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In this paper, a fresh shear-displacement model is developed for the plastic deformation of the bulk metallic glasses.Themultiscale
behavior in the shear banding process and the dynamics transition with the parameters are investigated in analytical form. We
present a theoretical support for the transition from unstable states to stable states in the experiment by multiscale analysis and
the stability analysis. With the small parameter increasing from negative to positive, the stability of the shear slipping displacement
system changes, and there is a limit cycle at the transition stage.Meanwhile, the phase diagram and the power spectrumalso suggest
that there is dynamics transition with the parameter changing. Moreover, the complexity is analyzed for different disturbance
parameters, and it is coincident with the fact that the solution is more irregular for larger disturbance. In addition, we find that
the amplitude of solution decreases with the temperature decreasing, which is consistent with the experimental results that the
amplitude of the serration is smaller and smaller as the temperature decreases.

1. Introduction

During the plastic deformation for the bulk metallic glasses
(BMGs), the serrated flowmanifests as a series of intermittent
serration in the stress-strain (time) curve [1]. The system has
complex dynamic behavior, which has not been revealed
clearly by nonlinear theoretical analysis based on mathemat-
ical model. Each serration is considered to be associated with
the formation of localized shear bands propagating along a
certain shear plane, and thus the dynamics of serrations is
closely related to the shear stability, the ductility of metallic
glasses, or the temperature [2–7]. The experimental data
analysis suggests that the shear avalanche can self-organize to
a critical state in ductile metallic glasses [5] or can be in a
chaotic state in metallic glasses with small plastic strain
rate and the multifractal bursts at the transition stage [8].
Meanwhile, for the serrated flow signal, there exists temporal
scaling behavior varying with different strain rates and
temperatures [9], as well as the loading forces[10]. The self-
similar scaling behavior only exists at certain temperature
[9]. The temperature is an important factor influencing
the microstructure of BMGs [11], which can further affect

mechanical properties, such as the improvement of yield
strength and plasticity [12, 13]. Note that there are complex
dynamical behaviors in the serrated flow based on the exper-
imental data; therefore, we speculate that there exist various
nonlinear dynamical behaviors based on the spatiotemporal
dynamical model.

Although a few researches focused on the dynamics of the
shear band during plastic deformation of metallic glasses [4,
5, 14–17], the theoretical analysis based on a spatiotemporal
dynamical model is quite needed to investigate the nonlinear
phenomena in the plastic deformation. In 2014, it was noted
that the serrated flow dynamics is influenced by the strain
rates; we developed a dynamical model which involves the
shear displacement (spatial information) and the argument
time (temporal information) [18]. The model predicts the
evolution of the shear displacement and the shear sliding
speed in the shear band, all as a function of time. Considering
the loading strain rate effects, we found various sizes of
sliding events at different initial conditions. Although the
model has constructed differential expressions to bridge
the gap between the temporal evolution and the spatial
interaction of shear bands, there is no further theoretical
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Figure 1: The schematic diagram of the plastic deformation considering the mutual interaction between the shear bands and force analysis
for the multiple shear bands. (a) The multiple shear bands during the plastic deformation. (b) Chain of the blocks parallel to the direction of
loading speed V. (c) The force diagram for the i-th block.

analysis for the serrated flow that has yet to be proposed,
and the dynamical behavior transition with the parameters
has not been illuminated in analytical form.Therefore, in the
following work, we attempt to investigate how the dynamics
transits with the parameters and the multiscale behavior
in the shear banding process by applying the dynamical
analysis and numerical simulation. In addition, we provide
an explanation about how the temperature influences the
solution of the dynamical system.

The aim of the present work is to explore the complex
dynamical behavior in the shear-displacement model, as well
as the influence of the temperature. The novel aspect of this
work relates to two factors: (1) the multiscale analysis was
conducted to evaluate the scaling behavior in the serrated
plastic flow; (2) complex dynamical behavior can be deduced
from this model at different conditions, which is correspond-
ing to the chaos and self-organized behavior based on our
previous experimental data analysis.

