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In this paper, finite-time tracking problem of nonholonomic mobile robots for a moving target is considered. First of all, polar
coordinates are used to characterize the distance and azimuth between the moving target and the robot. Then, based on the
distance and azimuth transported from the sensor installed on the robot, a finite-time tracking control law is designed for the
nonholonomic mobile robot by the switching control method. Rigorous proof shows that the tracking error converges to zero in
a finite time. Numerical simulation demonstrates the effectiveness of the proposed control method.

1. Introduction

Addressing the problem of tracking a moving target is a chal-
lenging task which has attracted a continuously increasing
attention in the control community [1]. Tracking of a mov-
ing target has its own complexities, mainly as follows: the
movement of the target is more diverse and more dense
and has large clutter density. The tracking of a ground mov-
ing target using nonholonomic robots has always been one of
the forefront topics of great concern, because it has very
important applications in cooperative robot reconnaissance
[2], multirobot formation [3, 4], and trajectory tracking
[5–9]. Unmanned aerial robots (UARs) and unmanned
ground robots (UGRs) [10–13] are often used to track a mov-
ing target. When UARs are in operation, they always rotate
the track above the moving target, because the speed of UARs
is much faster than that of the moving target. So there is a
drawback of this tracking method. That is the lack of conceal-
ment. In contrast, the speed of UGRs is similar with that of
the moving target and UGRs can maintain a certain distance
from the moving target in the tracking process. In this case,
concealment can also be guaranteed. Based on this superior-
ity, UGRs are often prioritized when performing ground

moving target tracking. The finite-time [14–16] tracking
problem for nonholonomic mobile robots has been studied
mostly in the contexts of optimality, controllability, and
deadbeat control for several decades. Firstly, Tang et al.
[17] presented BLF-Tan control laws for strict-feedback
[18–21] nonlinear systems with output constraints. Based
on the method of Tang, Wang et al. [12] proposed a general-
ized Tan-type barrier Lyapunov function to deal with the
moving target tracking. However, most of the target tracking
methods proposed in the existing papers can only guarantee
that the error system asymptotically converges to zero, and
the convergence speed often cannot meet the actual engineer-
ing requirements to achieve the expected tracking perfor-
mance. This paper proposes a finite-time switching control
tracking method to resolve this problem. In addition, the
tracking objects are often nonholonomic robots in existing
articles. The tracking objects studied in this paper are arbi-
trary moving targets. Compared with nonholonomic robots,
tracking arbitrary moving targets is more research-oriented
andmore challenging because the tracking objects are no lon-
ger limited to nonholonomic robots, but can also be all mov-
ing objects such as people, and rolling balls, which has great
research significance for practical engineering.
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In case the distance between the robot and the target is
too small to prevent them from collision [12], this paper
assumes that there is a minimum safety distance in that the
distance between the robot and the target is always greater.
In addition, due to the limited measurement range of the
sensor, once the distance is greater than the maximum mea-
surement of the sensor, it may lead to that the tracking error
[22–27] is too large or may lead to tracking failure. In this
article, a maximum distance is set to ensure that the distance
between the robot and the target is always less. Similarly, the
minimum azimuth and maximum azimuth angles between
the robot and the target are set to meet that the azimuth is
always between the minimum angle and the maximum angle.
One of the novelties of this article is that the stricter con-
straints of the distance and the azimuth between the robot
and the target are considered. Last appropriate control laws
are set to meet that the distance and the azimuth between
the robot and the moving target converge into the proper
range in a finite time.

In this paper, a finite-timemoving target tracking method
is proposed by using the switching control method under
polar coordinates without destroying the constraints of the
system. The control law is set for the speed and angular veloc-
ity of nonholonomicmobile robots to ensure that the distance
between the robot and the target and the azimuth converge to
the ideal tracking distance and the ideal tracking azimuth in a
finite time. The method has faster convergence rate and
stronger robustness [28–32] to system uncertainty and exter-
nal disturbance. The rigorous mathematic deduction and
proof demonstrates the reliability of the method in this
paper. Further simulation also further confirmed it. The
main innovations and contributions of our research can be
summarized as the following three points in this paper:

(1) A finite-time switching controller is set for the speed
and angular velocity of the robot to track the mobile
target in a finite time. Also, the tracking error can
converge to zero in a finite time.

