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The study focuses on the modelling and estimation of a class of discrete-time uncertain systems, including network-induced
random delays, packet dropouts, and out-of-order packets during the data transmission from the plant to the estimator. In order to
improve system performance, event-triggered signal selection method is used to establish the system model. Based on this model,
a distributed measurement and centralized fusion estimation scheme is designed using a robust finite horizon Kalman-type filter.
Since the phenomena caused by the network-induced deteriorate estimation accuracy, a time-based reorganization measurement
is employed to design a linear delay compensation strategy based on estimation. Moreover, in order to obtain the optimal linear
estimation, weighted fusion estimation approach is used to perform information collaboration through the error cross-covariance
matrix. Simulation results demonstrate that the proposed method has higher estimation performance than the existing methods in
this study.

1. Introduction

Thenetworked system is spatially distributed systembased on
shared communication technology [1, 2].They have attracted
a large number of subjects of intensive researches and
possessed the successful applications in a wide range, such as
intelligent transportation [3], environmental monitoring [4],
remote diagnostics and troubleshooting [5], and smart grids
[6]. Note that the communication networks are introduced
[7, 8] into distributed systems inevitably produce network-
induced phenomena, which usually deteriorate the perfor-
mance of networked systems. Such network-induced phe-
nomena include but are not limited to transmission delays,
packet dropouts,missing/fadingmeasurements, our-of-order
packets, and variable sampling/transmission intervals [9].
Therefore, the research on distributed information percep-
tion and fusion estimation issue for networked systems with

network-induced phenomena is significant and challenging
[10].

There are excellent results for the problem of state estima-
tion. In engineering applications, stochastic uncertainties are
described using the multiplicative noise [10–13] to simplify
the systemmodel. And the cross-correlation between process
noise and measurement noise in [11, 14–16] is taken into
account for data transmission over networks. In order to
alleviate the negative influence of network-induced phe-
nomena and improve system performance, some distributed
estimation and filtering methods are proposed. Liu et al. [17]
presented distributed fusion estimation based on Kalman-
type filtering, which introduced two level weighted fusion
scheme. For unknown nonlinear system, a robust adaptive
finite-time parameter estimation [18] and control based on
parameter estimation errors was studied. Furthermore, an
adaptive law [19] is used to achieve precise estimation of
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essential parameters, where the parameter estimation error
is obtained explicitly and then used as a new leakage term.
Event-triggered communication schedules [20] are used
for the distributed estimation problem employing Kalman
consensus filter. Furthermore, filtering methods play an
important role in networked systems for signal processing
and communications. For example, event-based 𝐻∞ filter-
ing [7, 21] is insensitive to the uncertainties appearing in
stochastic system models and/or exogenous input signals.
Considering the parametric uncertainty [22], robust filtering
[23] has the robustness to suppress the noise disturbance.The
finite-horizon filtering [24, 25] can obtain the upper bound
to the steady-state error covariance. Using the discrete-
time stochastic bounded real lemma and the matrix anal-
ysis approach, Chen et al. [26] presented the distributed
robust fusion estimation with stochastic and deterministic
parameter uncertainties. Since the actual error covariance of
estimated state is less than the upper bound, it has a better
transient performance.

In order to deal with network-induced transmission
delays and/or packet dropouts phenomena [27], there are
some results available in the current investigations. The one-
step prediction compensation scheme is used to describe the
random delays, which applies the augmented state approach
[28, 29] to obtain more accurate estimated value. For a
class of networked multisensor fusion systems with mul-
tiple uncertainties, robust reduced-dimension observation-
fusion Kalman filters were proposed [30] to further reduce
the computation burden. On the other hand, measurement
reorganization [24, 31] is an effective strategy employing
the measurement transformation method to transform the
random delayed system into the delay-free counterpart. In
addition, the systemmodel is established by randomvariables
of Bernoulli distribution [1, 13, 28, 32], so that the measure-
mentmodel is augmented bymultiple random delayed states.
However, the compensation and state augmentation schemes
increase the computational complexity of state estimation via
networked systems.

For modelling problem, Brizhinev et al. [33] proposed
a modelled method through the notions of power transi-
tion and power diffusion. Miao et al. [34] investigated the
containment control of multi-agent systems with constant
time delays under event-triggered conditions, and Li et
al. [35] presented an event-triggered sampling mechanism
and develops a sampled-data-based stabilizer for switching
linear systems. Considering that random transmission delays
inevitably generate out-of-order packets phenomenon in the
communication, holding or dropping packet disorders is
necessary to signal processing in networked systems. There
are extensive reports on dealing with out-of-order packets.
For example, to receive the most recent arrived data packet,
the zero-order-holder (ZOH) scheme is applied and the
stored packet is replaced until the next arrived data packet
[36, 37]. The signal sequence reordering method of the logic
ZOH [7, 38–41] scheme is introduced a function based on
ZOH to judge an out-of-order packet. So only the latest time-
stamped data packet is received. The scheme then actively
drops the out-of-order packets. Note that logic ZOH is
widely applied in networked control systems for event-trigger

mechanism. However, with regard to the effect of out-of-
order packets, the analysis and design of the finite-horizon
filter based on event-triggered signal selection method are a
complex problem, and it is difficult to detect the appropriate
filter parameters.

Summarizing the above discussion, the estimation prob-
lem includes designing the filter with multi-step random
delays, packet dropouts and correlated noises. However, for
uncertain systems, the distributed fusion estimation based on
finite horizon filtering are seldom studied.Thismay be due to
the difficulty of dealing with the disordered and missing data
packets, as well as probing the appropriate upper bounds for
filter parameters.

Motivated by the above analysis, this study focuses
on establishing system model and probing estimator of
stochastic time-varying systems. For the received measure-
ment with network-induced random transmission delays,
packet dropouts, and out-of-order packets, these phenomena
are synthetically considered; moreover, the system model
is established by the signal selection method. The main
contributions of this study are summarized as follows:

(i) Analyze the performance of time series signal pro-
cessing for network-induced random transmission delays,
packet losses, and disorders employing. Meanwhile, in order
to effectively discard the out-of-order packets and improve
system performance, the system model depending on the
event-triggered signal selection method of logic ZOH is
established for achieving state estimation.

(ii) The linear delay compensation strategy based on
estimation is proposed for dealing with random transmission
delays. In order to suppress the computational burden, the
delayed estimation is transformed into the equivalent delay-
free one by re-ordering measurement sequence with a time-
stamp.

(iii) Considering the delayed system with packet
dropouts, the one-step prediction estimation approach is
presented for compensating the missing packets with an
artificial delay. Furthermore, the weighted fusion criterion is
introduced using the distributed estimation based on each
subsystem, and the fusion center is used to obtain more
precise estimation accuracy than each local system.

The rest sections of this study are organized as follows.
The uncertain system modelling problem is described in
Section 2. In order to use the event-triggered signal to
choose method, Section 3 designs distributed fusion estima-
tion approach based on finite horizon robust Kalman-type
filtering. Simulation results and analysis are given in Section 4
and the conclusions are outlined in Section 5.

Notations. Throughout this paper, the symbol 𝐸(⋅) denotes
the mathematical expectation operator and the superscript 𝑇
is the transpose. R𝑟 represents the 𝑟-dimensional Euclidean
space, and R𝑟×𝑟 denotes the set of all 𝑟 × 𝑟 real matrices. A
real symmetric matrix 𝑀 > 0 expresses that 𝑀 is a positive-
definite matrix, 𝑀−1 stands for the inverse of the positive-
definite matrix 𝑀, while 𝑡𝑟(𝑀) is the trace of matrix 𝑀. 𝛿𝑘,𝑙
is the Kronecker function; i.e., 𝛿𝑘,𝑙 = 1 if 𝑘 = 𝑙; otherwise𝛿𝑘,𝑙 = 0 if 𝑘 ̸= 𝑙.
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Figure 1: Sorting procedure for packet sequence based on event-triggered signal selection method.

2. Problem Formulation and Analysis

2.1. System Description. The considered uncertain system of
each sensor is described by the following linear discrete-time
system, which is investigated in [10, 13]𝑥 (𝑘 + 1) = (𝐴𝑘 +F𝑘𝐹𝑘𝐸𝑘) 𝑥 (𝑘) + 𝐵𝑘𝑤𝑘, 𝑘 = 1, 2, ⋅ ⋅ ⋅ (1)

𝑧𝑖 (𝑘) = (𝐶𝑖𝑘 +H
𝑖
𝑘𝐹𝑘𝐸𝑖𝑘) 𝑥 (𝑘) + V𝑖𝑘, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿 (2)

where 𝑥(𝑘) ∈ R𝑟 represents the state to be estimated and𝑧𝑖(𝑘) ∈ R𝑚𝑖 expresses the measurement output of the 𝑖-
th sensor at time instant 𝑘. 𝐴𝑘 ∈ R𝑟×𝑟, 𝐵𝑘 ∈ R𝑟, 𝐶𝑖𝑘 ∈
R𝑚𝑖×𝑟,F𝑘, 𝐸𝑘,H𝑖𝑘 and 𝐸𝑖𝑘 are known time-varying matrices,
and 𝐹𝑘 denotes the time-varying parameter uncertainties.𝑤𝑘 ∈ R and V𝑖𝑘 ∈ R𝑚𝑖 denote the process noise and
measurement noise of the 𝑖-th sensor, which are zero mean
white noise with covariance matrices𝑄𝑘 and 𝑅𝑖𝑘, respectively.
The initial state 𝑥(0) with mean 𝜇0, and covariance 𝑃0 is
assumed to be uncorrelated with other noise signals. Note
that the uncertainties 𝐹𝑘 satisfies 𝐹𝑘𝐹𝑇𝑘 ≤ 𝐼.
2.2. System Modelling Based on Event-Triggered Signal Selec-
tion Method. Taking the limited bandwidth into account,
the data transmission from sensors to processors is limited
and it would inevitably generate the network congestion. In
this paper, the random transmission will inevitably bring
packet drops and out-of-order packets. If the system model
is established for each network-induced phenomenon, the
system computation cost is significantly increased. Based on
the abovementioned problem, network-induced phenomena
are synthetically considered. Therefore, the event-triggered
signal selectionmethod of logic ZOH is designed to deal with
packet dropouts and out-of-order packets.

Remark 1. For the time-stamped data packets in the net-
work, the logic ZOH stores the latest data packet, and
other time-stamped packets are discarded. It means that the
stored data packets will be updated until the output of the
logic ZOH being received to a latest signal. Because the
latest data packet before being transmitted is close to the
newest actual signal, the network-induced packet disorders
during the transmission are dropped via the logic ZOH
[38–40].

Without loss of generality, it is assumed that the mea-
surement is sampled at a constant sample period 𝑇 for an
arbitrary subsystem, and the sampling time instant is denoted
by 𝑡 ∈ {𝑘𝑇, 𝑘 ∈ N}. Set the largest transmission delays
to be no more than 𝑁 steps, and 𝑁(𝑘) ≤ 𝑘 represents the
largest data delays at time instant 𝑘. To further describe the
networked systems in the presence of random transmission
delays, packet dropouts, and out-of-order packets, a typical
scenarios are represented in Figure 1.