2. The Sliding Shear-Displacement Model and
Stability Analysis

Cu50Zr45Ti5 metallic glasses were chosen as model materials.
The tests were conducted at strain rates of 2.5 × 10−2𝑠−1,2.5 × 10−3𝑠−1, 2.5 × 10−4𝑠−1, and 2.5 × 10−5𝑠−1, respectively.
The surface of the fractured sample exhibits abundant shear
bands interlaced[1]. We introduce the springs connecting the
neighboring blocks with different elastic coefficients, 𝑘𝑖, 𝑖 =1, 2, . . . , 𝑁 − 1; 𝑁 is the number of a chains of blocks that
were coupled to each other; the mutual interaction between
the shear bands is presented as 𝑘𝑖(𝑈𝑖+1 −𝑈𝑖) − 𝑘𝑖−1(𝑈𝑖 −𝑈𝑖−1),
where 𝑈𝑖 is the shear sliding displacement of the 𝑖th block.
Due to the limitation of the experiment method, so far the
value of elastic coefficients of 𝑘𝑖 is hard to identify, and the
formula 𝑘𝑖(𝑈𝑖+1 − 𝑈𝑖) − 𝑘𝑖−1(𝑈𝑖 − 𝑈𝑖−1) is difficult to deal
with in a partially differential equation. Therefore, theoretical

analysis cannot be easily implemented. Using the average 𝑘𝑐
instead of 𝑘𝑖, we can also get convincing conclusion about
the theory analysis and simulation results about the system
of plastic deformation.

Therefore, without regard to the influences of the micro-
structures in glassy phase, we established a model consid-
ering mutual interaction between multiple shear bands [18],
involving the shear displacement and the time; the sketch
of the model is shown in Figure 1. The system contains a
chain of blocks coupled to each other by harmonic springs
with strength of 𝑘𝑐, and they were attached to the machine.
The spring strength between the sample and the machine
is 𝑘 (Figures 1(a) and 1(b)). The system is compressed at a
loading speed, V (Figure 1(a)). For the 𝑖 th block, the forces
parallel to the loading direction are the internal stress, 𝜎𝑈𝑖,
the interaction among the multiple shear bands, which is
expressed as𝑈𝑖+1+𝑈𝑖−1−2𝑈𝑖, and the plastic shear resistance,𝜎𝑓(�̇�𝑖), which is in the opposite direction of the loading
direction (Figure 1(c)). Because the internal stress, 𝜎(𝑈𝑖), can
be written as 𝜎(𝑈𝑖) = 𝜎(0) − 𝑘𝑈𝑖 [4], the motion equation is
given as follows:

4𝑀
𝜋𝑑2 �̈�𝑖 = 𝜎 (0) − 𝑘𝑈𝑖 + 𝑘𝑐 (𝑈𝑖+1 + 𝑈𝑖−1 − 2𝑈𝑖)

− 𝜎𝑓 (�̇�𝑖) ,
(1)

where 𝜎(0) is the initial internal stress, which is equal to
the yield stress, 𝜎𝑓0, and 𝜎𝑓(�̇�𝑖) = 𝜎𝑓0/(1 + 𝐴�̇�𝑖), which
represents the shear resistance along the shear plane [5]. 𝑑
is the diameter of the sample. 𝑀 is the equivalent mass of
the system, which consists of a metallic glass and a spring
that represents the influence of the testing machine. 𝑘 =𝐸/𝐿(1+𝑆), where𝐸 is the Youngmodulus of themetallic glass
and 𝑆 is the stiffness ratio of sample 𝜅𝑠 to the testing machine𝑆 = 𝜅𝑠/𝜅𝑀 = 𝜋𝑑2𝐸/(4𝐿𝜅𝑀) [19].
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The metallic glasses behave as an isotropic continuum
solid on the macroscale; therefore, we consider the glassy
phase in the framework of a continuous system. Before
the construction of the strain distribution in a compressed
sample, it is required to introduce a scaled variable𝑥(= 𝜁/𝐿) ∈[0, 1] (here, 𝐿 is the sample height and 𝜁 is the original
position at the length direction of the sample). After setting
time as 𝑡, a differential equation is established as follows:

