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The generalized Polynomial Chaos Expansion Method (gPCEM), which is a random uncertainty analysis method by employing
the orthogonal polynomial bases from the Askey scheme to represent the random space, has been widely used in engineering
applications due to its good performance in both computational efficiency and accuracy.But in gPCEM, a nonlinear transformation
of random variables should always be used to adapt the generalized Polynomial Chaos theory for the analysis of random problems
with complicated probability distributions, whichmay introduce nonlinearity in the procedure of random uncertainty propagation
as well as leading to approximation errors on the probability distribution function (PDF) of random variables. This paper aims
to develop a flexible polynomial expansion method for response analysis of the finite element system with bounded random
variables following arbitrary probability distributions. Based on the large family of Jacobi polynomials, an Improved Jacobi Chaos
Expansion Method (IJCEM) is proposed. In IJCEM, the response of random system is approximated by the Jacobi expansion with
the Jacobi polynomial basis whose weight function is the closest to the probability density distribution (PDF) of the random
variable. Subsequently, the moments of the response can be efficiently calculated though the Jacobi expansion. As the IJCEM
avoids the necessity that the PDF should be represented in terms of the weight function of polynomial basis by using the variant
transformation, neither the nonlinearity nor the errors on randommodelswill be introduced in IJCEM.Numerical examples on two
random problems show that compared with gPCEM, the IJCEM can achieve better efficiency and accuracy for random problems
with complex probability distributions.

1. Introduction

Nowadays, design and optimization of engineering systems
heavily rely on numerical methods in industry. This is
especially true in the acoustic field, where both time and
economic costs of experiment are particularly expensive. In
the past decade, the uncertainty analysis methods in the
prediction of acoustic field has been greatly developed [1–
5]. Generally, uncertainty analysis methods can be classified
as two distinct groups: probabilistic methods [6, 7] and
nonprobabilistic methods [8–12]. The probabilistic method
is the optimal choice for uncertainty analysis once the PDF
is derived [13].

The Monte Carlo method (MCM) is a simple and robust
probabilistic method, and thus it has been widely used for
random analysis [14]. However, the convergence rate ofMCM

is rather slow and the corresponding computational cost of
MCM for the uncertainty analysis of massive engineering
projects is tremendous. In order to improve the efficiency
of MCM, some advanced MCMs have been developed,
such as the Latin hypercube sampling simulation method
[15], the quasi Monte Carlo method [16], and the other
extended methods [17–19].The convergence rate of advanced
MCMs will become faster than the ordinary MCM. However,
additional restrictions are posed on the design of these
advanced MCMs and their applicability is often limited
[20]. Generally, in order to verify the accuracy of uncertain
methods, ordinaryMCM is still considered as themost robust
sampling method.

The perturbation stochastic method is also a key category
of probabilistic methods, where the response of random
systems is expanded as the Taylor series around the mean
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value of random variables and truncated at a certain order
[21–23]. Typically, the first-order expansion is employed in
Taylor series, as application of high-order Taylor expansion
does not allow for significant improvements in accuracy.
Due to the high computational efficiency, the perturbation
stochasticmethod has been used in various engineering fields
[24–26]. An inherent limitation of perturbation stochastic
methods is that it is limited to random problem with small
uncertainty level.

During the past decades, the generalized Polynomial
Chaos Expansion Method (gPCEM) has gained a large
popularity in the field of random uncertainty analysis [27].
The development of gPCEM started with the work of R.
Ghanem et al., who used Hermite polynomial as the basis
for the analysis of stochastic processes [28, 29]. Subsequently,
the gPCEM which is an extension of Hermite expansion
method, was derived based on the Askey Scheme [30–
32]. Within gPCEM, different kinds of orthogonal poly-
nomials can be chosen as basis to establish the surrogate
model for the random response. Thus, the gPCEM can
achieve higher accuracy for some random problems than
the Hermite polynomial expansion, such as the random
problems with Beta distribution and uniform distribution.
The variance and standard deviation of gPCEM can be
obtained efficiently when compared to the conventional
MCM. In addition, the law of approximation of generalized
polynomial chaos expansion is rather mature [33–35]. Due
to the advantages mentioned above, the gPCEM is very
important probabilistic method for solving randomproblems
[36–39].

Generally speaking, the gPCEM has been widely popu-
larized in random problem analysis. However, it seems the
gPCEMcanonly be directly employed to expand the response
of random systems with the so called basic random variable,
whose PDF can be orthogonal with respect to the polynomial
in Askey Scheme. For the random problems with non-
basic random variable, a non-linear transformation should
be employed, through which the non-basic random variable
can be approximately represented as a nonlinear function of
basic random variables. Nevertheless, two inherent issues will
be encountered in the transformation of nonbasic random
variables. First, the non-linearity will be introduced by
using the nonlinear transformation, which may lead to slow
convergence of the expansion. Second, even if the high-order
nonlinear transformation is used to approximate the real
PDF in terms of the weight function, some fitting errors
between the approximated PDF and the real PDF may be
introduced, especially when the real PDF of random variable
is not a smooth function. If there is large fitting error, the
moment of response obtained by gPCEM may be failed to
converge to the exact result. To decrease the fitting error by
using the nonlinear transformation, Multielement gPCEM
is proposed by Xiu et al. The Multielement gPCEM can
be applied for random problems with arbitrary probability
distributions by discretizing the random space into piecewise
random elements and construct the polynomial expansion
locally in each random element [39–43]. However, the dis-
cretizing of probability distributions can lead to tremendous
computational effort for the random problems with multiple

input variables [44]. As regarding the solution of engineering
problems, the uncertain problems always involve complex
probability distribution as well as large number of variables.
Thus, it is desirable to improve the application value of
generalized polynomial theory in stochastic problems, with
fine ruggedness and strong adaptability.