Suppose that the upper boundary of time delays is no
more than 5 sample periods (i.e., 𝑁 ≤ 5), wherein 𝜂(𝑡𝑘)
denotes the network-induced transmission delays at time
instant 𝑘. Figure 1 demonstrates the received valid data
packets according to the logic ZOH. From the time interval,
there are three cases to be listed.

Case 1. At the same time interval, the arrived data packets
with time-stamp contain out-of-order and in-order phenom-
ena. When the sampling time 𝑡 ∈ [2𝑇, 5𝑇), the transmission
delays are 𝜂(𝑡2) = 2𝑇 + 𝜂(𝑡2) and 𝜂(𝑡3) = 1𝑇 + 𝜂(𝑡3),
respectively; here 𝜂(𝑡𝑘) is the transmission delay in one
sample period. Due to 𝜂(𝑡2) > 𝜂(𝑡3) shown in Figure 1, the
out-of-order packets generate from signals 𝑧(3) and 𝑧(2) in
the transmission.Note that 𝑧(2) is themost recent data packet
and 𝑧(3) represents the latest packet. And then, signal 𝑧(2) is
discarded depending on the role of the logic ZOH.
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Case 2. The arrived data packets with time-stamp are out-
of-order and in-order, at the neighboring time interval.
For the sampling time 9𝑇 and 10𝑇, there exist the out-of-
order packets, and the transmitted data are 𝑧(8) and 𝑧(7),
respectively. Adopting the latest packets using the logic ZOH,𝑧(7) is dropped at time instant 10𝑇; meanwhile, the latest
time-stamped data packet 𝑧(8) is held.
Case 3. The time interval is more than one sampling period
for the arrived out-of-order and in-order packets. At the
sampling time 𝑡 ∈ [12𝑇, 14𝑇), the transmitted data are𝑧(11), 𝑧(10), and 𝑧(9) sequentially, which are the most recent
data package. However, signals 𝑧(10) and 𝑧(9) are dropped
according to the criteria of receiving the latest data packet for
the logic ZOH.

As mentioned before, at the current time instant 𝑘, the
time-stamp of the received valid data packet is denoted by 𝑘1
and 𝑘2 represents the time-stamp for the most recent trans-
mission signal. The corresponding transmission delays from
sensor to estimator are represented as 𝜂(𝑘1) and 𝜂(𝑘2) and
satisfy 0 ≤ 𝜂(𝑘1) ≤ 𝜂(𝑘2) ≤ 𝑁. To clearly describe the time
sequence, 𝜏(𝑘1) ∈ N and 𝜏(𝑘2) ∈ N denote the received data
packetwith delays using logic ZOHand random transmission
delays at the sampling time, respectively, which satisfy𝑘 = 𝜏 (𝑘1) + 𝑘1 = 𝜏 (𝑘2) + 𝑘2 (3)

Take into account that the latest data packet is more
approximate the current data packet, and an artificial variable𝛽(𝑘) ≥ 0 is introduced to express the relationship between 𝑘1
and 𝑘2, that is, 𝑘1 = 𝑘2 + 𝛽 (𝑘) (4)

Note that the selected data packet with latest time-stamp
is a relatively larger value than the data packet with random
transmission delays. Without loss of generality, the delays
are obtained from (3) and (4) i.e., 𝜏(𝑘1) = 𝜏(𝑘2) − 𝛽(𝑘)
satisfies 𝜏(𝑘1) ≤ 𝜏(𝑘2). It implies that the data packet with
less transmission delay is used to estimate the actual system
state, improve the estimation accuracy, and further reduce the
computation burden. Therefore, using logic ZOH scheme is
more reasonable to dealwith random transmission delays and
further improve the system performance [39].

Remark 2. Adopting the signal selection method of logic
ZOH, the transmission signal with packet dropouts and
out-of-order packets is transferred into random transmis-
sion delay with time-stamped data packets. To alleviate
the computational burden, the measurement reorganization
approach is investigated. When the logic ZOH receives the
time-stamped data packet 𝑧(𝑘1), the stored signal 𝑦𝐿𝑍(𝑘) is
reorganized as 𝑦𝐿𝑍 (𝑘) = 𝑧 (𝑘 − 𝜏 (𝑘1)) (5)

It implies that when the time-stamped data packets transmit
from a sensor to processor (or estimator) over a communica-
tion network, the processor (or estimator) is able to obtain
the knowledge of packet delay and dropout value at every
sampling time [24].

2.3. Cross-Correlated Noise. In the engineering applications,
the distributed systems involve the cross-correlated noise [10,
13, 28] during data transmission, which exist in a common
noisy environment.

At the same time instant, it is assumed that the process
noise 𝑤𝑘 and measurement noise V𝑖𝑘 are correlated; mean-
while, the measurement noises V𝑖𝑘 of the 𝑖th subsystem and
V𝑗
𝑘
of the 𝑗th subsystem are cross-correlated. The statistical

properties satisfy as following:𝐸 (𝑤𝑘) = 0,𝐸 (V𝑖𝑘) = 0,
𝐸((𝑤𝑘

V𝑖𝑘
)(𝑤𝑇𝑙 (V𝑗

𝑘
)𝑇)) = ( 𝑄𝑘𝛿𝑘,𝑙 𝑆𝑗

𝑘
𝛿𝑘,𝑙(𝑆𝑖𝑘)𝑇 𝛿𝑘,𝑙 𝑅𝑖,𝑗
𝑘
𝛿𝑘,𝑙) , (6)

where 𝑄𝑘 = 𝑄𝑘𝑇, 𝑅𝑖,𝑗𝑘 = (𝑅𝑗,𝑖
𝑘
)𝑇, and 𝑆𝑖,𝑗

𝑘
= (𝑆𝑗,𝑖
𝑘
)𝑇.

For the stored measurement sequence with random
transmission delays, packet dropouts and packet disorders,
the issue of distributed estimation is translated into finding
the optimal state estimation 𝑥𝐿𝑍(𝑘 | 𝑘) using logic ZOH,
which are fused and compensated by each local estimation𝑥𝑖𝐿𝑍(𝑘 − 𝜏𝑖(𝑘1) | 𝑘 − 𝜏𝑖(𝑘1)).
3. Estimation for Event-Triggered
Signal Selection Method

For the considered uncertain system (1)-(2), a distributed
fusion estimation based on robust finite horizon filtering
approach is investigated. Firstly, the augmented state vec-
tors are presented to determine the upper bounds of the
filtering and the prediction covariance matrices. Secondly,
a linear delay compensation scheme based on estimation is
proposed for dealing with the random transmission delays,
which improves the computational efficiency. Thirdly, the
packet dropouts are compensated by introducing one-step
prediction estimation approach. At last, a weighted fusion
estimation is presented to improve the estimation accuracy
for the distributed system.

3.1. Augmented State Vector for Subsystem. For the 𝑖-th
subsystem, suppose the current sampling time instant is 𝑘,
and the stored data packet is 𝑦𝑖𝐿𝑍(𝑘). According to the role
of logic ZOH, the received valid data packet is 𝑧𝑖(𝑘 − 𝜏𝑖(𝑘1))
with data delay 𝜏𝑖(𝑘1). Owing to 𝜏𝑖(𝑘1) = 𝜏𝑖(𝑘2) − 𝛽𝑖(𝑘) and𝛽𝑖(𝑘) > 0, define 𝑡 = 𝑘 − 𝜏𝑖(𝑘1), and the measurement is
reorganized from (2) and (5):𝑦𝑖𝐿𝑍 (𝑘) = 𝑧𝑖 (𝑡) = (𝐶𝑖𝑡 +H

𝑖
𝑡𝐹𝑡𝐸𝑖𝑡) 𝑥 (𝑡) + V𝑖𝑡 (7)

Assume that the estimator has enough processing capa-
bility to calculate the optimal state estimation 𝑥𝑖𝐿𝑍(𝑡 | 𝑡)
depending on the stored data {𝑦𝑖𝐿𝑍(0), ⋅ ⋅ ⋅ , 𝑦𝑖𝐿𝑍(𝑘−1), 𝑦𝑖𝐿𝑍(𝑘)}.

The objective of the robust finite horizon Kalman-type
filtering for each subsystem is to obtain an optimal state
estimation 𝑥𝑖𝐿𝑍(𝑘 | 𝑘), which is derived from the guaranteed
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upper bound of estimation error covariance matrices. Apply-
ing the projection formula, the state estimation with random
transmission delays is designed by the following recursive
method based on the reorganized data packets:𝑥𝑖𝐿𝑍 (𝑡 | 𝑡) = 𝑥𝑖𝐿𝑍 (𝑡 | 𝑡 − 1)+ 𝐾𝑖𝐿𝑍,𝑡 (𝑧𝑖 (𝑡) − 𝐶𝑖𝐿𝑍,𝑡𝑥𝑖𝐿𝑍 (𝑡 | 𝑡 − 1)) , (8)

𝑥𝑖𝐿𝑍 (𝑡 + 1 | 𝑡) = 𝐴𝑖𝐿𝑍,𝑡𝑥𝑖𝐿𝑍 (𝑡 | 𝑡 − 1)+ 𝐿𝑖𝐿𝑍,𝑡 (𝑧𝑖 (𝑡) − 𝐶𝑖𝐿𝑍,𝑡𝑥𝑖𝐿𝑍 (𝑡 | 𝑡 − 1)) , (9)

where 𝑥𝑖𝐿𝑍(𝑡 | 𝑡) denotes the filter and 𝑥𝑖𝐿𝑍(𝑡 + 1 | 𝑡) is
the predictor of the state 𝑥(𝑡) at time instant 𝑡 before being
transmitted. Define 𝑒𝑖𝐿𝑍(𝑡) ≜ 𝑥(𝑡) − 𝑥𝑖𝐿𝑍(𝑡 | 𝑡 − 1) and𝑒𝑖𝐿𝑍(𝑡) ≜ 𝑥(𝑡) − 𝑥𝑖𝐿𝑍(𝑡 | 𝑡). Note that the prediction error
and filtering error are forced to be smaller than the positive-
definite matricesΘ𝑖𝐿𝑍(𝑡) and Σ𝑖𝐿𝑍(𝑡). For all uncertainties, the
upper bounds are represented as following:𝐸((𝑥 (𝑡) − 𝑥𝑖𝐿𝑍 (𝑡 | 𝑡)) (𝑥 (𝑡) − 𝑥𝑖𝐿𝑍 (𝑡 | 𝑡))𝑇)≤ Θ𝑖𝐿𝑍 (𝑡) (10)

𝐸((𝑥 (𝑡) − 𝑥𝑖𝐿𝑍 (𝑡 | 𝑡 − 1)) (𝑥 (𝑡) − 𝑥𝑖𝐿𝑍 (𝑡 | 𝑡 − 1))𝑇)
≤ Σ𝑖𝐿𝑍 (𝑡) . (11)