4𝑀
𝜋𝑑2𝑈𝑡𝑡 = 𝜎 (0) − 𝑘𝑈 + 𝑘𝑐ℎ2𝑈𝑥𝑥 − 𝜎𝑓 (𝑈𝑡) , (2)

where 𝜎(0) is the initial internal stress, which is equal to the
yield stress, 𝜎𝑅, and 𝜎𝑓(�̇�) = (𝜎𝑅 − 𝐴2𝐸(𝑇 − 𝑇𝑅)/𝑇𝑔)/(1 +
𝐴1�̇�) [4], which represents the shear resistance along the
shear plane (where 𝑇 is the environmental temperature, 𝑇𝑅
is the room temperature, 𝜎𝑅 is the yield stress at room
temperature, 𝑇𝑔 is the glass-transition temperature, and𝐴2 is
a dimensionless constant determined to be 0.0106 for various
BMGs). For typical Zr-based BMGs, the constant 𝐴1 = 5
[5]. 𝑑 is the diameter of the sample. 𝑀 is the equivalent
mass of the system, which consists of a metallic glass and a
spring that represents the influence of the testing machine.𝑘 = 𝐸/𝐿(1 + 𝑆), where 𝐸 is the Young modulus of the metallic
glass and 𝑆 is the stiffness ratio of sample 𝜅𝑠 to the testing
machine 𝑆 = 𝜅𝑠/𝜅𝑀 = 𝜋𝑑2𝐸/(4𝐿𝜅𝑀) [19].

The propagation of the shear bands can be considered as a
wave propagating in homogeneous isotropic elastic body [20,
21]. To solve the partial differential equation (2), the strain
evolution was traced during the deformation by analyzing the
traveling wave transformation, 𝜉 = 𝑥−𝑐𝑡, where 𝑐 is the speed
of the traveling wave, 𝑈(𝑥, 𝑡) = 𝑈(𝜉). Equation (2) can be
translated into the following ordinary differential equation:

(4𝑀𝑐2
𝜋𝑑2 − 𝑘𝑐ℎ2)𝑈𝜉𝜉 + 𝑘𝑈 + 𝜎𝑓 (𝑈𝜉) − 𝜎 (0) = 0. (3)

If 𝐴1𝑐�̇� is small, substitute the damping term 𝜎𝑓(�̇�) =
(𝜎𝑅 − 𝐴2𝐸(𝑇 − 𝑇𝑅)/𝑇𝑔)/(1 − 𝐴1𝑐�̇�) by a perturbation item,
(𝜎𝑅 −𝐴2𝐸(𝑇 −𝑇𝑅)/𝑇𝑔)(1 + 𝜀𝐴1𝑐�̇� + 𝜀2𝐴21𝑐2�̇�2); then (3) can
be rewritten into

(4𝑀𝑐2
𝜋𝑑2 − 𝑘𝑐ℎ2) �̈� + 𝑘𝑈

= −(𝜎𝑅 − 𝐴2𝐸 (𝑇 − 𝑇𝑅)𝑇𝑔 )(𝜀𝐴1𝑐�̇� + 𝜀2𝐴21𝑐2�̇�2) .
(4)

The system (4) can be rewritten as

(4𝑀𝑐2
𝜋𝑑2 − 𝑘𝑐ℎ2) �̈� + 𝑘𝑈

+ (𝜎𝑅 − 𝐴2𝐸 (𝑇 − 𝑇𝑅)𝑇𝑔 ) 𝜀𝐴1𝑐�̇�

+ (𝜎𝑅 − 𝐴2𝐸 (𝑇 − 𝑇𝑅)𝑇𝑔 ) 𝜀2𝐴21𝑐2�̇�2 = 0.