Moreover, though the gPCEM has received much atten-
tion lately, few engineering problems are analyzed with
generalized polynomial chaos theory [45]. The analysis of
the effects of vibration and noise is one of the key points
for the design of engineering systems with high level NVH
performance. During the last decades, lots of uncertainty
analysis methods based on the perturbation theory have been
proposed for random response analysis of acoustic problem
[46–50]. However, the perturbation based method can only
solve random problems with small uncertainty level [50].
Recently, in the interval and random analysis of acoustic
system, the Gegenbauer series was introduced to establish
the surrogate model [45]. The accuracy of Gegenbauer series
expansion is significantly improved.Nevertheless, theGegen-
bauer series expansion method is only suitable for simple
uncertain problems, which may limit its applications in the
real acoustic problems.

The main purpose of this paper is to develop a powerful
polynomial expansion method for the response analysis of
acoustic systems with random variables following arbitrary
probability distribution. As the uncertain parameter of acous-
tic systems is always bounded in real engineering, the Jacobi
polynomial that is defined in a bounded interval will be
introduced. Based on the Jacobi polynomial, an Improved
Jacobi Chaos Expansion Method (IJCEM) is proposed in this
paper. In IJCEM, the response of acoustic systems in the range
of variation of randomvariables is approximated by the Jacobi
expansion. A polynomial selection criterion is established to
find the best polynomial basis from the large family of Jacobi
polynomials for the approximation of response of acoustic
systems with different probability distributions of random
variables. The mean and variance of response are calculated
through the Jacobi expansion. For the random variable with
Beta distribution, the mean and variance of Jacobi expansion
can be obtained analytically and expressed by the coefficients
of Jacobi expansion. For the random variable with non-Beta
distribution, the mean and variance of Jacobi expansion are
obtained by using the Monte Carlo simulation. Note that the
Jacobi expansion is a simple function, thus the computational
burden suffering from the Monte Carlo simulation of Jacobi
expansion is acceptable.The proposedmethod was employed
to predict the response of acoustic systems with random vari-
ables following complex probability distributions. Numerical
results have shown that the proposed IJCEM can achieve
higher accuracy and efficiency than that of the gPCEM.

The main contents of this paper are as follows: Sec-
tion 2 presents a stochastic model of acoustic response.
Section 3 briefly summarizes the features and deficiencies
of gPCEM analysis. In Section 4, the operation of ITJEM is
illustrated. The characteristics and feasibility of this method
are described in Section 5. Section 6 summarizes the research
work in this paper.
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2. Random Model of Uncertain
Acoustic Problems

The equilibrium equation affected by harmonics can be
expressed as

(K − 𝑘2M + j𝑘C) p = F (1)

where j = √−1 is an imaginary unitary, 𝑘 = 𝜔/𝑐 is the wave
number, 𝜔 is the angular frequency, 𝑐 is the acoustic speed
of fluid, and K is the acoustic system stiffness matrix; M is
the acoustic system mass matrix; C is the acoustic system
damping matrix; p stands for the sound pressure vector; F
stands for the acoustic system load vector. Equation (1) can
be queried in [47].

There are many inherent uncertainties in the engineering
sound field, such as uncertain physical property of acoustic
medium caused by the variation of temperature and the
uncertain velocity exciting produced by unpredictable envi-
ronment. In most cases, these uncertainties can be modeled
by random variables. Besides, the uncertain parameters of
acoustic systems are always bounded in practice and the
uncertain parameters of acoustic field can be described as
bounded random variables. Using the bounded random
variable vector x = [𝑥1, 𝑥2, . . . , 𝑥𝐿], (1) can be rewritten as

Z (x)p (x) = F (x) (2)

where F(x) is the random force vector and Z(x) is the
uncertain dynamic stiffness matrix, which can be expressed
as follows:

Z (x) = K (x) − 𝑘 (x)2M (x) + j𝑘 (x)C (x) (3)

where 𝑘(x) stands for the randomwave number andK(x),
M(x), and C(x) stand for the random stiffness, mass, and
damping matrix, respectively.

For convenience, we can transform the random variable𝑥𝑖 (𝑖 = 1, 2, . . . , 𝐿) into an unitary bounded random variable𝜉𝑖 (𝑖 = 1, 2, . . . , 𝐿) that is defined in [−1, 1]. The linear
transformation for a random vector x can be expressed as

x = x (𝜉) , 𝜉 = [𝜉1, 𝜉2, . . . , 𝜉𝐿]
𝑥𝑖 = 𝑥𝑖 (𝜉𝑖) = 𝑥𝑖,0 + 𝑥𝑖,1𝜉𝑖, 𝑖 = 1, 2, . . . , 𝐿 (4)

where

𝑥𝑖,0 = 𝑥𝑖 + 𝑥𝑖2 ,
𝑥𝑖,1 = 𝑥𝑖 − 𝑥𝑖2

(5)

𝑥𝑖 and 𝑥𝑖 stand for the upper and lower bounds of 𝑥𝑖,
respectively. As a result, the response of the random model
of acoustic systems can be expressed as

p (𝜉) = Z−1 (x (𝜉)) F (x (𝜉)) (6)

3. gPCEM for Random Variables

In gPCEM, the Askey polynomial is used as the basis for
interpretation. Xiu et al. proposed that any second-order
process of L2 sense can be realized with such methods. [20].
In order to analytically calculate the moment of response, the
PDF in gPCEM is expressed by the polynomial basis weight
function. For convenience, the probability distribution whose
PDF is the same as one of the weight function of polynomial
basis in the Askey scheme is named as the basic probability
distribution in this paper.

3.1. gPCEM for RandomUncertainty Analysis with Basic Prob-
ability Distribution. For the random problems with basic
probability distribution, the response of random system can
be expanded as

𝑌 (𝜉) = ∞∑
𝑖=0

𝑐𝑖𝜙𝑖 (𝜉) (7)

where 𝑐𝑖 represents the expansion coefficients to be
estimated and 𝜙𝑖(𝜉) denotes the generalized polynomial basis
belonging to the Askey scheme. The type of 𝜙𝑖(𝜉) varies for
different random problems. For random variables defined in[−∞,+∞], the bases are the generalized Hermite polynomi-
als; for random variables defined in a semibounded domain[0, +∞], the bases are the generalized Laguerre polynomials;
for random variables defined in a bounded interval [−1, 1],
the bases are the Jacobi polynomials; andmore bases for other
types of random variables can be found in [27].