Set𝐶𝑖𝐿𝑍,𝑡,𝐾𝑖𝐿𝑍,𝑡,𝐴𝑖𝐿𝑍,𝑡, and 𝐿𝑖𝐿𝑍,𝑡 be filter parameters. Inspired
by the adaptive gain [42], filter parameters are time-varying
matrix which is online updated. It is worth noting that the
system noise and measurement noise are different and the
corresponding state-space model can be transformed the
form as in (1) and (7) by using the augmentationmethod [26].
To solve the upper bounds from the filtering and prediction
covariance matrices, the augmented state vectors are defined
as follows: Ψ̃𝑖𝐿𝑍 (𝑡) = [ 𝑒𝑖𝐿𝑍 (𝑡)𝑥𝑖𝐿𝑍 (𝑡 | 𝑡 − 1)] ,

Ψ𝑖𝐿𝑍 (𝑡) = [ 𝑒𝑖𝐿𝑍 (𝑡)𝑥𝑖𝐿𝑍 (𝑡 | 𝑡)] . (12)

The reorganizedmeasurement from (7) contains stochas-
tic terms due to delayed sensor measurement. Therefore,
it is necessary to derive the estimation error and obtain
a corresponding upper bound. And then, an augmented
state-space model combining system (1) and (8)-(12) are
represented asΨ𝑖𝐿𝑍 (𝑡) = (𝐴𝑖𝐿𝑍,𝑡1 + 𝐻𝑖𝐿𝑍,𝑡1𝐹𝑡𝐸i

𝐿𝑍,𝑡1) Ψ̃𝑖𝐿𝑍 (𝑡)+ 𝐷𝑖𝐿𝑍,𝑡1V𝑖𝑡, (13)

Ψ̃𝑖𝐿𝑍 (𝑡 + 1) = (𝐴𝑖𝐿𝑍,𝑡2 + 𝐻𝑖𝐿𝑍,𝑡2𝐹𝑡𝐸𝑖𝐿𝑍,𝑡2) Ψ̃𝑖𝐿𝑍 (𝑡)+ 𝐵𝐿𝑍,𝑡2𝑤𝑡 + 𝐷𝑖𝐿𝑍,𝑡2V𝑖𝑡, (14)

with

𝐴𝑖𝐿𝑍,𝑡1 = [[𝐼 − 𝐾𝑖𝐿𝑍,𝑡𝐶𝑖𝑡 𝐾𝑖𝐿𝑍,𝑡 (𝐶𝑖𝐿𝑍,𝑡 − 𝐶𝑖𝑡)𝐾𝑖𝐿𝑍,𝑡𝐶𝑖𝑡 𝐼 + 𝐾𝑖𝐿𝑍,𝑡 (𝐶𝑖𝑡 − 𝐶𝑖𝐿𝑍,𝑡)]] ,
𝐻𝑖𝐿𝑍,𝑡1 = [−𝐾𝑖𝐿𝑍,𝑡H𝑖𝑡𝐾𝑖𝐿𝑍,𝑡H𝑖𝑡 ] ,
𝐸𝑖𝐿𝑍,𝑡1 = [𝐸𝑖𝑡 𝐸𝑖𝑡] ,
𝐷𝑖𝐿𝑍,𝑡1 = [−𝐾𝑖𝐿𝑍,𝑡𝐾𝑖𝐿𝑍,𝑡 ] ,
𝐴𝑖𝐿𝑍,𝑡2
= [[𝐴 𝑡 − 𝐿𝑖𝐿𝑍,𝑡𝐶𝑖𝑡 𝐴 𝑡 − 𝐴𝑖𝐿Z,𝑡 + 𝐿𝑖𝐿𝑍,𝑡 (𝐶𝑖𝐿𝑍,𝑡 − 𝐶𝑖𝑡)𝐿𝑖𝐿𝑍,𝑡𝐶𝑖𝑡 𝐴𝑖𝐿𝑍,𝑡 + 𝐿𝑖𝐿𝑍,𝑡 (𝐶𝑖𝑡 − 𝐶𝑖𝐿𝑍,𝑡) ]] ,

𝐻𝑖𝐿𝑍,𝑡2 = [F𝑖𝑡 − 𝐿𝑖𝐿𝑍,𝑡H𝑖𝑡𝐿𝑖𝐿𝑍,𝑡H𝑖𝑡 ] ,
𝐸𝑖𝐿𝑍,𝑡2 = [𝐸𝑖𝑡 𝐸𝑖𝑡] ,
𝐵𝐿𝑍,𝑡2 = [𝐵𝑡0 ] ,
𝐷𝑖𝐿𝑍,𝑡2 = [−𝐿𝑖𝐿𝑍,𝑡𝐿𝑖𝐿𝑍,𝑡 ] .

(15)

Note that the augmented system (13)-(14) is a stochas-
tic parameter system [43], and set the covariance matri-
ces to be Σ̃𝑖𝐿𝑍(𝑡) = 𝐸(Ψ̃𝑖𝐿𝑍(𝑡)(Ψ̃𝑖𝐿𝑍(𝑡))𝑇) and Θ̃𝑖𝐿𝑍(𝑡) =𝐸(Ψ𝑖𝐿𝑍(𝑡)(Ψ𝑖𝐿𝑍(𝑡))𝑇). Under (13)-(15), the Riccati-like equa-
tions for estimation error covariances are evolved as follows:Θ̃𝑖𝐿𝑍 (𝑡) = (𝐴𝑖𝐿𝑍,𝑡1 + 𝐻𝑖𝐿𝑍,𝑡1𝐹𝑡𝐸𝑖𝐿𝑍,𝑡1) Σ̃𝑖𝐿𝑍 (𝑡)⋅ (𝐴𝑖𝐿𝑍,𝑡1 + 𝐻𝑖𝐿𝑍,𝑡1𝐹𝑡𝐸𝑖𝐿𝑍,𝑡1)𝑇+ 𝐷𝑖𝐿𝑍,𝑡1𝑅𝑖𝑡 (𝐷𝑖𝐿𝑍,𝑡1)𝑇 ,

(16)

andΣ̃𝑖𝐿𝑍 (𝑡 + 1) = (𝐴𝑖𝐿𝑍,𝑡2 + 𝐻𝑖𝐿𝑍,𝑡2𝐹𝑡𝐸𝑖𝐿𝑍,𝑡2) Σ̃𝑖𝐿𝑍 (𝑡)⋅ (𝐴𝑖𝐿𝑍,𝑡2 + 𝐻𝑖𝐿𝑍,𝑡2𝐹𝑡𝐸𝑖𝐿𝑍,𝑡2)𝑇+ 𝐵𝐿𝑍,𝑡2𝑄𝑡𝐵𝑇𝐿𝑍,𝑡2 + 𝐷𝑖𝐿𝑍,𝑡2𝑅𝑖𝑡 (𝐷𝑖𝐿𝑍,𝑡2)𝑇+ 𝐵𝐿𝑍,𝑡2𝑆𝑖𝑡 (𝐷𝑖𝐿𝑍,𝑡2)𝑇 + 𝐷𝑖𝐿𝑍,𝑡2 (𝑆𝑖𝑡)𝑇⋅ 𝐵𝑇𝐿𝑍,𝑡2.
(17)

It is noted that the deterministic uncertainty𝐹𝑡 appears in
(16) and (17).Therefore, it is impossible to have the exact value
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of the covariance matrices Θ̃𝑖𝐿𝑍(𝑡) and Θ̃𝑖𝐿𝑍(𝑡). An alternative
approach is to find a set of upper bounds and then obtain the
minimum with respect to filter parameters.

3.2. Upper Bound for Estimation Covariance. Based on the
augmented state vectors, the corresponding filtering error
covariance and prediction error covariance are calculated.
The objective of designing the robust finite horizon Kalman-
type filter needs to probe the appropriate filter parameters
from estimation error covariance matrices.

To obtain a guaranteed upper bound for minimizing
the estimation error covariance, the following lemmas are
introduced.

Lemma 3. Assume that matrices 𝐴, 𝐻, 𝐸, and 𝐹 have
compatible dimensions such that 𝐹𝐹𝑇 ≤ 𝐼. �e inequality𝛼−1𝐼−𝐸𝑋𝐸𝑇 > 0 lets𝑋 be a symmetric positive definite matrix
and lets 𝛼 > 0 be an arbitrary positive constant. �en, the
following inequality holds:(𝐴 + 𝐻𝐹𝐸)𝑋 (𝐴 + 𝐻𝐹𝐸)𝑇≤ 𝐴 (𝑋−1 − 𝛼𝐸𝑇𝐸)−1 𝐴𝑇 + 𝛼−1𝐻𝐻𝑇, (18)

and (𝑋−1−𝛼𝐸𝑇𝐸)−1 = 𝑋+𝑋𝐸𝑇(𝛼−1𝐼−𝐸𝑋𝐸𝑇)−1𝐸𝑋 is obtained
from the matrix inversion lemma [24, 43].

Lemma 4. When 0 ≤ 𝑡 ≤ 𝑘, supposing that 𝑋 and 𝑌 are
symmetric positive definite matrices, the functions meet the
conditions 𝑠𝑡(𝑋) = 𝑠𝑇𝑡 (𝑋) ∈ R𝑛×𝑛 and ℎ𝑡(𝑋) = ℎ𝑇𝑡 (𝑋) ∈ R𝑛×𝑛.
If there exists 𝑌 > 𝑋, such that 𝑠𝑡(𝑌) ≥ 𝑠𝑡(𝑋) and ℎ𝑡(𝑌) ≥𝑠𝑡(𝑌), then the solutions 𝑀𝑡 and 𝑁𝑡 in terms of the recursive
equations 𝑀𝑡+1 = 𝑠𝑡 (𝑀𝑡) ,𝑁𝑡+1 = ℎ𝑡 (𝑁𝑡) ,𝑀0 = 𝑁0 > 0 (19)

satisfy𝑀𝑡 ≤ 𝑁𝑡 [24, 43].
Theorem 5. For the formula (𝐴 + 𝐻𝐹𝐸)𝑋(𝐴 + 𝐻𝐹𝐸)𝑇 from
(16) and (17) according to Lemmas 3 and 4, if there exists
a positive scalar 𝛼𝑡 and a symmetric positive definite matrixΣ𝑖𝐿𝑍(𝑡) satisfying 𝛼−1𝑡 𝐼 − 𝐸𝑖𝐿𝑍,𝑡2Σ𝑖𝐿𝑍(𝑡)(𝐸𝑖𝐿𝑍,𝑡2)𝑇 > 0, thenΣ̃𝑖𝐿𝑍(𝑡) ≤ Σ𝑖𝐿𝑍(𝑡) and Θ̃𝑖𝐿𝑍(𝑡) ≤ Θ𝑖𝐿𝑍(𝑡), where Σ̃𝑖𝐿𝑍(𝑡) andΘ̃𝑖𝐿𝑍(𝑡) are evolved from (16) and (17), respectively. �erefore,
the upper bounds Θ𝑖𝐿𝑍(𝑡) and Σ𝑖𝐿𝑍(𝑡 + 1) are computed by the
following recursive equations:Θ𝑖𝐿𝑍 (𝑡) = 𝐴𝑖𝐿𝑍,𝑡1Σ𝑖𝐿𝑍 (𝑡) (𝐴𝑖𝐿𝑍,𝑡1)𝑇+ 𝛼−1𝑡 𝐻𝑖𝐿𝑍,𝑡1 (𝐻𝑖𝐿𝑍,𝑡1)𝑇+ 𝐷𝑖𝐿𝑍,𝑡1𝑅𝑖𝑡 (𝐷𝑖𝐿𝑍,𝑡1)𝑇 + 𝐴𝑖𝐿𝑍,𝑡1Σ𝑖𝐿𝑍 (𝑡)⋅ (𝐸𝑖𝐿𝑍,𝑡1)𝑇