(2) Previous tracking objects are extended from nonho-
lonomic robots to arbitrary moving targets in this
article.

(3) The rigorous mathematical formula proves the reli-
ability of the finite-time control law proposed in this
paper. Further numerical simulation results also
demonstrate the effectiveness of the control law.

This paper is organized as follows. Section 2 gives a for-
malization of the problem considered in this paper. Section
3 applies the stability results to the finite-time tracking con-
trol problem of nonholonomic mobile robots. Section 4 pro-
vides a numerical example and the corresponding simulation
results of the proposed method, and finally, conclusions are
given in Section 5.

2. Problem Statement

This paper studies the problem of tracking the moving
targets with the nonholonomic mobile robots. The motion

model of the nonholonomic mobile robots can be described
by the following differential equations [3]:

x = v cos θ,
y = v sin θ,
θ =w,

1

where x, y T ∈ R2 is the Cartesian coordinate position of the
nonholonomic mobile robots on the coordinate plane Ψ, and
θ is its heading angle. v and w are the forward velocity and
angular velocity of the nonholonomic mobile robots, respec-
tively, from the horizontal axis.

The motion equation of the moving target can be
described as [8]

xt = vx,
yt = vy,

2

where xt , yt
T ∈ R2 is the position coordinate of the target on

the coordinate planeΨ, and vx and vy are the velocity compo-

nents of the moving target along Xd and Yd on the coordinate
plane Ψ. In fact, both vx and vy are bounded variables.

Remark 1. If there are more than one robot, subscript i
should be used to number the robot; vi and θi represent the
forward velocity and heading angle of the robot, respectively.
For convenience, this article only studies the case of a single
robot tracking a moving target.

Remark 2. This article assumes that the robot is equipped
with an on-board sensor. It can measure the distance and
the azimuth between the robot and the target.

Remark 3.According to Figure 1, we set the velocity vector
of the initial state of the ground moving target in the
third quadrant. The initial state speed of nonholonomic
mobile robots is also in the third quadrant, and the robot
is in the upper right direction with respect to the target.
That is to say, the velocity vector of the robot is always
in the third quadrant. Namely, θ is always in the range
−π, −π/2 .

As shown in Figure 1, this article uses polar coordinates
to describe the relative position between the robot and the
target on the coordinate plane Ψ. The azimuth and distance
of the robot and the target can be described as the follow-
ing model.

d = xt − x 2 + yt − y 2,

σ = arctan 2 Y , X ,
3

where arctan2 x, y is an inverse tangent function with
four quadrants and its range is −π, π by definition. Its
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accurate value is determined by the quadrant of the point
x, y . Y and X satisfy the following equation:

X

Y
=

cos θ sin θ

−sin θ cos θ
xt − x

yt − y
, 4

d and σ are available according to the sensor installed on
the robot. From Figure 1, it can be obtained that d, σ,
and β satisfy the following equation:

σ + θ − β = π 5

To facilitate the discussion of the main results, the fol-
lowing lemmas from existing literature are stated below.

Lemma 1. When η = k1 sin x + k2 cos x is established, η is
always bounded. Where k1 and k2 are bounded variables, x
is any real number. (For complete, proof see the appendix).

Theorem 1. According to system (3), the derivative of d and σ
with respect to time is

d = −v cos σ − vx cos β − vy sin β,

σ =w cos θ + v
d
sin σ + 1

d
vx sin β − vy cos β ,

6

Proof 1. For the convenience of calculation, substitutions
need to be made.

Kd = −vx cos β − vy sin β,
Kσ = vx sin β − vy cos β,

7

where β is the angle between the line of the robot and the
target with the direction of Xd . It has been mentioned above.
vx and vy are bounded. Therefore, there are positive num-
bers ω1 and ω2 to satisfy the inequality.

vx ≤ ω1, vy ≤ ω2, 8

In combination with (8) and Lemma 1, it can be obtained
that there are positive numbers ς1 and ς2 that satisfy the
inequalities below.

Kd ≤ ς1, Kσ ≤ ς2, 9

The above discussion can obtain that Kd and Kσ are
also bounded.