Random variables of sound are usually constrained. The
one-dimensional Jacobi polynomials can be given as

𝐽𝛼,𝛽0 (𝜉) = 1,
𝐽𝛼,𝛽1 (𝜉) = 12 (𝛼 + 𝛽 + 2) 𝜉 + 12 (𝛼 − 𝛽) ,
𝐽𝛼,𝛽𝑛 (𝜉) = 𝐽𝛼,𝛽𝑛−1 (𝜉) 𝐵0 + 𝐽𝛼,𝛽𝑛−2 (𝜉) 𝐶0𝐴0 , 𝑛 = 2, 3, . . .

(8)

where

𝐴0 = 2𝑛 (𝑛 + 𝛼 + 𝛽) (2𝑛 + 𝛼 + 𝛽 − 2)
𝐵0 = (2𝑛 + 𝛼 + 𝛽 − 1)

⋅ {(2𝑛 + 𝛼 + 𝛽) (2𝑛 + 𝛼 + 𝛽 − 2) 𝜉 + 𝛼2 − 𝛽2}
𝐶0 = −2 (𝑛 + 𝛼 − 1) (𝑛 + 𝛽 − 1) (2𝑛 + 𝛼 + 𝛽)

(9)

𝛼 and 𝛽 are the Jacobi parameters that satisfied 𝛼 >−1, 𝛽 > −1. For L-dimensional random variables, the Jacobi
polynomials can be expressed as the tensor product of the
one-dimension Jacobi polynomial, which can be given by

𝐽𝛼,𝛽
𝑘1,...,𝑘𝐿

(𝜉) = 𝐿∏
𝑖=1

𝐽𝛼,𝛽
𝑘𝑖

(𝜉𝑖) , 𝑘𝑖 = 0, 1, 2, . . . (10)
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The Jacobi polynomials are orthogonal with respect to𝑤𝛼,𝛽(𝜉), which can be expressed as

⟨𝐽𝛼,𝛽𝑖 (𝜉) , 𝐽𝛼,𝛽𝑘 (𝜉)⟩
𝑤
= {{{

ℎ𝑘, 𝑘 = 𝑖
0, 𝑘 ̸= 𝑖 (11)

where

ℎ𝑘
= Γ (𝑘 + 𝛼 + 1) Γ (𝑘 + 𝛽 + 1) Γ (𝛼 + 𝛽 + 1)(2𝑘 + 𝛼 + 𝛽 + 1) Γ (𝑘 + 1) Γ (𝑘 + 𝛼 + 𝛽 + 1) Γ (𝛼 + 1) Γ (𝛽 + 1)

(12)

⟨⋅, ⋅⟩ denotes the ensemble average which is the inner
product in the Hilbert space of the random variable 𝜉, which
can be expressed as

⟨𝐽𝛼,𝛽𝑖 (𝜉) , 𝐽𝛼,𝛽𝑘 (𝜉)⟩
𝑤

= ∫1
−1
𝑤(𝛼,𝛽) (𝜉) 𝐽(𝛼,𝛽)𝑖 (𝜉) 𝐽(𝛼,𝛽)𝑘 (𝜉) d𝜉 (13)

𝑤𝛼,𝛽(𝜉) is the weight function related to the Jacobi
polynomial, which is given by

𝑤(𝛼,𝛽) (𝜉)
= Γ (𝛼 + 𝛽 + 1)2𝛼+𝛽+1Γ (𝛼 + 1) Γ (𝛽 + 1) (1 + 𝜉)𝛼 (1 − 𝜉)𝛽

(14)

Based on the Jacobi polynomial, the response of interest
for a one-dimension problem can be rewritten as the Jacobi
expansion

𝑌 (𝜉) = ∞∑
𝑖=0

𝑐𝑖𝐽𝛼,𝛽𝑖 (𝜉) (15)

Based on the theory of the Jacobi expansion, the coeffi-
cient ci can be derived as

𝑐𝑖 = ⟨𝑌 (𝜉) , 𝐽𝛼,𝛽𝑖 (𝜉)⟩
⟨(𝐽𝛼,𝛽𝑖 )2 (𝜉)⟩

= 1
⟨(𝐽𝛼,𝛽𝑖 (𝜉))2⟩ ∫𝑌 (𝜉) 𝐽𝛼,𝛽𝑖 (𝜉) 𝑤𝛼,𝛽 (𝜉) d𝜉

(16)

Since the weight function is equal to the PDF of random
variables, the mean and variance of Y can be derived from
orthogonality analysis as follows [30]:

𝜇 (𝑌) = 𝑐0 (17)

𝜎2 (𝑌) = ∞∑
𝑖=0

(𝑐𝑖)2 ℎ𝑖 − (𝑐0)2 (18)

3.2. gPCEM for Random Uncertainty Analysis with Nonbasic
Probability Distribution. In a wide range of engineering
applications, the basic probability distribution is insufficient
to describe the random process. To deal with other bounded
probability distributions, a nonlinear variable transformation
is employed such that a complex probability distribution can
be represented by the weight function of polynomial basis.
For instance, the nonlinear transformation for an arbitrary
random variable x can be written as

𝑥 ≈ 𝑥 = 𝑏0 + 𝑏1𝜉 + 𝑏2𝜉2 + ⋅ ⋅ ⋅ (19)

where 𝜉 is the random variables with basic probability
distribution and 𝑏0, 𝑏1, 𝑏2, . . . are the constant coefficients of
nonlinear transformation, which can be given by

To find 𝑏𝑘 (𝑘 = 0, 1, 2, . . .)
min ∫1

−1
{𝑃𝑋 (𝑥) − 𝑃𝑋̃ (𝑥)} d𝑥 (20)

In the above equation, 𝑃𝑋(𝑥) is the original PDF of 𝑥 and𝑃𝑋̃(𝑥) is the PDF of function 𝑥.
By using the variable transformation, the gPCEM can

also be extended to calculate the uncertain questions with
nonbasic variables. Nevertheless, the computational effi-
ciency of gPCEM will be seriously deteriorated when the
variable is transformed as a high-order polynomial function
of the basic random variable. The main reason is that the
variable transformation can introduce the nonlinearity in
the process of uncertainty propagation. Besides, the variable
transformations may lead to some fitting errors between the
approximated PDF and the original PDF, especially when the
PDF of random variable is not a smooth function. If there
is large fitting error, the response average value and variance
derived by gPCEMmay failed to converge to the exact result.