× (𝛼−1𝑡 𝐼 − 𝐸𝑖𝐿𝑍,𝑡1Σ𝑖𝐿𝑍 (𝑡) (𝐸𝑖𝐿𝑍,𝑡1)𝑇)−1⋅ 𝐸𝑖𝐿𝑍,𝑡1Σ𝑖𝐿𝑍 (𝑡) (𝐴𝑖𝐿𝑍,𝑡1)𝑇
(20)

andΣ𝑖𝐿𝑍 (𝑡 + 1) = 𝐴𝑖𝐿𝑍,𝑡2Σ𝑖𝐿𝑍 (𝑡) (𝐴𝑖𝐿𝑍,𝑡2)𝑇+ 𝛼−1𝑡 𝐻𝑖𝐿𝑍,𝑡2 (𝐻𝑖𝐿𝑍,𝑡2)𝑇 + 𝐴𝑖𝐿𝑍,𝑡2Σ𝑖𝐿𝑍 (𝑡) (𝐸𝑖𝐿𝑍,𝑡2)𝑇⋅ (𝛼−1𝑡 𝐼 − 𝐸𝑖𝐿𝑍,𝑡2Σi
𝐿𝑍 (𝑡) (𝐸𝑖𝐿𝑍,𝑡2)𝑇)−1× 𝐸𝑖𝐿𝑍,𝑡2Σ𝑖𝐿𝑍 (𝑡) (𝐴𝑖𝐿𝑍,𝑡2)𝑇 + 𝐵𝑖𝐿𝑍,𝑡2𝑄𝑖𝑡 (𝐵𝑖𝐿𝑍,𝑡2)𝑇+ 𝐷𝑖𝐿𝑍,𝑡2𝑅𝑖𝑡 (𝐷𝑖𝐿𝑍,𝑡2)𝑇 + 𝐵𝐿𝑍,𝑡2𝑆𝑖𝑡 (𝐷𝑖𝐿𝑍,𝑡2)𝑇+ 𝐷𝑖𝐿𝑍,𝑡2 (𝑆𝑖𝑡)𝑇 𝐵𝑇𝐿𝑍,𝑡2.

(21)

Proof. The proof is derived from Lemmas 3 and 4. Mean-
while, the similar derivation process is referred in [24,
43].

Based onTheorem 5 and Kalman-type filtering, referring
to (17), suppose that the error covariancematrix is denoted as
the following form:

Σ𝑖𝐿𝑍 (𝑡) = [[Σ𝑖𝐿𝑍 (𝑡) 00 𝑃 (𝑡) − Σ𝑖𝐿𝑍 (𝑡)]] , (22)

where Σ𝑖𝐿𝑍(𝑡) = 𝐸(𝑒𝑖𝐿𝑍(𝑡)(𝑒𝑖𝐿𝑍(𝑡)𝑇)) and 𝑃(𝑡) = 𝐸(𝑥(𝑡)𝑥𝑇(𝑡)).
Then, the upper bound of error covariance matrix is

defined as follows:

𝐸(𝑒𝑖𝐿𝑍 (𝑡) (𝑒𝑖𝐿𝑍 (𝑡))𝑇) = [𝐼 0] Θ̃𝑖𝐿𝑍 (𝑡) [𝐼0]
≤ [𝐼 0]Θ𝑖𝐿𝑍 (𝑡) [𝐼0] = Θ𝑖𝐿𝑍 (𝑡) (23)

and𝐸(𝑒𝑖𝐿𝑍 (𝑡 + 1) (𝑒𝑖𝐿𝑍 (𝑡 + 1))𝑇)
= [𝐼 0] Σ̃𝑖𝐿𝑍 (𝑡 + 1) [𝐼0] ≤ [𝐼 0] Σ𝑖𝐿𝑍 (𝑡 + 1) [𝐼0]= Σ𝑖𝐿𝑍 (𝑡 + 1) .

(24)

In order to obtain Σ𝑖𝐿𝑍(𝑡) and 𝑃(𝑡), the optimal values of
the proposed robust finite horizon Kalman-type filtering in
(8) and (9) are derived from the followingTheorem 6.

Theorem 6. At the current time instant 𝑘, the received valid
measurement 𝑦𝑖𝐿𝑍(𝑘) contains the received transmission delay
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𝜏𝑖(𝑘1). Set 𝑡 = 𝑘−𝜏𝑖(𝑘1), and 𝛼𝑡 be a positive scalar. Σ𝑖𝐿𝑍(𝑡) and𝑃(𝑡) are the positive definite solutions for the following discrete-
time Riccati-like iterations:Θ𝑖𝐿𝑍 (𝑡)= Σ𝑖𝐿𝑍 (𝑡) + Σ𝑖𝐿𝑍 (𝑡) (𝐸𝑖𝑡)𝑇 (�̃�𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡Σ𝑖𝐿𝑍 (𝑡)− Λ𝑖𝐿𝑍 (𝑡) (Ξ𝑖𝐿𝑍 (𝑡))−1 (Λ𝑖𝐿𝑍 (𝑡))𝑇 ,

(25)

Σ𝑖𝐿𝑍 (𝑡 + 1)= 𝐴 𝑡Σ𝑖𝐿𝑍 (𝑡) (𝐼 + (𝐸𝑖𝑡)𝑇 (𝑀𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡Σ𝑖𝐿𝑍 (𝑡))𝐴𝑇𝑡− Δ𝑖𝐿𝑍 (𝑡) (Ξ𝑖𝐿𝑍 (𝑡))−1 (Δ𝑖𝐿𝑍 (𝑡))𝑇 + 𝐵𝑡𝑄𝑡𝐵𝑇𝑡+ 𝛼−1𝑡 F𝑡F𝑇𝑡 ,
(26)

𝑃 (𝑡 + 1)
= 𝐴 𝑡 (𝑃−1 (𝑡) − 𝛼𝑡 (𝐸𝑖𝑡)𝑇 𝐸𝑖𝑡)−1 𝐴𝑇𝑡 + 𝛼−1𝑡 F𝑡F𝑇𝑡+ 𝐵𝑡𝑄𝑡𝐵𝑇𝑡 ,

(27)

whereΛ𝑖𝐿𝑍(𝑡)=Σ𝑖𝐿𝑍(𝑡)(𝐶𝑖𝑡)𝑇+Σ𝑖𝐿𝑍(𝑡)(𝐸𝑖𝑡)𝑇(𝑀𝑖𝐿𝑍,𝑡)−1𝐸𝑖𝑡Σ𝑖𝐿𝑍(𝑡)(𝐶𝑖𝑡)𝑇
and Δ𝑖𝐿𝑍(𝑡) = 𝐴 𝑡Σ𝑖𝐿𝑍(𝑡)(𝐼 + (𝐸𝑖𝑡)𝑇(𝑀𝑖𝐿𝑍,𝑡)−1𝐸𝑖𝑡Σ𝑖𝐿𝑍(𝑡))(𝐶𝑖𝑡)𝑇 +𝛼−1𝑡 F𝑡(H𝑖𝑡)𝑇 + 𝐵𝑡𝑆𝑖𝑡. �ey satisfy 𝑃−1(𝑡) − 𝛼𝑡(𝐸𝑖𝑡)𝑇𝐸𝑖𝑡 > 0 and𝑀𝑖𝐿𝑍,𝑡 = 𝛼−1𝑡 𝐼 − 𝐸𝑖𝑡Σ𝑖𝐿𝑍(𝑡)(𝐸𝑖𝑡)𝑇 > 0, respectively.

�en, the robust Kalman-type filtering given in (8)-(9) is
designed by the filter parameters:

𝐶𝑖𝐿𝑍,𝑡 = 𝐶𝑖𝑡 (𝐼 + Σ𝑖𝐿𝑍 (𝑡) (𝐸𝑖𝑡)𝑇 (𝑀𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡) , (28)

𝐾𝑖𝐿𝑍,𝑡 = Λ𝑖𝐿𝑍 (𝑡) (Ξ𝑖𝐿𝑍 (𝑡))−1 , (29)

𝐴𝑖𝐿𝑍,𝑡 = 𝐴 𝑡 (𝐼 + Σ𝑖𝐿𝑍 (𝑡) (𝐸𝑖𝑡)𝑇 (𝑀𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡) , (30)

𝐿𝑖𝐿𝑍,𝑡 = Δ𝑖𝐿𝑍 (𝑡) (Ξ𝑖𝐿𝑍 (𝑡))−1 , (31)

in whichΞ𝑖𝐿Z(𝑡)=𝐶𝑖𝑡Σ𝑖𝐿𝑍(𝑡)(𝐼+(𝐸𝑖𝑡)𝑇(𝑀𝑖𝐿𝑍,𝑡)−1𝐸𝑖𝑡Σ𝑖𝐿𝑍(𝑡))(𝐶𝑖𝑡)𝑇+𝛼−1𝑡 H𝑖𝑡(H𝑖𝑡)𝑇 + 𝑅𝑖𝑡 and �̃�𝑖𝐿𝑍,𝑡 = 𝛼−1𝑡 𝐼 − 𝐸𝑖𝑡𝑃(𝑡)(𝐸𝑖𝑡)𝑇.
Proof. This theorem follows from the upper bounds of
minimizing estimation error covariance matrices. The proof
procedure is proved in Appendix A.

3.3. Linear Compensation for Delays. The obtained local
optimal state estimation 𝑥𝑖𝐿𝑍(𝑡 | 𝑡) is used for compensating
the estimated value 𝑥𝑖𝐿𝑍(𝑘 | 𝑡) at the current time instant 𝑘.
Meanwhile, the proposed linear delay compensation method
based on estimation is employed to reduce the computational
burden.