(3) can be deformed into the following form after defor-
mation.

d2 = x − xt
2 + y − yt

2,
σ = arctan 2 Y , X ,

10

According to the definition and (10), σ satisfies the
following equations.

cos σ = X

X2 + Y2
,

sin σ = Y

X2 + Y2

11

Then, the derivatives of d and σ with respect to
time are

d =
x − xt v cos θ − vx + y − yt v sin θ − vy

d
,

σ = XY − YX

X2 + Y2 = 1
d

Y cos σ − X sin σ ,
12

After simplifying (4), it can be obtained that

X = −cos θ x − xt − sin θ y − yt ,
Y = sin θ x − xt − cos θ y − yt ,

x − xt = −X cos θ + Y sin θ,
y − yt = −X sin θ − Y cos θ

13

Then, the derivatives of X with respect to time are

X =w sin θ x − xt − cos θ x − xt
−w cos θ y − yt − sin θ y − yt

14

Substituting (1), (2), and (13) into (14), it can be
obtained that

X =w sin θ −X cos θ + Y sin θ − cos θ v cos θ − vx
−w cos θ −X sin θ − Y cos θ − sin θ v sin θ − vy ,

15

(15) merged and simplified can be converted into

X =wY − vx cos θ + vy sin θ 16

�휈
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d

Figure 1: Tracking of the moving target.
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Similarly, it can be obtained that

Y = −wX − vx sin θ + vy cos θ 17

Substituting (11), (13), (16), and (17) into (12), it can be
obtained that

d = Y sin θ − X cos θ v cos θ − vx
X2 + Y2

−
X sin θ + Y cos θ v sin θ − vy

X2 + Y2

= sin σ sin θ − cos σ cos θ v cos θ − vx
− cos σ sin θ + sin σ cos θ v sin θ − vy

= −cos σ + θ v cos θ − vx − sin σ + θ v sin θ − vy ,

σ = 1
d

Y cos σ − X sin σ

= 1
d

cos σ −wX − vx sin θ + vy cos θ

− sin σ wY + vx cos θ + vy sin θ − v

= −w cos σ − β −
vx
d

sin σ + θ

+
vy
d

cos σ + θ −
v sin σ

d
18

Substituting (5) into (18), after some trigonometric trans-
formations, it can be obtained that

d = −v cos σ + Kd ,

σ =w cos θ + v
d
sin σ + 1

d
Kσ

19

The above is a complete proof of Theorem1.
By definition, the range of d is 0, +∞ , and the range of

σ is −π, π . But in fact when d is too small, the robot will col-
lide with the target which means tracking will not continue.
So there is a minimum safety distance dmin and d is always
greater than it. In addition, due to the limitation of the mea-
surement range of the on-board sensor, there is a maximum
measurement distance dmax keeping d always smaller. During
the tracking process, the system always keeps d in the range
dmin, dmax . Similarly, the measurement range of the sensor
is bounded. So σ is also a bounded variable. There is a mini-
mum azimuth σmin and a maximum azimuth σmax satisfying
that σ is always between them in the progress of tracking.

3. Main Results

This section presents a novel method solving the problem
of ground moving target tracking with constraints on d
and σ using nonholonomic mobile robots. This paper uses
the method of switching control to set the control law so
that the convergence error converges to zero in a finite
time. The convergence error includes distance error and
azimuth error.

Lemma 2 [32–34]. Consider a first-order system τ = ψ where
τ is a positive value function of time. Moreover, there is a
positive number ψM satisfying ψ ≤ ψM . For a certain num-
ber τ 0 , there is always a positive number D0 satisfying
the inequality τ 0 ≤D0. Set the continuous and saturated
control law ψ = −κsgn τ τ ς where κ and ζ are design

parameters and satisfy κ ≤ ψM/D
ζ
0 , 0 < ζ < 1. There is a finite

time T0 satisfying T0 = τ 0 1−ζ/κ 1 − ζ ≤D0
1−ζ/κ 1 − ζ ,

such that

lim
t→T0

τ = 0, τ ≡ 0 t ≥ t0− 20

3.1. Switching Controller DesignStep 1. According to Remark
3, it can be obtained that θ ≠ π/2 and θ ≠ −π/2 in the process
of tracking. Moreover, cos θ ≠ 0 can be obtained. Then,
consider a replacement w cos θ =w. Take the following
control law on v and w.

v = 0,

w = −
Kσ

d
− κ1 sgn σ σ ζ1 ,

21

where κ1 ≤ σmax/Dζ1 , 0 ≤ ζ1 ≤ 1. When σ converges to zero,
go to Step 2.