4. IJCEM for Random Uncertainty
Analysis of Sound with Arbitrary
Probability Distributions

To avoid the variable transformation when using generalized
Polynomial Chaos theory to solve random problems with
complicated probability distributions, an Improved Jacobi
Chaos expansion Method (IJCEM) is developed in this sec-
tion. In the developed method, the sound response is directly
expanded in the application of the Jacobi polynomials. The
core of the method is to realize the inversion of random
problems in the acoustic system by polynomial expansion.

4.1. Determine Polynomial Parameters of Jacobi Expansion.
Theoretically, all Jacobian polynomials defined on [−1, 1] can
be used for expansion and then invert the uncertain response
of the acoustic system, but the accuracy of the Jacobi method
with different parameters of the corresponding polynomial
bases may vary greatly as the weighted projection is a way
for controlling the residual deviation of Jacobi method [30].
Reference [24] has shown that if the type of polynomial is
used to match the import variable distribution, the fastest
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Figure 1: PDF of a random variable and the weight function with
different polynomial parameters.

convergence rate will be implemented. In other words, the
optimal polynomial basis can be determined by the same
amount as the PDF for random problem analysis. However,
in most engineering cases, the variable weighting value that
equals the PDF of uncertain variable cannot be found from
the Askey sckeme. As a result, the weighting function of
polynomials basis of the Jacobi method to solve a random
problemmay be always deviated from the PDF of real uncer-
tain variables if the variable transformation is not employed.
In this paper, the deviation between the weight function and
the PDF is allowed and a polynomial selection criterion will
be established to choose the basis of Jacobi expansion. Before
establishing a polynomial selection criterion, the influence
of the residual between the variable weighting value and
the PDF on the expansion will be discussed. The degree of
residual between the weighting dependent variable and the
PDF of a random variable can be define by a proximity index
as follows:

𝛿 = 𝛿 (𝛼, 𝛽) = lg(∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑃𝑋 (𝑥) − 𝑤𝛼,𝛽 (𝑥)𝑤𝛼,𝛽 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 d𝑥) (21)

𝑃𝑋(𝑥) denotes the PDF of x; 𝑤(𝛼,𝛽)(𝑥) is the weight
function related to the Jacobi polynomial with the Jacobi
parameters 𝛼 and 𝛽; 𝛿 denotes the proximity index of𝑤(𝛼,𝛽)(𝑥) for 𝑃𝑋(𝑥).

A simple mathematic example will be considered to
investigate the effect of 𝛿 on the convergence behavior of
Jacobi expansion for random uncertainty qualification.

Example. Consider a function 𝑦 = tan 𝑥, where x is a
uncertainty limited in [−1, 1]. The probability distribution
function of x is shown Figure 1. The Jacobi expansion with
different polynomial parameters are used to approximate the
function y, and then themean and variance of y are calculated
through MCM of y. Three cases when the Jacobi parameters
are 𝛼 = 𝛽 = 0, 𝛼 = 𝛽 = 5 and 𝛼 = 𝛽 = 9.5, will be
considered. For comparison, the weight function of Jacobi

Table 1: Proximity index of the weight functions with different
Jacobi parameters for a PDF.

Polynomial parameters 𝛼 = 𝛽 = 9.5 𝛼 = 𝛽 = 5.5 𝛼 = 𝛽 = 0
Proximity index 𝛿 0.9 4.6 9.7

polynomials related to each group of Jacobi parameters is
also plotted in Figure 1. According to Eq. (21), the proximity
index of theweight functionswith different Jacobi parameters
for the PDF shown in Figure 1 can be obtained, which are
listed in Table 1. The Jacobi expansions with different Jacobi
parameters are used to derive the mean and square deviation
of y. The convergence behavior of the expansion is shown in
Figure 2.

From Figure 2, we can find that the convergence speed
of Jacobi expansion is improved with the decrease of 𝛿. The
error of the mean and variance of y calculated by using
Jacobi expansion with any 𝛿 can eventually decrease to 1e-
03 when the retained order is up to 7. Therefore, we can
conclude from Figure 2 that (1) the Jacobi expansion with any
Jacobi parameters can achieve high accuracy if the reserved
sequences are large enough; (2) the converge speed of Jacobi
expansion method can be improved by reducing 𝛿.

Based on the above conclusions, we can define the
polynomial selection criterion by an optimization solution as
follows:

min 𝛿 (𝛼, 𝛽)
s.t. 𝛼, 𝛽 > −1 (22)

Through the above optimization procedure, the Jacobi
parameters of the Jacobi expansion for random uncertainty
analysis of acoustic systems with arbitrary probability distri-
butions can be obtained.