In order to estimate the state 𝑥𝑖𝐿𝑍(𝑘 | 𝑡) depending
on the largest delay 𝑁 and the current received signal with

transmission delay 𝜏(𝑘1), the predicted value 𝑥𝑖𝐿𝑍(𝑡 + 1 | 𝑡) is
used for the linear compensation method:

𝑥𝑖𝐿𝑍 (𝑘 | 𝑡) = (1 − 𝜏𝑖 (𝑘1) − 1𝑁 )𝑥𝑖𝐿𝑍 (𝑡 + 1 | 𝑡) . (32)

Remark 7. When the estimator receives the valid signals at
the time instant 𝑘 = 𝑡 + 𝜏(𝑘) with transmission delay𝜏(𝑘), the sensor sends an acknowledgement (ACK) signal
to the estimator. The ACK signal is assigned the highest
transmission priority, and then the transmission delay is
negligible [2]. Once the estimator receives the ACK signal,
the estimated state is used by the measurement 𝑧(𝑡). Then,
for the 𝑖th sensor using logic ZOH, take the criterion into
account that the ACK data packet before being transmitted is
allocated the highest transmission priority, and the received
data delay would be ignored for this reason. Therefore, the
filter 𝑥𝑖𝐿𝑍(𝑡 | 𝑡) is used for the state estimation 𝑥𝑖𝐿𝑍(𝑘 | 𝑡)
given in (32).

Remark 8. The local state estimation 𝑥𝑖𝐿𝑍(𝑘 | 𝑡) is an
approximate estimation with delay-free. Using the logic
ZOH, the estimated state for the most recent data packet𝑥𝑖𝐿𝑍(𝑡 | 𝑡) is stored, and the estimated state 𝑥𝑖𝐿𝑍(𝑘 | 𝑘) can
be computed. Otherwise, if there is no arrived signal from
the 𝑖th sensor at time instant 𝑘, the estimated state will be
compensated by one-step prediction of {𝑥𝑖𝐿𝑍(𝑘 − 1 | 𝑘 −1), ⋅ ⋅ ⋅ , 𝑥𝑖𝐿𝑍(𝑘 − 𝜏 | 𝑘 − 𝜏)} [29]. Therefore, the estimation
accuracy is less than the one-step predication compensation
strategy. However, due to the growing error accumulation
and computation burden using the one-step predication,
the proposed linear delay compensation method is used
to suppress the computational complexity and alleviate the
negative effect of the transmission delays.

For the next sampling time 𝑘+1, the arrived data is𝑦𝑖𝐿𝑍(𝑘+1) with delay 𝜏𝑖(𝑘1 + 1); meanwhile, the received measured
output is 𝑧𝑖(𝑠) with time-stamp before being transmitted,
which satisfies 𝑠 = 𝑘 + 1 − 𝜏𝑖(𝑘1 + 1). Since the disordered
packets are discarded using the logic ZOH, 𝑠 ≥ 𝑡 is satisfied.
Therefore, two cases for calculating the filter 𝑥𝑖𝐿𝑍(𝑠 | 𝑠) is
shown as follows.

Case 1. If 𝑠 = 𝑡 or 𝑠 = 𝑡 + 1, the state estimation 𝑥𝑖𝐿𝑍(𝑠 | 𝑠) is
derived from (8), and the filter parameters are calculated by
the iterative equations based onTheorem 6.

Case 2. If 𝑠 > 𝑡 + 1, the estimated state 𝑥𝑖𝐿𝑍(𝑠 | 𝑠) will be
compensated by one-step prediction 𝑥𝑖𝐿𝑍(𝑡 + 1 | 𝑡 + 1) given
in (8)-(9) with the artificial delay 𝜏𝑠𝑡(𝑘) = 𝑠 − 𝑡 > 1 and
the reorganized state estimation sequence is compensated
by{𝑥𝑖𝐿𝑍 (𝑡 + 1 | 𝑡 + 1) , ⋅ ⋅ ⋅ , 𝑥𝑖𝐿𝑍 (𝑡 + 𝜏𝑠𝑡 (𝑘) | 𝑡 + 𝜏𝑠𝑡 (𝑘))} . (33)

Under the given systems (1) and (2), the compensated
estimation error covariancematrices and filter parameters are
computed by the recursion formulas in (25)-(31).
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Remark 9. It is worth noting that the artificial delay is
determined by the current received data packet and the
previous received data packet with time-stamp. For the
random transmission delays, an optimal artificial delay is
obtained from the signal selection scheme of logic ZOH.
More importantly, due to the packet dropout phenomenon,
the objective of one-step prediction with the artificial delay is
used to establish the fusion estimation for each subsystem at
the same sampling time.

3.4. Distributed Weighted Fusion Estimation. Based on
Theorem 6, the local state estimation is obtained. For each
subsystem, taking into account of the network-induced
random transmission delays, packet dropouts, and out-of-
order packets, the current estimated state is approximately
calculated from (32). In order to improve the state estimation
accuracy, the distributed fusion estimation is investigated.
With the aid of the linear delay compensation strategy based
on estimation and weighted fusion criterion, minimizing
estimation error cross-covariance matrices are applied to
perform information exchange between any two subsystems.

Theorem 10. For the linear discrete-time system (1) and (2),
based on the linear delay compensation scheme, the upper
bound of filtering error cross-covariance matrix Θ𝑖,𝑗𝐿𝑍(𝑡) and
prediction error cross-covariance matrix Σ𝑖,𝑗𝐿𝑍(𝑡 + 1) between𝑖th and 𝑗th subsystems at time instant 𝑘 have the following
expressions:

Θ𝑖,𝑗𝐿𝑍 (𝑡) = [𝐼 0]Θ𝑖,𝑗𝐿𝑍 (𝑡) [𝐼0] = (𝐼 − 𝐾𝑖𝐿𝑍,𝑡𝐶𝑖𝑡) Σ𝑖,𝑗𝐿𝑍 (𝑡)
⋅ (𝐼 − 𝐾𝑗𝐿𝑍,𝑡𝐶𝑗𝑡)𝑇 + (𝐾𝑖𝐿𝑍,𝑡 (𝐶𝑖𝐿𝑍,𝑡 − 𝐶𝑖𝑡)) (𝑃 (𝑡)
− Σ𝑖,𝑗𝐿𝑍 (𝑡)) (𝐾𝑗𝐿𝑍,𝑡 (𝐶𝑗𝐿𝑍,𝑡 − 𝐶𝑗𝑡))𝑇 + (Σ𝑖𝐿𝑍 (𝑡)+ 𝐾𝑖𝐿𝑍,𝑡 (𝐶𝑖𝐿𝑍,𝑡 (𝑃 (𝑡) − Σ𝑖𝐿𝑍 (𝑡)) − 𝐶𝑖𝑡𝑃 (𝑡))) (𝐸𝑖𝑡)𝑇⋅ (�̃�𝑖,𝑗𝐿𝑍,𝑡)−1 𝐸𝑗𝑡 × (Σ𝑗𝐿𝑍 (𝑡)+ 𝐾𝑗𝐿𝑍,𝑡 (𝐶𝑗𝐿𝑍,𝑡 (𝑃 (𝑡) − Σ𝑗𝐿𝑍 (𝑡)) − 𝐶𝑗𝑡𝑃 (𝑡)))𝑇
+ 𝛼−1𝑡 𝐾𝑖𝐿𝑍,𝑡H𝑖𝑡 (H𝑗𝑡)𝑇 (𝐾𝑗𝐿𝑍,𝑡)𝑇+ 𝐾𝑖𝐿𝑍,𝑡𝑅𝑖,𝑗𝑡 (𝐾𝑗𝐿𝑍,𝑡)𝑇

(34)

andΣ𝑖,𝑗𝐿𝑍 (𝑡 + 1) = [𝐼 0] Σ𝑖,𝑗𝐿𝑍 (𝑡 + 1) [𝐼0] = (𝐴 𝑡 − 𝐿𝑖𝐿𝑍,𝑡𝐶𝑖𝑡)
⋅ Σ𝑖,𝑗𝐿𝑍 (𝑡) (𝐴 𝑡 − 𝐿𝑗𝐿𝑍,𝑡𝐶𝑗𝑡)𝑇 + 𝐵𝑡𝑄𝑡𝐵𝑇𝑡+ 𝐿𝑖𝐿𝑍,𝑡𝑅𝑖,𝑗𝑡 (𝐿𝑗𝐿𝑍,𝑡)𝑇 + (𝐴 𝑡 − 𝐴𝑖𝐿𝑍,𝑡+ 𝐿𝑖𝐿𝑍,𝑡 (𝐶𝑖𝐿𝑍,𝑡 − 𝐶𝑖𝑡)) (𝑃 (𝑡) − Σ𝑖,𝑗𝐿𝑍 (𝑡)) × (𝐴 𝑡

− 𝐴𝑗𝐿𝑍,𝑡 + 𝐿𝑗𝐿𝑍,𝑡 (𝐶𝑗𝐿𝑍,𝑡 − 𝐶𝑗𝑡))𝑇 + ((𝐴 𝑡 − 𝐿𝑖𝐿𝑍,𝑡𝐶𝑖𝑡)⋅ Σ𝑖𝐿𝑍 (𝑡) + (𝐴 𝑡 − 𝐴𝑖𝐿𝑍,𝑡 + 𝐿𝑖𝐿𝑍,𝑡 (𝐶𝑖𝐿𝑍,𝑡 − 𝐶𝑖𝑡))× (𝑃 (𝑡) − Σ𝑖𝐿𝑍 (𝑡))) (𝐸𝑖𝑡)𝑇 (�̃�𝑖,𝑗𝐿𝑍,𝑡)−1 𝐸𝑗𝑡 (Σ𝑗𝐿𝑍 (𝑡)⋅ (𝐴 𝑡 − 𝐿𝑗𝐿𝑍,𝑡𝐶𝑗𝑡)𝑇 + (𝑃 (𝑡) − Σ𝑗𝐿𝑍 (𝑡))⋅ (𝐴 𝑡 − 𝐴𝑗𝐿𝑍,𝑡 + 𝐿𝑗𝐿𝑍,𝑡 (𝐶𝑗𝐿𝑍,𝑡 − 𝐶𝑗𝑡))𝑇) + 𝛼−1𝑡 (F𝑡
− 𝐿𝑖𝐿𝑍,𝑡H𝑖𝑡) (F𝑡 − 𝐿𝑗𝐿𝑍,𝑡H𝑗𝑡)𝑇 − 𝐵𝑡𝑆𝑗𝑡 (𝐿𝑗𝐿𝑍,𝑡)𝑇− 𝐿𝑖𝐿𝑍,𝑡 (𝑆𝑖𝑡)𝑇 𝐵𝑇𝑡 ,

(35)

where �̃�𝑖,𝑗𝐿𝑍,𝑡 = 𝛼−1𝑡 𝐼 − 𝐸𝑖𝑡𝑃(𝑡)(𝐸𝑗𝑡 )𝑇 and 𝑀𝑖,𝑗𝐿𝑍,𝑡 = 𝛼−1𝑡 𝐼 −𝐸𝑖𝑡Σ𝑖,𝑗𝐿𝑍(𝑡)(𝐸𝑗𝑡 )𝑇.
Without loss of generality, according to the estimated

state 𝑥𝑖𝐿𝑍(𝑘 | 𝑡) and 𝑥𝑗𝐿𝑍(𝑘 | 𝑡) of the 𝑖th and 𝑗-th
subsystems, respectively, the upper bound of estimation error
cross-covariance matrix Π𝑖,𝑗𝐿𝑍(𝑘) ≜ 𝐸[𝑥𝑖𝐿𝑍(𝑘 | 𝑡)(𝑥𝑗𝐿𝑍(𝑘 | 𝑡))𝑇]
is obtained as following:Π𝑖,𝑗𝐿𝑍 (𝑘) ≤ Π𝑖,𝑗𝐿𝑍 (𝑘)

= (1 − 𝜏𝑖 (𝑘1) − 1𝑁 )(1 − 𝜏𝑗 (𝑘1) − 1𝑁 )Σ𝑖,𝑗𝐿𝑍 (𝑡 + 1) . (36)

Proof. The proof procedure is similar to the previous
derivation of Theorem 6 for logic ZOH signal selection
method.