(5)

Set 𝑎 = 4𝑀𝑐2/𝜋𝑑2−𝑘𝑐ℎ2; if 𝑎 > 0, setΩ0 = √𝑎/𝑘, 𝑡 = Ω0𝜏,𝑈 = 𝑏𝑥, where 𝑏 = 𝑎/(𝜎𝑅−𝐴2𝐸(𝑇−𝑇𝑅)/𝑇𝑔)𝐴21𝑐2. By using the
linear transformation 𝑈 = 𝑏𝑥, 𝑡 = Ω0𝜏, the original system is
transformed into the following:

̈𝑥 + 𝑥 + 𝑄𝜀�̇� + 𝜀2�̇�2 = 0, (6)

where 𝑄 = (𝜎𝑅 − 𝐴2𝐸(𝑇 − 𝑇𝑅)/𝑇𝑔)𝐴1𝑐/𝑘Ω0. The system (6)
has equivalent orbital with the original dynamics; then we
analyze the stability of the system (5) [22]. Set 𝑥 = 𝑥1, �̇� = 𝑥2;
the system (6) is transformed into

�̇�1 = 𝑥2,
�̇�2 = −𝑥1 − 𝑄𝜀𝑥2 − 𝜀2𝑥22.

(7)

The equilibrium point is 𝑂(0, 0); the corresponding
derived operator is

𝐷𝑓(0, 0, 𝜀) = [ 0 1
−1 −𝑄𝜀] . (8)

If 𝜀 = 0, 𝐷𝑓(0, 0, 0) has a pair of pure imaginary
characteristic roots, ±𝑖. The equilibrium point 𝑂(0, 0) is
non-hyperbola equilibrium point, and the stability of the
equilibrium point depends on the higher-order nonlinear
term requiring further analysis. We firstly analyze the char-
acteristics of the phase trajectory of the system (7) nearby𝜀 = 0(𝜀 ̸= 0).

(a) If 𝑄 > 0 st. |𝑄𝜀| < 2,(1) If 𝜀 < 0, the characteristic roots of the derived operator
at the equilibrium point 𝑂(0, 0) are

𝜆1,2 = −𝑄𝜀
2 ± √(𝑄𝜀)2 − 4

2 , (9)

and the characteristic roots 𝜆1, 𝜆2 are conjugate complex
roots, with positive real part. The equilibrium point 𝑂(0, 0)
is an unstable focus.(2) If 𝜀 > 0, the characteristic roots 𝜆1, 𝜆2 are conjugate
complex roots, with negative real part. The equilibrium point𝑂(0, 0) is a stable focus.

As the value of 𝜀 goes through 𝜀 = 0 increasing from
negative to positive, the number of the equilibrium points
is unchanged, while the stability changes from unstable to
stable.

(b) If 𝑄 < 0 st. |𝑄𝜀| < 2,(1) If 𝜀 < 0, the characteristic roots 𝜆1, 𝜆2 are conjugate
complex roots, with negative real part. The equilibrium point𝑂(0, 0) is a stable focus.(2) If 𝜀 > 0, the characteristic roots 𝜆1, 𝜆2 are conjugate
complex roots, with positive real part. The equilibrium point𝑂(0, 0) is an unstable focus.

Note that, at 𝜀 = 0, the characteristic roots of the derived
operator are a pair of pure imaginary characteristic roots, ±𝑖.
In fact there is limit cycle at 𝜀 = 0 corresponding to a periodic
solution.
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Table 1: The parameters for the metallic glass Cu50Zr45Ti5 during the plastic deformation.