Step 2. σ converges to zero and d = −v + Kd . Then, take the
following control law.

v = Kd + κ2 sgn d d ζ2 ,

w = −
Kσ

d
− κ1 sgn σ σ ζ1 ,

22

where κ2 ≤ dmax/Dζ2 , 0 ≤ ζ2 ≤ 1.

Case 1. If d − dρ < ε1, where ε1 is an arbitrary positive num-
ber, then go to Step 3.

Case 2. If there is a positive number ε2 satisfying d − dρ > ε1,
then go to Step 2 again.

Step 3. Take the following control law.

v ≡ Kd ,

w = −
Kσ

d
− κ1 sgn σ σ ζ1

23

Theorem 2. The system (6) can be transformed to the follow-
ing system by setting the switching control law.

d = −κ1 sgn d d ζ1 ,

σ = −κ2 sgn σ σ ζ2
24

According to Lemma 2, rigorous mathematical proof
shows that the tracking error converges to zero in a limited
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time. It can be obtained that ∃t1 > 0 when t > t1, d converges
to ideal tracking distance dρ and σ converges to zero.

Proof 2. Substitute (21) into (19). It can be obtained that

σ = −κ1 sgn σ σ ζ1 . Consider the Lyapunov stability deci-
sion function V = 1/2σ2. Because σ is a function of time, V
is also a function of time. Then, the derivative of V with
respect to time is

V = σσ = −κ1σ sgn σ σ ζ1 = −κ1 σ
ζ1+1

= −κ1 σ2
ζ1+1/2 = −κ1 2V ζ1+1/2

25

According to (25), it can be obtained that V is a decreasing
function of time. Then, (25) can be transformed into

dV

V ζ1+1/2
= −2ζ1+1/2κ1dt 26

Integrate both sides of (26); it can be obtained that

V

V 0
V−1+ζ1/2dV =

t

0
− 2ζ1+1/2κ1dt

1
1 − 1 + ζ1/2

V1−ζ1/2

= −2ζ1+1/2κ1t +
1

1 − 1 + ζ1/2
V 0 1−ζ1/2

27

After some calculations, (27) can be simplified as

V1−ζ1/2 = −2ζ1−1/2κ1 1 − ζ t + V 0 1−ζ1/2, 28

It can be seen from (28) that V converges to zero when V
converges to zero as t tends to T1. According to Lemma 1, it
can be obtained that T1 is a finite value. The above proof
shows that V converges to zero in a finite time. According
to Lyapunov stability decision function V = 1/2σ2, σ also
converges to zero in a finite time.

In Step 2, substitute (22) into (19). It can be obtained that

d = −κ2 sgn d d ζ2 . Similar to the convergence of σ, d will
decrease over time until it converges to dρ in a finite time.
Depending on the data returned by the sensors mounted on
the robot, it can be obtained whether d has reached the
proper tracking distance. The setting of Case 1 and Case 2
can ensure tracking accuracy.

After the above repeated switching control, d will always
converge to dρ in a finite time. When d converges to dρ, go to
Step 3.

After Step 1, σ has converged to zero in a finite time. So
σ ≡ 0 is always satisfied in the control laws of Step 2 and Step
3. By the control law of Step 3, the distance between the robot
and the target will always be at the ideal tracking distance.

The above rigorous proof fully proves Theorem 2.
In order to better understand the idea of the controller,

this paper designed a flow chart (Figure 2).

Remark 4. Note that in Theorem 2 and Lemma 2, the gains
ζ1, ζ2, κ1 and κ2 are not explicitly given. Practically, we can
choose the appropriate gains by a simulation-tested method,
as suggested in the work of Levant [35], for example, a group
of available parameters ς1 = 0 5, ς1 = 0 25, κ1 = 1, κ2 = 2.

For your convenience review, we make a table below to
explain the source for each parameter selection (Table 1).

4. Simulations

In this section, we consider the tracking error σ and
d∗ = d − dρ based on the proposed finite-time tracking con-
troller for system (1) to ensure that d in system (6) con-
verges to dρ and σ converges to zero. We demonstrate the
effectiveness of our method in tracking moving targets by
MATLAB simulation.