A parallel-series hybrid meta-heuristic optimisation
method is then proposed in [44], which combines a hybrid
topology binary particle swarm optimization. Therefore, this
paper employs the linear minimum variance [15], and the
optimal weighted fusion estimation can be used to minimize
the trace of the fusion estimation error cross-covariance. Let𝑥𝑖𝐿𝑍(𝑘 | 𝑘), 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿 represent the local estimation of an𝑟-dimensional stochastic vector 𝑥(𝑘) with network-induced
phenomena. The distributed fusion estimator is designed as𝑥𝐿𝑍(𝑘 | 𝑘) also an 𝑟-dimensional vector, which is given as
follows:𝑥𝐿𝑍 (𝑘 | 𝑘) = Ω1𝑘𝑥1𝐿𝑍 (𝑘 | 𝑘) + ⋅ ⋅ ⋅ + Ω𝐿𝑘𝑥𝐿𝐿𝑍 (𝑘 | 𝑘) . (37)

Therefore, referring to the result of [10, 29], the dis-
tributed fusion estimation performance is optimal, if and only
if the weighted matrix given in (37) is determined by

[Ω1𝑘, ⋅ ⋅ ⋅ , Ω𝐿𝑘] = (𝐼𝑇0 Π−1𝐿𝑍 (𝑘) 𝐼0)−1 𝐼𝑇0 Π−1𝐿𝑍 (𝑘) , (38)

where 𝐼0 = [𝐼𝑟, ⋅ ⋅ ⋅ , 𝐼𝑟]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐿

𝑇 is an 𝑟𝐿 × 𝑟matrix and ∑𝐿𝑖=1Ω𝑖𝑘 = 𝐼𝑟.
Moreover,
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Figure 2: Computational procedure of distributed fusion estimation based on robust finite horizon filtering for logic ZOH.

Π𝐿𝑍 (𝑘) = [[[[[[
Π1,1𝐿𝑍 (𝑘) ⋅ ⋅ ⋅ Π1,𝐿𝐿𝑍 (𝑘)...Π𝐿,1𝐿𝑍 (𝑘) ⋅ ⋅ ⋅ Π𝐿,𝐿𝐿𝑍 (𝑘)

]]]]]]
(39)

is a symmetrical positive definite matrix. The corresponding
cross-covariance of the optimal information fusion estimatorΠ̃(𝑘 | 𝑘) ≜ 𝐸[(𝑥(𝑘) −𝑥(𝑘 | 𝑘))(𝑥(𝑘) −𝑥(𝑘 | 𝑘))𝑇] is calculated
as Π̃(𝑘 | 𝑘) = (𝐼𝑇0 Π−1𝐿𝑍(𝑘)𝐼0)−1, which satisfies Π̃(𝑘 | 𝑘) ≤Π𝑖𝐿𝑍(𝑘) ≤ Π𝑖𝐿𝑍(𝑘) if 𝑖 = 𝑗; otherwise, Π̃(𝑘 | 𝑘) ≤ Π𝑖,𝑗𝐿𝑍(𝑘) ≤Π𝑖,𝑗𝐿𝑍(𝑘).

The solution approach of distributed fusion estimation
using robust finite horizon Kalman-type filtering is demon-
strated in Figure 2.

Remark 11. The uncertain system introduces the logic ZOH
signal selection method to deal with the network-induced
transmission delays, packet dropouts, and out-of-order pack-
ets. Meanwhile, the packet disorders are dropped, and the
received valid data are the latest data packet. As mentioned
before, the linear compensation approach based on the
estimation 𝑥𝑖𝐿𝑍(𝑡 | 𝑡) is used to obtain the local state,
and the one-step prediction-based compensation approach
is used to estimate the state 𝑥𝑖𝐿𝑍(𝑡 + 𝜏𝑠𝑡(𝑘) | 𝑡 + 𝜏𝑠𝑡(𝑘)),
which is dependent on the artificial delay 𝜏𝑠𝑡(𝑘) for the
missing packets. On the other hand, to achieve informa-
tion exchange, the distributed fusion estimation based on
the weighted fusion criterion is obtained the consistent
expression of state by the linear minimizing on variance
matrix. As a theoretical basis, the fusion scheme pos-
sesses higher estimation accuracy than each local estima-
tor.

4. Numerical Simulation

In this section, the results of a numerical example are
demonstrated to illustrate the effectiveness of the proposed
distributed fusion estimation strategy.

The considered target tracking systems with intermittent
measurements are uncertain systems described in [10, 11, 24,
28]:

𝑥 (𝑘 + 1) = ([[[[[
0.9 𝑇 𝑇220 0.9 𝑇0 0 0.9

]]]]] +F𝑘𝐹𝑘𝐸𝑘)𝑥(𝑘)
+ [[[[[

𝑇22𝑇1
]]]]]𝑤𝑘, 𝑘 = 1, 2, ⋅ ⋅ ⋅

(40)

𝑧𝑖 (𝑘) = (𝐶𝑖𝑘 +H
𝑖
𝑘𝐹𝑘𝐸𝑖𝑘) 𝑥 (𝑘) + V𝑖𝑘, 𝑖 = 1, 2, 3 (41)𝑤𝑘 = 𝜂𝑘, (42)

V𝑖𝑘 = 𝜁𝑖𝑘𝑤𝑘, (43)

where the sample period 𝑇 is set as 0.1𝑠, the maximum of
transmission delay is assumed to be 𝑁 = 5, and the time-
varying parameter uncertainties satisfy 𝐹𝑘 = sin(0.6𝑘). The
state 𝑥(𝑘) = (𝑠𝑘 ̇𝑠𝑘 ̈𝑠𝑘)𝑇 denotes the position, velocity, and
acceleration, respectively, of the target at time instant 𝑘𝑇. Set
matrices to beF𝑘 = [0.1 0.1 0.1]𝑇, 𝐸𝑘 = [0.02 0.02 0.02],𝐶1𝑘 = [0.6 0.8 1], 𝐶2𝑘 = [1 0.8 0.5], 𝐶3𝑘 = [0.3 1 0.7], and
H1𝑘 = H2𝑘 = H3𝑘 = 0.8. 𝜂𝑘 ∈ R is zero mean white noise
with variance𝜎2𝜂 = 0.09. Due to the cross-correlation between
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Figure 3: Comparison of proposed method and IRFHKF.

process noise and measurement noise, the variable 𝜁𝑖𝑘 in (43)
determines the correlated strength and set 𝜁1𝑘 = 2 and 𝜁2𝑘 =0.8, 𝜁3𝑘 = 1, respectively. The process noise 𝑤𝑘 from (42) with
unity variance 𝑄𝑘, while, the covariance 𝑅𝑖,𝑗

𝑘
is denoted as𝑅𝑖,𝑗

𝑘
= 𝜁𝑖𝑘𝜁𝑗𝑘𝑄𝑘 and the cross-covariance is 𝑆𝑖𝑘 = 𝜁𝑖𝑘𝑄𝑘 given

in (43).
Without loss of generality, the initial values are set as𝛼𝑘 = 3, 𝑥(0 | 0) = 𝜇0 = 𝐸(𝑥(0)) = [1 1 1]𝑇, and 𝑃(0 |0) = 0.01𝐼3. The proposed method is verified from 300 time

taken sampling points, and the results are obtained based on
100 Monte Carlo simulations. The comparison for the trace
of estimation error covariance matrices is demonstrated in
Figures 3(a)–3(d). The estimated state 𝑥(𝑘 | 𝑘) is verified
by employing the improved robust finite-horizon Kalman
filtering (IRFHKF) in [24], and the proposed distributed
fusion estimation approach (DFERFH) with delay-free. As
shown in Figure 3(a), the proposed estimator possesses less
upper bound for the estimation error covariance matrices
than IRFHKFmethod. It is worth noting that the fused upper
bound of the estimation error cross-covariance matrix is

minimum compared to other covariance matrices, since the
weighted fusion criterion is again optimal in the minimum
covariance sense. Comparing the estimation accuracy of the
both methods from Figures 3(b)–3(d), the proposed method
is suitable for designing the appropriate estimator to probe
the optimal filter parameters. Taking the cross-correlation
for noise into account, if the cross-correlation for noise is
stronger, the dynamic tracking trajectory is closer the actual
state to be estimated.

And then, the range of the performance indicator from
minimum to maximum is presented in Table 1. It implies
that the upper bound of estimation error covariance matrices
for the proposed method is less than the IRFHKF method.
For the distributed networked system, the processing effec-
tiveness of each subsystem is different, and it is determined
by the system parameters and cross-correlated strength for
noise. Note that the estimation performance is more accurate
if the process and measurement noise have stronger cross-
correlation.

To further illustrate the effectiveness of the proposed
method, the distributed estimation results of the estimated
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Table 1: Comparison of the filtering error covariance matrices.

Method Position state Velocity state Acceleration state Trace of covariance
DFERFH 1 0.0096-0.0150 0.0016-0.0100 0.0100-0.0372 0.0300-0.0533
DFERFH 2 0.0056-0.0100 0.0033-0.0100 0.0100-0.1258 0.0291-0.1313
DFERFH 3 0.0084-0.0109 0.0004-0.0100 0.0100-0.0823 0.0279-0.0883
IRFHKF 0.0100-0.0267 0.0100-0.0235 0.0100-0.1779 0.0300-0.2280
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Figure 4: Comparison of distributed estimation results using logic ZOH.

states are shown in Figures 4(a)–4(c). The simulation results
are obtained from the state estimation (8)-(9) by calculating
the recursive equations inTheorems 6 and 10.Meanwhile, the
robust finite horizon filtering and distributedweighted fusion
estimation criteria are investigated for the logic ZOH.

From Figures 4(a)–4(c), the logic ZOH scheme is able to
discard out-of-order packets induced from random transmis-
sion delays and packet dropouts. Therefore, the distributed
fusion estimation has the better performances for target
tacking and computational efficiency with the linear delay
compensation and one-step prediction estimation schemes.