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑑 𝐿 𝑇𝑅 𝑇𝑔 𝐴1 𝐴2 𝐸 𝑀 𝜎𝑅
𝑉𝑎𝑙𝑢𝑒 2 4 273 643 5 0.0106 80 0.0829 1742
𝑈𝑛𝑖𝑡 mm mm K K 1 1 GPa g MPa
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Figure 2: The bifurcation diagram of the system (6) for the param-
eter 𝜀 range in [0.4, 0.8], 𝑄 = 1.

3. Numerical Simulation

Thenumerical simulationwas conducted based on the system
(6). The parameters in the experiment are shown in Table 1.
The solution of the system varies with the perturbation
parameter 𝜀, and the phase diagram for different values of 𝜀
is shown in Figure 2 for 𝑄 = 1. The time history, the phase
diagram, spectrum, and the Poincaré section of the system (6)
for 𝑄 = 1 are shown in Figures 3–7. For the parameter 𝜀 = 0,
there is periodic solution corresponding to the limit cycle in
the phase diagram (Figure 3). As 𝜀 increases, the solution of
the system manifests period-doubling oscillation at 𝜀 = 0.55
(see Figures 2 and 4). For 𝜀 = 0.653, the solution of the system
is quasi-periodic from the phase diagram (see Figure 6). The
various frequency in the oscillation solution also indicates
that there exists multiscale behavior in the serrated flow
dynamics [9]. Note that𝑄 = (𝜎𝑅−𝐴2𝐸(𝑇−𝑇𝑅)/𝑇𝑔)𝐴1𝑐/𝑘Ω0,𝑄 > 0, means 𝑇 < 𝑇𝑔𝜎𝑅/𝐴2𝐸+𝑇𝑅; if the temperature is lower
than a certain value, the system can evolve to a stable state at a
certain condition (see Figure 3). This is corresponding to the
conclusion that the serrated flow is self-organized to a critical
state at low temperatures [1, 8]. There is a transition from a
criticality state to a limit cycle dominated by the inertia effect,
which is similar to the phenomenon in a dynamic model for
the tuned criticality in stick-slip friction during metal cutting
[23].

For 𝑄 = −1, the time history, the phase diagram,
spectrum, and the Poincaré section of the system (6) are
shown in Figures 8 and 9. For the parameter 𝜀 = 0.05385,
there is unstable solution for the system (see Figure 8). For
the parameter 𝜀 = 0.06885, the oscillation solution has

nonuniform structure (See Figure 9), which indicates the
motion of the shear bands is slow-fast system at this case. In
fact, the original serrated flow signal (such as the stress-time
curve) shows smaller serration followed by a large stress drop.
Note that𝑄 = (𝜎𝑅−𝐴2𝐸(𝑇−𝑇𝑅)/𝑇𝑔)𝐴1𝑐/𝑘Ω0,𝑄 < 0, means𝑇 > 𝑇𝑔𝜎𝑅/𝐴2𝐸 + 𝑇𝑅. It suggests that if the temperature is
higher than a certain value, the system is unstable, which is
in accordance with our previous result about the time series
analysis based on the experimental data [8].

Moreover, the numerical simulation based on (2) is
resolved with 𝜎𝑓(�̇�) = (𝜎𝑅 − 𝐴2𝐸(𝑇 − 𝑇𝑅)/𝑇𝑔)(1 + 𝜀𝐴1𝑐�̇� +
𝜀2𝐴21𝑐2�̇�2). The periodic boundary conditions 𝑈(𝑥, 0) = 0,𝑈(𝑥, 0) = 𝑈(𝑥, 𝐿), 𝑈𝑡(𝑥, 0) = V0. Considering, at 𝑡 = 0,
the sliding speed of each block is unknown, set V0, a random
number which is smaller than V. There are different sizes
of sliding events, and some of them are shown in Figures
10(a)–10(c) in the form of the sliding velocity �̇� as a function
of positions 𝑖 and time 𝑡.

