
In rotate sequences, the proposed method can also track
the object stably. As we can see from Table 1, the proposed
method performs better than Co-fusion [3]. In some scenes,
Co-fusion [3] may fail to track the object which leads to
a huge estimating error. But our method can achieve long-
term and effective tracking so long as the first frame is
provided to initialize. We carried out a quantitative evaluation
on both synthetic and real sequences with ground truth
data.
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FIGURE 5: The synthetic RGB-D input and the estimated point cloud result of our system.
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FIGURE 6: Comparison between the ground truth, our estimated trajectory, and Co-fusion’s estimated trajectory on the translate sequence.
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FIGURE 7: Comparison between the ground truth and our estimated pose on rotate sequences.
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FIGURE 8: Comparison between the ground truth and our result on translate&rotate sequences.

FIGURE 9: H-840 6-Axis Hexapod. An ultra-high precision cloud
terrace with flexible control.

3.2. Experimental Verification with Hexapod and Real Scene.
For real sequences, we set a series of experiments on a
high precision Hexapod as Figure 9 shows; the accuracy

of Hexapod can reach micron level (Table 2). For each
axis, a corresponding experiment is set up. After aligning
cameras with cloud terrace, we separately set the platform
to move uniformly along each axis to test the accuracy of
translation and rotation. Results on real sequences are shown
in Figure 10.

Experiments on the high precision cloud terrace show
that our proposed method also performs well in real
sequences. In rotation experiments, the detection of yaw
angle is the most accurate which illustrates that the proposed
method can reach the highest accuracy without change of
depth.

We have performed a series of qualitative experiments
to demonstrate the capabilities of our method. The com-
parison to Co-fusion [3] indicates that our method achieves
extremely high accuracy. As mentioned earlier in our paper,
our method can adapt to a complex lighting environment
and achieve high precision tracking and pose estimation. And
particularly, it can satisfy the need of cross FOV, which means
it can achieve reliable pose estimation in a wide range of
environments as demonstrated in the experiments. The real
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FIGURE 10: H-840 6-Axis Hexapod. An ultra-high precision cloud terrace with flexible control.

FIGURE 11: The estimated trajectory of the real scene sequence; the unit in the figure is m.

scene experiment is shown in Figure 12, and the estimated
trajectory of the sequence is shown in Figure 11; the trajectory
is accurate and concise.

4. Conclusions

We introduced a cross-field of view (FOV) real-time pose
estimation system which provides high precision pose esti-
mation of the free flight aircraft in a wind tunnel environ-
ment. Multiview live RGB-D streams are used in the system
as input to ensure the measurement area can be fully covered.

First, a multimodal initialization method is developed to
measure the spatial relationship between the RGB-D camera
and the aircraft. Based on all the input multimodal informa-
tion, a so-called cross-FOV model is proposed to recognize
the dominating sensor and accurately extract the foreground
region in an automatic manner. Second, we develop an RGB-
D-based pose estimating method for a single target by which
the 3D sparse points and the pose of the target can be
simultaneously reconstructed in real time. Many experiments
have been conducted and an RGB-D image simulation based
on 3D modeling is implemented to verify the effectiveness of
our algorithm. Both the real scene’s and simulation scene’s
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FIGURE 12: The real scene RGB-D input and the estimated point cloud result of our system.

experimental results demonstrate the effectiveness of our
method.
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