4.2. Invert Response Law by Establishing Jacobian Extension.
Random sound models can be fitted through the evolution of
related parameters of variables, as follows:

𝑝𝑘 (𝜉) = ∞∑
𝑖1=0

⋅ ⋅ ⋅ ∞∑
𝑖𝐿=0

𝑓𝑘𝑖1,...,𝑖𝐿𝐽(𝛼,𝛽)𝑖1,...,𝑖𝐿
(𝜉) ,

𝑘 = 1, 2, . . . , 𝑁𝑡𝑜𝑡
(23)

where 𝑝𝑘(𝜉) (𝑘 = 1, 2, . . . ,𝑁𝑡𝑜𝑡) denotes the sound
pressure of acoustic field at the kth node,𝑁𝑡𝑜𝑡 is the number
of nodes of the sound field, and 𝑓𝑘𝑖1 ,...,𝑖𝐿 is the coefficient
of Jacobi expansion to be estimated. In practice, the Jacobi
expansion should be truncated at a finite order. Generally,
the Jacobi expansion can be truncated by using total order
expansion theory or the tensor order expansion theory.
The tensor product expansion theory can effectively solve
uncertain problems when the relevant retention order of
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Figure 2: Convergence behavior of Jacobi expansion with different Jacobi parameters for the calculation of the mean and variance of y: (a)
mean; (b) variance.

random variable changes [50]. The Jacobi expansion for the
response of random acoustic model can be expressed as

𝑝𝑘 (𝜉) = 𝑁1∑
𝑖1=0

⋅ ⋅ ⋅ 𝑁𝐿∑
𝑖𝐿=0

𝑓𝑘𝑖1,...,𝑖𝐿𝐽(𝛼,𝛽)𝑖1,...,𝑖𝐿
(𝜉) ,

𝑘 = 1, 2, . . . , 𝑁𝑡𝑜𝑡
(24)

where 𝑁𝑖 (𝑖 = 1, 2, . . . , 𝐿) is the retained order of Jacobi
expansion related to 𝜉𝑖.

For the type of tensor product expansion, the Gaussian
integral method is very suitable to estimate the expansion
characteristics [51]. Generally, the Gauss-Jacobi integration
method is able to realize a reliable precision for the estimation
of the expansion coefficient of Jacobi expansion When the
Gauss-Jacobi integration point is equal to the expansion
amount [35]. The coefficient 𝑓𝑘𝑖1 ,...,𝑖𝐿 can be derived from the
Gauss-Jacobi integral as

𝑓𝑘𝑖1 ,...,𝑖𝐿 ≈ 1ℎ1 × ⋅ ⋅ ⋅ × ℎ𝐿
𝑚1∑
𝑗1=1

⋅ ⋅ ⋅ 𝑚𝐿∑
𝑗𝐿=1

𝑝𝑘 (𝜉𝑗1 , . . . , 𝜉𝑗𝐿)
⋅ 𝐽(𝛼,𝛽)𝑖1,...,𝑖𝐿

(𝜉𝑗1 , . . . , 𝜉𝑗𝐿)𝐴𝑗1 ,...,𝑗𝐿
(25)

where (𝜉𝑗1 , . . . , 𝜉𝑗𝐿) are the interpolating points and
mi (i = 1, 2, . . . , L) is the amount of points of 𝜉𝑖. To reduce
the deviation, the parameter mi is set as Ni+1. 𝐴𝑗1,𝑗2,...,𝑗𝐿 is
the weighting value of Gauss-Jacobi integration, which can
be expressed as

𝐴𝑗1 ,...,𝑗𝐿 = 𝐴𝑗1 × 𝐴𝑗2 × ⋅ ⋅ ⋅ × 𝐴𝑗𝐿 (26)

In the above equation, the weight 𝐴𝑗𝑖 (i = 1, 2, . . . ,L) is
given by [35]

𝐴𝑗𝑖 = 2𝛼+𝛽+1 Γ (𝑚𝑖 + 𝛼 + 1) Γ (𝑚𝑖 + 𝛽 + 1)Γ (𝑚𝑖 + 1) Γ (𝑚𝑖 + 𝛼 + 𝛽 + 1) (1 − 𝑥2𝑗)
−1

⋅ {𝑃(𝛼,𝛽)𝑚𝑖

󸀠 (𝑥𝑗)}−2 , 𝑖 = 1, 2, . . . , 𝑚𝑖

(27)

4.3. Estimation of Average and Variance. After the coefficient
of Jacobi expansion is obtained, the average and variance of
the response can be calculated approximately through the
Jacobi method. The weight function of a Jacobi polynomial
basis can be the same as the PDF of random variable. In this
case, the IJCEM is identical to the traditional gPCEM. Thus,
the mean and variance can be calculated as [30]

𝜇𝑝𝑘 = 𝑓𝑘0,0,...,0 (28)

𝜎2𝑝𝑘 = E [(𝑝𝑘)2] − (𝜇𝑝𝑘)2
= 𝑁1∑
𝑖1=0

⋅ ⋅ ⋅ 𝑁𝐿∑
𝑖𝐿=0

(𝑓𝑘𝑖1 ,...,𝑖𝐿)2 ℎ𝑖1,...,𝑖𝐿 − (𝑓𝑘0,0,...,0)2
(29)

For the random problems with nonbasic probability
distribution, the mean and variance of response cannot be
obtained analytically. To obtain the mean and variance of
Jacobi expansion with uncertain variables, some numerical
solvers can be utilized. In this paper, the mean and variance
of the Jacobi expansion related to the random variable
with nonbasic probability distribution are calculated through
Monte Carlo simulation due to its simplicity. The additional
computational cost suffering from MCM can be accepted in
most practical engineering applications due to the simplifica-
tion of the function.

Sometimes, both basic and nonbasic probability dis-
tributions may exist simultaneously. The response analysis
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of random problems with basic and nonbasic probability
distributions includes two main steps. First, the random
variable with nonbasic probability distribution is viewed as
a fixed value, and the conditional mean and variance of
Jacobi expansion with basic probability distributions can be
obtained. For clarity, the Jacobi expansion with basic and
nonbasic probability distributions can be expressed as

𝑝𝑘 = 𝑀1∑
𝑗1=1

⋅ ⋅ ⋅ 𝑀𝐿2∑
𝑗𝐿2=1

( 𝑁1∑
𝑖1=0

⋅ ⋅ ⋅ 𝑁𝐿1∑
𝑖𝐿1=0

𝑓𝑘𝑖1 ,...,𝑖𝐿1 ,𝑗1,...,𝑗𝐿2𝐺𝑖1,...,𝑖𝐿1 (𝜂))

⋅ 𝐺𝑗1,...,𝑗𝐿2 (𝛽) =
𝑀1∑
𝑗1=1

⋅ ⋅ ⋅ 𝑀𝐿2∑
𝑗𝐿2=1

𝑧𝑘𝑖1 ,...,𝑖𝐿1 ,𝑗1,...,𝑗𝐿2𝐺𝑗1,...,𝑗𝐿2 (𝛽)
(30)

where

𝑧𝑘𝑖1 ,...,𝑖𝐿1 ,𝑗1,...,𝑗𝐿2 =
𝑁1∑
𝑖1=0

⋅ ⋅ ⋅ 𝑁𝐿1∑
𝑖𝐿=0

𝑓𝑘𝑖1 ,...,𝑖𝐿1 ,𝑗1,...,𝑗𝐿2𝐺𝑖1,...,𝑖𝐿1 (𝜂) (31)

In above equations, 𝜂 and 𝛽 denote the non-basic and
basic randomvariable, respectively; 𝐿1 is the number of 𝜂 and𝐿2 for 𝛽.