The simulation is carried out in which a robot is ran-
domly distributed in the coordinate plane Ψ at first and
finally should achieve the required cooperative circumnavi-
gation stated in Sections 2 and 3.

Stop

Step 2.

Step 3.

Whether d → dp or not

Step 1.
Design v and w
Make σ → 0

Design v and w
Make d → dp σ = 0

Design v and w
Make d = dp and σ = 0

Yes

No

Start

Figure 2
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In the following simulation, we assume that the ideal
tracking distance is chosen to be given by dρ = 0 2. The initial
position of the robot is 0, 0 T and the initial position of the
target is 0, 10 T . We select design parameters κ1 = 1, κ2 = 2,
ς1 = 0 5 and ς2 = 0 25. The speed of the target is time-varying:

xt = 0 5 + 0 25 cos 0 5t ,
yt = 0 4 1 2 − tanh 0 2t − 3 2 29

Under the switching control law (21) and (22), the simu-
lation result shows that Figure 3 shows that the tracking azi-
muth σ can converge to zero in a finite time t ≤ 8s in Step 1
and is kept in Step 2 until it is driven to zero in the last step.
In Figure 4, it shows that tracking distance d is stabilized to a
constant d = dρ = 0 2 in a finite time t ≤ 15 s. Moreover,
Figure 5 also shows that tracking error system d∗ converges
to the neighborhood of zero in a finite time in which the con-
verging speed is very fast. Figure 6 shows the complete simu-
lation result of the entire switching controller. Finally,
Figure 7 shows the trajectories of the robot and target in
the plane in which it can be obtained that the tracking task
can be achieved in a finite time.

In order to reflect the superiority of the method proposed
in this paper, we compare the controller of this paper with
the control law in [12], and Figure 8 shows that the error sys-
tem converges to zero when t ≥ 20 s under the control law in
[35]. Combining Figures 1 and 3, we can clearly see that the
proposed switch control law has a faster error convergence
rate than [12].

In actual engineering, the robot is often disturbed by
noise. In Figures 9, 10, and 11, we consider the situation with
random noise disturbance. The simulation results show that
the control method proposed in this paper can still complete
the task of tracking for the moving target in a short time in
Figure 8. Figures 9 and 10 show that the error system can
converge to zero in a very short time under the control laws
proposed in this paper.

The numerical simulation results show that not only can
the controller proposed in this paper make the error system
converge to zero in a very short time but also the system
has better anti-interference under this controller.

5. Conclusion

This paper studies the problem of moving target tracking
using nonholonomic ground robots. Based on the polar
coordinates, the switching control method is used to design
a reasonable control law which can achieve that the error
of distance and azimuth between the robot and the target
converges to zero in a finite time. Compared with the

Table 1

Parameters Source of each parameter

ω1 > 0, ω2 > 0 From (8)

κ1 > 0, κ2 > 0 From Lemma 2 and Theorem 2

ζ1 ∈ 0, 1 , ζ2 ∈ 0, 1 From Lemma 2 and Theorem 2
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Figure 3: The response of the tracking variable σ with respect to
time.
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Figure 5: The stability of distance error d∗ with respect to time.
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Figure 6: The complete response of tracking variables d, σ, d∗
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Figure 9: The trajectories of robot and target with random noise
disturbance.
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traditional tracking algorithm, the proposed method in this
article not only guarantees that the tracking error can con-
verge to the neighborhood of zero in a finite time but also
extends the previous tracking object from a nonholonomic
robot to an arbitrary moving target. This paper also con-
siders that the distance and azimuth between the robot and
the target is limited, which is very practical for realistic engi-
neering. The collision problem between robots has not been
considered in this article and will be the focus of attention in
future research.

Appendix

The complete proof of Theorem 1:

Proof 3. Because k1 and k2 are bounded variables, it may be
assumed that there are positive numbers λ1 and λ2 satisfying
the following inequality

k1 ≤ λ1,
k2 ≤ λ2

A 1

Hence,

η = k1 sin x + k2 cos x ≤ k1 sin x + k2 cos x
≤ k1 + k2 ≤ λ1 + λ2,

A 2

The above proof shows that η is bounded and Theorem 1
is true.
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