In order to further analyze the performance of the pro-
posed distributed fusion estimation approach with network-
induced phenomena, the mean square error (MSE) [10, 29,

45] values are displayed in Table 2. The comparison of the
MSE values is composed of the states of position, velocity,
and acceleration, as well as their estimated values for each
subsystem, respectively.

Table 2 shows that based on robust finite horizon filtering
of each subsystem, the proposed distributed fusion estima-
tion is able to obtain the better estimation performance than
each one.

The simulations are carried out, and the reordering error
covariance criteria are used for comparing the dynamic
tracking results. The comparison between the DFERFH and
IRFHKF methods implies that the proposed estimation has
better accuracy than IRFHKF method for the multi-step
random delays, packet dropouts and out-of-order packets.
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Table 2: Comparison of mean square errors.

Scheme Mean of error covariance
position velocity acceleration

Sensor 1 0.0042 0.0076 0.0330
Sensor 2 0.0023 0.0065 0.0299
Sensor 3 0.0016 0.0045 0.0241
Fusion 0.0005 0.0007 0.0006

Since the actual estimation error covariance is below the
upper bound, for the actual estimated values, the proposed
distributed fusion estimation method for network-induced
phenomena has the better performance including close track-
ing of the system state and rapid convergence to a steady state.

5. Conclusion

This paper has investigated a class of uncertain systems
with network-induced phenomena. To deal with packet
dropouts and out-of-order packets generating from random
transmission delays, the system model has been established
by the event-triggered signal selection method of the logic
ZOH. With the aid of a linear delay compensation strategy,
the optimal state estimation has been presented to overcome
the influence of the limited communication capacity and
suppress the computational burden. For the packet dropouts,
the one-step prediction estimation method has been pro-
posed to compensate the missing packets. The finite horizon
filtering has been designed subsequently, so that the actual
estimation error variance is less than the upper bound.
Furthermore, the distributed estimation approach based on
filtering has been introduced the weighted fusion criterion
to obtain the consistent expression of the state. Thus, the
fused estimation possesses higher accuracy than each local
subsystem. As a theoretical result, the proposed modelling
and distributed fusion estimation have better performance
for dropping packet disorders. The numerical simulations
for target tracking systems on three sensors have been
performed to demonstrate the tracking performance and the
effectiveness of the acquired theoretical results.

Appendix

A. Proof of Theorem 6

Since the solution of Θ𝑖𝐿𝑍(𝑡) and Σ𝑖𝐿𝑍(𝑡 + 1) are derived fromΣ𝑖𝐿𝑍(𝑡) defined in (23) and (24), the upper bound Σ𝑖𝐿𝑍(𝑡) can
be represented as follows [23, 24]:Σ𝑖𝐿𝑍 (𝑡) = [Σ11 (𝑡) Σ12 (𝑡)Σ21 (𝑡) Σ22 (𝑡)]

= [[Σ𝑖𝐿𝑍 (𝑡) 00 𝑃 (𝑡) − Σ𝑖𝐿𝑍 (𝑡)]] . (A.1)

Taking into account of the given recursive equations forΣ𝑖𝐿𝑍(𝑡 + 1) and 𝑃(𝑡 + 1) in (26) and (27), respectively, as well

as the estimation 𝑥𝑖𝐿𝑍(𝑡 | 𝑡) in (8), the estimated parameters𝐶𝑖𝐿𝑍,𝑡 and 𝐾𝑖𝐿𝑍,𝑡 are determined by minimizing measurement
and filtering error covariance matrices, respectively.

Step 1 (calculate filter parameter 𝐶𝑖𝐿𝑍,𝑡). In the first place, set𝑡 = 𝑘−𝜏𝑖(𝑘1) and the measurement error 𝑦𝑖𝐿𝑍(𝑘) is defined as𝑦𝑖𝐿𝑍 (𝑘) = 𝑦𝑖𝐿𝑍 (𝑘) − 𝑦𝑖𝐿𝑍 (𝑘)= (𝐴𝑖𝐿𝑍,𝑡3 + 𝐻𝑖𝐿𝑍,𝑡3𝐹𝑡𝐸𝑖𝐿𝑍,𝑡3) Ψ̃𝑖𝐿𝑍 (𝑡) + V𝑖𝑡, (A.2)

where 𝐴𝑖𝐿𝑍,𝑡3 = [𝐶𝑖𝑡 𝐶𝑖𝑡 − 𝐶𝑖𝐿𝑍,𝑡] ,𝐻𝑖𝐿𝑍,𝑡3 = H
𝑖
𝑡,𝐸i

𝐿𝑍,𝑡3 = [𝐸𝑖𝑡 𝐸𝑖𝑡] .
(A.3)

Next, minimize the measurement error covariance
matrix. Solve the upper bound of the measurement error
covariance based on Lemmas 3 and 4 and (A.1):𝐸(𝑦𝑖𝐿𝑍 (𝑘) (𝑦𝑖𝐿𝑍 (𝑘))𝑇) = (𝐴𝑖𝐿𝑍,𝑡3 + 𝐻𝑖𝐿𝑍,𝑡3𝐹𝑡𝐸𝑖𝐿𝑍,𝑡3)⋅ Σ̃𝑖𝐿𝑍 (𝑡) (𝐴𝑖𝐿𝑍,𝑡3 + 𝐻𝑖𝐿𝑍,𝑡3𝐹𝑡𝐸𝑖𝐿𝑍,𝑡3)𝑇 + 𝑅𝑖𝑡≤ 𝐴𝑖𝐿𝑍,𝑡3 (Σ𝑖𝐿𝑍 (𝑡) + Σ𝑖𝐿𝑍 (𝑡) (𝐸𝑖𝐿𝑍,𝑡3)𝑇

× (𝛼−1𝑡 𝐼 − 𝐸𝑖𝐿𝑍,𝑡3Σ𝑖𝐿𝑍 (𝑡) (𝐸𝑖𝐿𝑍,𝑡3)𝑇)−1
⋅ 𝐸𝑖𝐿𝑍,𝑡3Σ𝑖𝐿𝑍 (𝑡)) (𝐴𝑖𝐿𝑍,𝑡3)𝑇 + 𝛼−1𝑡 𝐻𝑖𝐿𝑍,𝑡3 (𝐻𝑖𝐿𝑍,𝑡3)𝑇
+ 𝑅𝑖𝑡 = Π𝑖𝐿𝑍 (𝑡) = 𝐶𝑖𝑡Σ𝑖𝐿𝑍 (𝑡) (𝐶𝑖𝑡)𝑇 + (𝐶𝑖𝑡 − 𝐶𝑖𝐿𝑍,𝑡)⋅ (𝑃 (𝑡) − Σ𝑖𝐿𝑍 (𝑡)) (𝐶𝑖𝑡 − 𝐶𝑖𝐿𝑍,𝑡)𝑇+ 𝛼−1𝑡 H𝑖𝑡 (H𝑖𝑡)𝑇 + 𝑅𝑖𝑡 + (𝐶𝑖𝑡Σ𝑖𝐿𝑍 (𝑡) (𝐸𝑖𝑡)𝑇+ (𝐶𝑖𝑡 − 𝐶𝑖𝐿𝑍,𝑡) (𝑃 (𝑡) − Σ𝑖𝐿𝑍 (𝑡)) (𝐸𝑖𝑡)𝑇) × (𝛼−1𝑡 𝐼
− 𝐸𝑖𝑡𝑃 (𝑡) (𝐸𝑖𝑡)𝑇)−1 × (𝐶𝑖𝑡Σ𝑖𝐿𝑍 (𝑡) (𝐸𝑖𝑡)𝑇
+ (𝐶𝑖𝑡 − 𝐶𝑖𝐿𝑍,𝑡) (𝑃 (𝑡) − Σ𝑖𝐿𝑍 (𝑡)) (𝐸𝑖𝑡)𝑇)𝑇 .

(A.4)
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Therefore, the first order derivative for 𝐶𝑖𝐿𝑍,𝑡 is𝜕Π𝑖𝐿𝑍 (𝑡)𝜕𝐶𝑖𝐿𝑍,𝑡 = − (𝐶𝑖𝑡 − 𝐶𝑖L𝑍,𝑡) (𝑃 (𝑡) − Σ𝑖𝐿𝑍 (𝑡))
− 𝐶𝑖𝑡Σ𝑖𝐿𝑍 (𝑡) (𝐸𝑖𝑡)𝑇 (�̃�𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡 (𝑃 (𝑡) − Σ𝑖𝐿𝑍 (𝑡))− (𝐶𝑖𝑡 − 𝐶𝑖𝐿𝑍,𝑡) (𝑃 (𝑡) − Σ𝑖𝐿𝑍 (𝑡)) (𝐸𝑖𝑡)𝑇 (�̃�𝑖𝐿𝑍,𝑡)−1⋅ 𝐸𝑖𝑡 (𝑃 (𝑡) − Σ𝑖𝐿𝑍 (𝑡)) = 0.

(A.5)

And then,𝐶𝑖𝐿𝑍,𝑡 is derived by the straightforward transforma-
tion:𝐶𝑖𝐿𝑍,𝑡 = 𝐶𝑖𝑡 (𝐼 + Σ𝑖𝐿𝑍 (𝑡) (𝐸𝑖𝑡)𝑇 (�̃�𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡

× (𝐼 + (𝑃 (𝑡) − Σ𝑖𝐿𝑍 (𝑡)) (𝐸𝑖𝑡)𝑇 (�̃�𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡)−1) , (A.6)
where �̃�𝑖𝐿𝑍,𝑡 = 𝛼−1𝑡 𝐼 − 𝐸𝑖𝑡𝑃(𝑡)(𝐸𝑖𝑡)T.

For the sake of simplified calculation, (𝐸𝑖𝑡)𝑇(�̃�𝑖𝐿𝑍,𝑡)−1𝐸𝑖𝑡 is
transformed into the following equalities:

(𝐸𝑖𝑡)𝑇 (�̃�𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡 = (𝐸𝑖𝑡)𝑇 (𝑀𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡 × (𝐼
− ((Σ𝑖𝐿𝑍 (𝑡) − 𝑃 (𝑡))−1 + (𝐸𝑖𝑡)𝑇 (𝑀𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡)−1
⋅ (𝐸𝑖𝑡)𝑇 (𝑀𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡) = (𝐼 − (𝐸𝑖𝑡)𝑇 (𝑀𝑖𝐿𝑍,𝑡)−1
⋅ 𝐸𝑖𝑡 ((Σ𝑖𝐿𝑍 (𝑡) − 𝑃 (𝑡))−1
+ (𝐸𝑖𝑡)𝑇 (𝑀𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡)−1) × (𝐸𝑖𝑡)𝑇 (𝑀𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡,

(A.7)

where𝑀𝑖𝐿𝑍,𝑡 = 𝛼−1𝑡 𝐼−𝐸𝑖𝑡Σ𝑖𝐿𝑍(𝑡)(𝐸𝑖𝑡)𝑇. Using thematrix inverse
lemma, (𝐸𝑖𝑡)𝑇(�̃�𝑖𝐿𝑍,𝑡)−1𝐸𝑖𝑡 is replaced by the equivalent forms:(𝐸𝑖𝑡)𝑇 (�̃�𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡 = (𝐸𝑖𝑡)𝑇 (𝑀𝑖𝐿𝑍,𝑡)−1⋅ 𝐸𝑖𝑡 (𝐼 + (Σ𝑖𝐿𝑍 (𝑡) − 𝑃 (𝑡)) (𝐸𝑖𝑡)𝑇 (𝑀𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡)−1

= (𝐼 + (𝐸𝑖𝑡)𝑇 (𝑀𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡 (Σ𝑖𝐿𝑍 (𝑡) − 𝑃 (𝑡)))−1
⋅ (𝐸𝑖𝑡)𝑇 (𝑀𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡.