Owing to the orthogonality of Jacobi polynomials, the
mean and variance of 𝑝𝑘 related to the basic random variable
𝛽 are shown below

𝜇 (𝜂) = 𝑁1∑
𝑖1=0

⋅ ⋅ ⋅ 𝑁𝐿1∑
𝑖𝐿1=0

𝑓𝑘𝑖1 ,...,𝑖𝐿1,0...,0𝐺𝑖1,...,𝑖𝐿1 (𝜂) (32)

𝜎2 (𝜂)
= 𝑀1∑
𝑗1=1

⋅ ⋅ ⋅ 𝑀𝐿2∑
𝑗𝐿2=1

( 𝑁1∑
𝑖1=1

⋅ ⋅ ⋅ 𝑁𝐿1∑
𝑖𝐿1=1

𝑓𝑘𝑖1 ,...,𝑖𝐿1 ,𝑗1,...,𝑗𝐿2𝐺𝑖1,...,𝑖𝐿1 (𝜂))
2

⋅ ℎ𝑗1,...,𝑗𝐿2 − (
𝑁1∑
𝑖1=0

⋅ ⋅ ⋅ 𝑁𝐿1∑
𝑖𝐿1=0

𝑓𝑘𝑖1 ,...,𝑖𝐿1,0...,0𝐺𝑖1,...,𝑖𝐿1 (𝜂))
2

(33)

Then, the unconditional mean 𝜇 and the mean square
value (𝜇2 + 𝜎2) of the response over the complete random
ensemble can be evaluated using the laws of conditional
probability

𝜇 = ∫𝜇 (𝜂) 𝑝 (𝜂) 𝑑𝜂 = E [𝜇 (𝜂)] (34)

𝜇2 + 𝜎2 = ∫ [𝜇2 (𝜂) + 𝜎2 (𝜂)] 𝑝 (𝜂) 𝑑𝜂
= E [𝜇2 (𝜂)] + E [𝜎2 (𝜂)] (35)

where 𝜂 are now considered to be random and described
by a joint PDF 𝑝(𝜂). Equation (35) can be rewritten as

𝜎2 = E [𝜇2 (𝜂)] − E2 [𝜇 (𝜂)] + E [𝜎2 (𝜂)] (36)

By substituting 𝜎2[𝜇(𝜂)] = E[𝜇2(𝜂)] − E2[𝜇(𝜂)] into (36),
the unconditional variance is shown below

𝜎2 = 𝜎2 [𝜇 (𝜂)] + E [𝜎2 (𝜂)] (37)

Subsequently, the mean and variance expressed in (34)
and (37) can be derived with the Monte Carlo method. In
particular, each item of (34) and (37) can be calculated by (32)
or (33).

4.4. Procedure of IJCEM for Random Analysis of Sound
with Arbitrary Probability Distributions. The procedures of
IJCEM for the response analysis of acoustic systems with
random parameters are shown below:

(1) Calculating the Jacobi parameter 𝛼 and 𝛽 with respect
to each random variable through the optimization solution
shown in (22);

(2) The expansion coefficient is solved by (25)
(3) The integral weight is solved by (27)
(4) The solution of the response is given by (6)
(5) Calculate the mean and variance of response of sound

field with different types of random variables. For the random
variables with basic distributions, the mean and variance
of responses are calculated through (28) and (29); for the
random variables with nonbasic distributions, the mean and
variance of responses are calculated through the Monte
Carlo simulation; for the random variables with both basic
and nonbasic distributions and the mean and variance of
responses are calculated through (34) and (37).

5. Numerical Examples

5.1. Acoustic Tube

5.1.1. Random Model of an Acoustic Tube. As shown in
Figure 3, a rigid two-dimensional sound tube finite element
model is built and intermittent loads are applied to the inside
of the model.

Considering the unpredictability of the environment
temperature, 𝜌, 𝑐, and V𝑛 are considered as uncertain factors.
For simplicity, these factors are considered as a function of
fixed variables within a certain interval.

𝑐 = (340 + 30𝜉1)m/s
𝜌 = [1.225 + 0.367 (0.35𝜉2 + 0.15𝜉32)] kg/m3

V𝑛 = [0.01 + 0.003 (0.15𝜉3 + 0.35𝜉53)]m/s
(38)

In the above equations, 𝜉1, 𝜉2, and 𝜉3 are unitary random
variables with Beta distribution. The equation for the Beta
distribution is

𝑃(𝑎,𝑏) (𝜉) = Γ (𝑎 + 𝑏 + 1)2𝑎+𝑏+1Γ (𝑎 + 1) Γ (𝑏 + 1) (1 + 𝜉)𝑎 (1 − 𝜉)𝑏 ,
−1 ≤ 𝜉 ≤ 1

(39)

where a and b are the Beta parameters, the Beta param-
eters of 𝜉1, 𝜉2, and 𝜉3 are 𝑎1 = 𝑏1 = 4.5, 𝑎2 = 𝑏2 = 3, and𝑎3 = 𝑏3 = 5, respectively.
5.1.2. Comparison of the Accuracy of IJCEM and gPCEM
under the SameRetainedOrder. According to the polynomial
selection criterion of IJCEM, the Jacobi parameters of the
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Figure 3: Mesh distribution of two-dimensional model.
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Figure 4: Mean and variance of the sound pressure’s imaginary parts of acoustic tube along the central axis at f=150Hz: (a) mean and (b)
variance.

Jacobi expansion for 𝜌, 𝑐, and V𝑛 can be obtained, namely:𝛼𝜌 = 𝛽𝜌 = 4.5, 𝛼𝑐 = 𝛽𝑐 = 3.7, and 𝛼V𝑛 = 𝛽V𝑛 = 7.2. A
relative improvement criterion will be introduced for random
uncertainty analysis with IJCEM [51]. For multivariate ran-
domproblems, the relative improvement of responses is given
by [51]

Ir (k, 𝑗) = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑈 (k + e𝑗) − 𝑈 (k)

𝑈 (k)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (40)

where k = [𝑘1, 𝑘2, . . . , 𝑘𝐿] is the retained order vector, 𝑘𝑗
jth retention order, and𝑈(k) denotes the response calculated
by using the Jacobi expansion with the k th retained orders.
e𝑗 is a L-dimensional vector in which only the jth element
is equal to 1, while the others are equal to zero. IJCEM is
considered to be converged when Ir(k, 𝑗) (j = 1, 2, . . . , L)
is smaller than the customary prescribed tolerance. More
detailed procedure of the promotion criteria for determining
the retained order can be found in [51]. Assuming that the
permissible relative error is 10−2, by using the promotion
criteria, the order of IJCEM for random analysis of the model
at f=150Hz and f=300Hz is

N𝑟𝑒𝑞 = [𝑁𝜌, 𝑁𝑐, 𝑁V𝑛] = [1, 2, 1] (41)

The results of the sound pressure calculation with the
retained order [1, 2, 1] are shown in Figures 4 and 5, respec-
tively. The reference solution is obtained by using the MCM,

in which the number of sampling points is 105. Note that the
mean and variance of Jacobi expansion are also calculated
by using the Monte Carlo simulation. In the Monte Carlo
simulation of Jacobi expansion, the number of sampling
points is also 105. Besides, to show the accuracy of IJCEM
and gPCEMmore clearly, the relative errors of the mean and
variance of responses integrated in different ways at f=150Hz
are listed in Table 2.

From Figures 4 and 5 and Table 2, we can find that the
IJCEM is a high precisionmethod. Besides, Table 2 has shown
that the maximum value of relative error yielded by IJCEM is
no more than 2%, which retains high reliability. It illustrates
the feasibility of applying the relative improvement criteria.
By a comparison of the results obtained through the IJCEM
and the gPCEM, it is proved that IJCEM is superior to gPCEM
in the same condition. From Table 2, the relative error of the
variance of responses yielded by gPCEM is more than 10%.
It indicates that higher order polynomial should be retained
when the gPCEM is used to derive the variance of response
of the model with random variables.

5.1.3. Comparison of the Efficiency of IJCEM and gPCEM
under the Same Accuracy. For gPCEM, the required retained
order can also be verified by using optimization guidelines.
For random analysis of the acoustic tube at f=150Hz, the
required retained order of gPCEM estimated is [2, 4, 3].
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Figure 5: Mean and variance of the sound pressure’s imaginary parts of acoustic tube along the central axis at f=300Hz: (a) mean and (b)
variance.

Table 2: Relative error of mean and variance of the sound pressure’s imaginary parts.

x Relative error of mean Relative error of variance
IJCEM gPCEM IJCEM gPCEM

0m 0.01% 0.01% 1.1% 13.4%
0.2m 0.01% 0.01% 0.6% 13.0%
0.5m 0.01% 0.01% 1.3% 13.5%
1m 0.01% 0.01% 1.0% 13.2%

Table 3: Relative error of variance of the sound pressure’s imaginary parts yield by gPCEM.

MCM(Pa) gPCEM(Pa) Relative error
0m 1.568 1.554 0.9%
0.2m 0.195 0.193 1.0%
0.5m 1.211 1.196 1.2%
1m 1.102 1.087 1.4%

The variances of responses of the acoustic tube obtained by
gPCEM are listed in Table 3.

From Table 3, we can find that the maximum value
of relative errors yielded by gPCEM is 1.4%. Thus, we can
conclude that the criterion can be also used in gPCEM.
Besides, the results shown in Table 3 indicate that the gPCEM
can also achieve high accuracy for the response analysis of
acoustic tube with random variables if the retained order is
sufficiently large. However, the required retained order of
gPCEM is higher than that of the IJCEM when the same
accuracy is achieved.

The detailed execution time of gPCEM and IJCEM to
calculate the response of acoustic tube at f=150Hz is listed
in Table 4. It can be found from Table 4 that the compu-
tational efficiency of IJCEM is greatly improved compared
with the gPCEM. The main reason is that the required
retained order of IJCEM is lower than that of the gPCEM,
thus the corresponding computational time to construct
the polynomial expansion can be decreased compared with

the gPCEM. Besides, it can be seen from Table 4 that the
computational time of Monte Carlo simulation of Jacobi
expansion is much shorter than the total execution time of
IJCEM. It indicates that the main computational burden of
the proposed IJCEM for random problems suffers from the
construction of the polynomial expansion. In other words,
the additional time encountered from MCM of the Jacobi
expansion is acceptable.

5.2. Acoustic Cavity of a Car. A finite element model was
built, as shown in Figure 6.The acoustic cavity is surrounded
by air with the density 𝜌 and the acoustic speed 𝑐. At the
front windshield, the admittance coefficient along the Robin
boundary is 𝐴𝑛. According to the characteristics of the front
engine, the discontinuous normal velocity V𝑛 is imposed at
the outside of the vocal cavity. The remaining edges are
perfectly rigid. The finite element method is used to analyze
the sound pressure of the acoustic cavity of the car.
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Table 4: Execution time comparison.