(A.8)

Next, (𝐼 + (𝑃(𝑡) − Σ𝑖𝐿𝑍(𝑡))(𝐸𝑖𝑡)𝑇(�̃�𝑖𝐿𝑍,𝑡)−1𝐸𝑖𝑡)−1 in (A.6) is
calculated from (A.7) and (A.8), i.e.,(𝐼 + (𝑃 (𝑡) − Σ𝑖𝐿𝑍 (𝑡)) (𝐸𝑖𝑡)𝑇 (�̃�𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡)−1= 𝐼 + (Σ𝑖𝐿𝑍 (𝑡) − 𝑃 (𝑡)) (𝐸𝑖𝑡)𝑇 (𝑀𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡. (A.9)

Summarizing the above analysis and substituting (A.8)-
(A.9) into (A.6), 𝐶𝑖𝐿𝑍,𝑡 is determined as follows:

𝐶𝑖𝐿𝑍,𝑡 = 𝐶𝑖𝑡 (𝐼 + Σ𝑖𝐿𝑍 (𝑡) (𝐸𝑖𝑡)𝑇 (𝑀𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡) . (A.10)

Finally, similar to the derivation of𝐶𝑖𝐿𝑍,𝑡, filter parameters𝐾𝑖𝐿𝑍,𝑡, 𝐴𝑖𝐿𝑍,𝑡, and 𝐿𝑖𝐿𝑍,𝑡 are probed.
Step 2 (calculate the covariance matrix Θ𝑖𝐿𝑍(𝑡), Σ𝑖𝐿𝑍(𝑡 + 1),
and 𝑃(𝑡 + 1)). Theorem 5 defines the Θ𝑖𝐿𝑍(𝑡) and Σ𝑖𝐿𝑍(𝑡 + 1).
The upper bound of filtering and prediction error covariance
matrices Θ𝑖𝐿𝑍(𝑡) and Σ𝑖𝐿𝑍(𝑡 + 1) are derived as follows:

Θ𝑖𝐿𝑍 (𝑡) = [𝐼 0]Θ𝑖𝐿𝑍 (𝑡) [𝐼0] = (𝐼 − 𝐾𝑖𝐿𝑍,𝑡𝐶𝑖𝑡) Σ𝑖𝐿𝑍 (𝑡)
⋅ (𝐼 − 𝐾𝑖𝐿𝑍,𝑡𝐶𝑖𝑡)𝑇 + (𝐾𝑖𝐿𝑍,𝑡 (𝐶𝑖𝐿𝑍,𝑡 − 𝐶𝑖𝑡)) (𝑃 (𝑡)
− Σ𝑖𝐿𝑍 (𝑡)) (𝐾𝑖𝐿𝑍,𝑡 (𝐶𝑖𝐿𝑍,𝑡 − 𝐶𝑖𝑡))𝑇 + (Σ𝑖𝐿𝑍 (𝑡)+ 𝐾𝑖𝐿𝑍,𝑡 (𝐶𝑖𝐿𝑍,𝑡 (𝑃 (𝑡) − Σ𝑖𝐿𝑍 (𝑡)) − 𝐶𝑖𝑡𝑃 (𝑡)))
× (𝐸𝑖𝑡)𝑇 (�̃�𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡 × (Σ𝑖𝐿𝑍 (𝑡)+ 𝐾𝑖𝐿𝑍,𝑡 (𝐶𝑖𝐿𝑍,𝑡 (𝑃 (𝑡) − Σ𝑖𝐿𝑍 (𝑡)) − 𝐶𝑖𝑡𝑃 (𝑡)))𝑇
+ 𝛼−1𝑡 𝐾𝑖𝐿𝑍,𝑡H𝑖𝑡 (H𝑖𝑡)𝑇 (𝐾𝑖𝐿𝑍,𝑡)𝑇+ 𝐾𝑖𝐿𝑍,𝑡𝑅𝑖𝑡 (𝐾𝑖𝐿𝑍,𝑡)𝑇 ,

(A.11)

and

Σ𝑖𝐿𝑍 (𝑡 + 1) = [𝐼 0] Σ𝑖𝐿𝑍 (𝑡 + 1) [𝐼0] = (𝐴 𝑡
− 𝐿𝑖𝐿𝑍,𝑡𝐶𝑖𝑡) Σ𝑖𝐿𝑍 (𝑡) (𝐴 𝑡 − 𝐿𝑖𝐿𝑍,𝑡𝐶𝑖𝑡)𝑇 + 𝐵𝑡𝑄𝑡𝐵𝑇𝑡+ 𝐿𝑖𝐿𝑍,𝑡𝑅𝑖𝑡 (𝐿𝑖𝐿𝑍,𝑡)𝑇 + (𝐴 𝑡 − 𝐴𝐿𝑍,𝑡+ 𝐿𝑖𝐿𝑍,𝑡 (𝐶𝑖𝐿𝑍,𝑡 − 𝐶𝑖𝑡)) (𝑃 (𝑡) − Σ𝑖𝐿𝑍 (𝑡)) × (𝐴 𝑡− 𝐴𝑖𝐿𝑍,𝑡 + 𝐿𝑖𝐿𝑍,𝑡 (𝐶𝑖𝐿𝑍,𝑡 − 𝐶𝑖𝑡))𝑇+ ((𝐴 𝑡 − 𝐿𝑖𝐿𝑍,𝑡𝐶𝑖𝑡) Σ𝑖𝐿𝑍 (𝑡)+ (𝐴 𝑡 − 𝐴𝑖𝐿𝑍,𝑡 + 𝐿𝑖𝐿𝑍,𝑡 (𝐶𝑖𝐿𝑍,𝑡 − 𝐶𝑖𝑡))× (𝑃 (𝑡) − Σ𝑖𝐿𝑍 (𝑡))) (𝐸𝑖𝑡)𝑇 (�̃�𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡 (Σ𝑖𝐿𝑍 (𝑡)⋅ (𝐴 𝑡 − 𝐿𝑖𝐿𝑍,𝑡𝐶𝑖𝑡)𝑇 + (𝑃 (𝑡) − Σ𝑖𝐿𝑍 (𝑡))⋅ (𝐴 𝑡 − 𝐴𝑖𝐿𝑍,𝑡 + 𝐿𝑖𝐿𝑍,𝑡 (𝐶𝑖𝐿𝑍,𝑡 − 𝐶𝑖𝑡))𝑇)
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+ 𝛼−1𝑡 (F𝑡 − 𝐿𝑖𝐿𝑍,𝑡H𝑖𝑡) (F𝑡 − 𝐿𝑖𝐿𝑍,𝑡H𝑖𝑡)𝑇− 𝐵𝑡𝑆𝑖𝑡 (𝐿𝑖𝐿𝑍,𝑡)𝑇 − 𝐿𝑖𝐿𝑍,𝑡 (𝑆𝑖𝑡)𝑇 𝐵𝑇𝑡 .
(A.12)

In summary, substituting filter parameters into (A.11) and
(A.12), respectively, the upper bounds of estimation error
covariance matrices are rewritten asΘ𝑖𝐿𝑍 (𝑡) = Σ𝑖𝐿𝑍 (𝑡)+ Σ𝑖𝐿𝑍 (𝑡) (𝐸𝑖𝑡)𝑇 (�̃�𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡Σ𝑖𝐿𝑍 (𝑡)− Λ𝑖𝐿𝑍 (𝑡) (Ξ𝑖𝐿𝑍 (𝑡))−1 (Λ𝑖𝐿𝑍 (𝑡))𝑇 ,

(A.13)

andΣ𝑖𝐿𝑍 (𝑡 + 1)= 𝐴 𝑡Σ𝑖𝐿𝑍 (𝑡) (𝐼 + (𝐸𝑖𝑡)𝑇 (𝑀𝑖𝐿𝑍,𝑡)−1 𝐸𝑖𝑡Σ𝑖𝐿𝑍 (𝑡))𝐴𝑇𝑡+ 𝐵𝑡𝑄𝑡𝐵𝑇𝑡 + 𝛼−1𝑡 F𝑡F𝑇𝑡− Δ𝑖𝐿𝑍 (𝑡) (Ξ𝑖𝐿𝑍 (𝑡))−1 (Δ𝑖𝐿𝑍 (𝑡))𝑇 .
(A.14)

Furthermore, the state covariance with time-varying
parametric uncertainties is defined as�̃� (𝑡 + 1) = 𝐸 (𝑥 (𝑡 + 1) 𝑥𝑇 (𝑡 + 1))= (𝐴 𝑡 +F𝑡𝐹𝑡𝐸𝑡) �̃� (𝑡) (𝐴 𝑡 +F𝑡𝐹𝑡𝐸𝑡)𝑇+ 𝐵𝑡𝑄𝑡𝐵𝑇𝑡 .

(A.15)

Following the upper bound, the state covariancematrix is
obtained as�̃� (𝑡 + 1) = (𝐴 𝑡 +F𝑡𝐹𝑡𝐸𝑡) 𝑃 (𝑡) (𝐴 𝑡 +F𝑡𝐹𝑡𝐸𝑡)𝑇+ 𝐵𝑡𝑄𝑡𝐵𝑇𝑡⩽ 𝐴 𝑡 (𝑃−1 (𝑡) − 𝛼𝑡𝐸𝑇𝑡 𝐸𝑡)−1 𝐴𝑇𝑡+ 𝛼−1𝑡 F𝑡F𝑇𝑡 + 𝐵𝑡𝑄𝑡𝐵𝑇𝑡= 𝐴 𝑡𝑃 (𝑡) 𝐴𝑇𝑡 + 𝐴 𝑡𝑃 (𝑡) 𝐸𝑇𝑡 �̃�−1𝑡 𝐸𝑡𝑃 (𝑡) 𝐴𝑇𝑡+ 𝛼−1𝑡 F𝑡F𝑇𝑡 + 𝐵𝑡𝑄𝑡𝐵𝑇𝑡 = 𝑃 (𝑡 + 1) ,

(A.16)

with the initial value𝑃(0) = 𝑥(0)𝑥𝑇(0)+𝑃0, which is similarly
calculated in [11].

Data Availability

The results of a numerical example are demonstrated to illus-
trate the effectiveness of the proposed distributed fusion esti-
mation strategy. The considered target tracking systems with
intermittent measurements are uncertain systems, which
contains three sensors.
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