Methods Retained order
Execution time of the
construction of the

polynomial expansion

Execution time of the Monte
Carlo simulation of the
polynomial expansion

Total execution time

gPCEM [2, 4, 3] 60.2s 0s 60.5s
IJCEM [1, 2, 1] 12.8s 2.5s 15.3s

2.672m

1.072m
An

A

n

Figure 6: The 2D finite element mesh model of the acoustic cavity of a car.

The random parameters 𝜌, 𝑐,𝐴𝑛, and V𝑛 are assumed as a
function of the unitary random variable defined in [−1, 1] as
follows:

Density of air: 𝜌 = 1.225 + 0.367𝜉4
Speed of sound: 𝑐 = 340 + 20.5𝜉4
Admittance coefficient: 𝐴𝑛 = 0.0014 + 0.00042𝜉4
Velocity of exciting: V𝑛 = 0.01 + 0.003𝜉5

In order to compare the accuracy of the proposedmethod
and gPCEM for the response analysis of random acoustic
problems with complex PDFs, the PDF of 𝜉4 and 𝜉5 are
assumed as a piecewise function. The original PDFs of 𝜉4 and𝜉5 are shown in Figure 7. For 𝜉4 and 𝜉5, the weight function
from Askey scheme is difficult to approximate the original
PDF. As a result, some errors may be introduced on the
PDF of random variables by using gPCEM. For comparison,
the PDF approximated by the weight function of polynomial
basis in gPCEM is also plotted in Figure 7.

The proposed IJCEM and the gPCEM are employed to
calculate the response of acoustic cavity of the car with ran-
domvariables.Theprescribed accuracy is set as 10−2 . By using
the relative improvement criterion, the required retained
orders of IJCEMand gPCEM for randomuncertainty analysis
of the acoustic cavity of the car can be obtained as follows:

N𝐼𝐽𝐶𝐸𝑀𝑟𝑒𝑞 = [𝑁𝜌,𝑁𝑐,𝑁𝐴𝑛 , 𝑁V𝑛] = [1, 2, 1, 1] ,
N𝑔𝑃𝐶𝐸𝑀𝑟𝑒𝑞 = [𝑁𝜌,𝑁𝑐,𝑁𝐴𝑛 , 𝑁V𝑛] = [1, 3, 1, 1] . (42)

In the proposed IJCEM, the Jacobi parameters obtained
according to the polynomial selection criterion are 𝛼1 =𝛽1 = 6.2 for 𝜌, 𝑐, and 𝐴𝑛 and 𝛼2 = 𝛽2 = 5.5 for V𝑛. The
simulation results obtained by IJCEMand gPCEMare plotted
in Figure 8 at 100Hz and Figure 9 at 200Hz. The reference

results obtained by using the MCMwith 105 sampling points
are also plotted in Figures 8 and 9.

From Figures 8 and 9, we can find that the IJCEM
can complete high precision calculation of acoustic cavity
of car with random variables following piecewise PDFs. In
contrast, the variance of response obtained by the gPCEM
deviates significantly from the reference solution. The main
reason is that the approximated PDF is used in gPCEM to
calculate the mean and variance of the response of acoustic
systems. Therefore, we can conclude that that the proposed
IJCEM ismore suitable for the randomuncertainty analysis of
acoustic problems than the gPCEM, especially when the PDF
of random variables cannot be approximated by the weight
function perfectly.

6. Conclusion

On the basis of the large family of Jacobi polynomials, the
IJCEM is proposed to solve the random acoustic problem
with arbitrary probability distributions. Jacobi expansion is
used to fit the random problem. The coefficients of Jacobi
expansion are calculated by the Gauss-Jacobi integration
due to its robustness as well as its good efficiency for the
estimation of the coefficients of tensor order polynomial
expansion. By determining the effective polynomial selection
criteria, the correlation weight function and the polynomial
basis are obtained, and the response result can be effectively
calculated. As the PDF of the random variable is not required
to be expressed as the weight function of polynomial basis,
the proposed IJCEM can avoid nonlinear transformation of
variables for random problems with any complicated PDFs.
Another advantage of the proposed IJCEM is that only the
Jacobi parameters should be changed to construct the Jacobi
expansion for the response analysis of acoustic systems with
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Figure 7: The original PDF of random variables and the approximated PDF in gPCEM: (a) 𝜉4 and (b) 𝜉5.
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Figure 8: Mean and variance of sound pressure of car along the bottom boundary at f=100Hz: (a) mean and (b) variance.

different random variables. Thus, the proposed method can
be easily processed in the numerical implementation.

Two typical acoustic problems are used to investigate the
effectiveness of the proposed methodology. The numerical
results show that both IJCEM and gPCEM can achieve a
desirable accuracy for the random uncertainty analysis of
acoustic systems when the PDF of random variables can be
represented in terms of the weight functions of polynomial
basis. However, the computational efficiency of gPCEM is
lower than that of the proposed IJCEM as the non-linear
transformation is used for random variables in gPCEM. In
addition, it can be concluded from the numerical study
of random acoustic problems with complicated piecewise
probability distributions that the accuracy of the gPCEMmay

deteriorate when some errors are introduced for PDFs by
using the transformation of random variables. In contrast,
the proposed IJCEM can achieve high accuracy for the
random problem with arbitrary probability distributions if
the retained order of Jacobi expansion is sufficiently large.
Note that the mean and variance of Jacobi expansion are
calculated by the Monte Carlo simulation when the weight
function of polynomial basis is not identical to the PDF of
randomvariables.However, comparedwith the improvement
of the accuracy and efficiency in constructing the Jacobi
expansion, the additional computational cost suffering from
theMonte Carlo simulation of Jacobi expansion is acceptable,
especially for large scale engineering problems. It should be
also pointed out that the proposed IJCEM is not limited to the
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Figure 9: Mean and variance of sound pressure of car along the bottom boundary at f=200Hz: (a) mean and (b) variance.

response analysis of acoustic systems. With a suitable exten-
sion, it can be used for response analysis in multidisciplinary
computational mechanics.

It is noted that the computational cost of IJCEM will
increase rapidly with the number of random variables. Thus,
the IJCEM is not suitable for random problem with large
number of random variables.
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