Based on the numerical results, the statistics of the sliding
speed of the i-th blocks, �̇�𝑖 (here �̇�𝑖 is denoted by 𝑠 for
convenience) at the temperature of 173 K, show a power-
law distribution with a fitting exponent of 𝛼 = −2.63 [see
Figure 10(d)]. Noting that Δ𝜎 = 𝑘(𝑠 − V)Δ𝑡, the stress
drops also behave as a power-law distribution for larger 𝜀 =0.03001975 at the temperature of 293K,whichmeans the self-
organized critical behavior in the plastic fracture.

Then we present how the self-organizing criticality phe-
nomenon develops in plastic dynamics. The motion of
shear bands is the main mechanism dominating the plastic
deformation for BMGs. Before the shear banding process,
an elastic strain field develops in the glassy phase [24]. The
size of elastic strain field is much larger than the interspace
between neighboring shear blocks. Then the neighboring
elastic strain fields must interfere with each other during
the shear banding process. During the motion of the shear
bands, it accompanies the accumulation and the release of
the energy. For larger disturbed parameter, there is stronger
interference between the neighboring elastic strain fields.The
elastic strain field cannot be totally relaxed in limited time,
and then the new shear bands are formed in the location of the
unrelaxed elastic strain fields.The overlap of the elastic strain
fields results in a hierarchy of length scales, leading to the self-
organizing criticality behavior [1]. The larger perturbation
parameter reflects the stronger mutual interaction between
the elastic strain fields, which is corresponding to ductile
BMGs. This is quite consistent with the result based on the
experimental data, which showed that the plastic dynamics
manifested as self-organized critical state for more ductile
BMGs [5].

For a given 𝑇 = 293𝐾, the sliding speed of the shear
bands is lower for a smaller 𝜀 = 0.025 (Figures 10(a) and
10(b)). For a given 𝜀 = 0.03001975, it suggests that the shear



Complexity 5

400 450 500

0

5





−

×−

(a)

0 2

0

2





/



−
−

×−

×−

(b)

0 5
0

0.02

0.04



()

(c)

0 0.5 1

0

5



−



/



×−

×−

(d)

Figure 3: The time history, the phase diagram, spectrum, and the Poincaré section of the system (6) for 𝜀 = 10−5, 𝑄 = 1.
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Figure 4: The time history, the phase diagram, spectrum, and the Poincaré section of the system (6) for 𝜀 = 0.55, 𝑄 = 1.

bands slide with a lower sliding speed for a smaller 𝑇 =173𝐾 (Figures 10(b) and 10(c)).Themost distinctive feature in
Figures 10(a)–10(c) is that there is oscillation in sliding speed
which is corresponding to the serrated flow in the stress-
time curves [1, 8]. From the numerical simulation, for smaller

𝜀 = 0.025, the sliding speed fluctuates periodically. There are
larger and irregular sliding events when the parameters 𝜀 is
large, and the sliding of the shear bandswill bemore complex.

The complexity of the system is investigated consider-
ing the influence of the disturbed parameters 𝜀 and the
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Figure 5: The time history, the phase diagram, spectrum, and the Poincaré section of the system (6) for 𝜀 = 0.6529, 𝑄 = 1.
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Figure 6: The time history, the phase diagram, spectrum, and the Poincaré section of the system (6) for 𝜀 = 0.653, 𝑄 = 1.

temperature. The larger disturbed parameter induced more
interference in the shear banding process, which increases the
complexity of the system. To characterize the complexity of
the system, we calculate the approximate entropy (ApEn) [25]

of {𝑑𝑈𝑖/𝑑𝑡, 𝑖 = 1, 2, . . . , 𝑁} based on the numerical results of
system (2), where𝑁 = 2601, and the parameters 𝑟 = 0.1,𝑚 =2. The value of ApEn increases as the disturbance parameter𝜀 is increasing, and the calculated value of ApEn is shown as
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Figure 7:The time history, the phase diagram, spectrum, and the Poincaré section of the system (6) for 𝜀 = 0.655, 𝑄 = 1.
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Figure 8: The time history, the phase diagram, spectrum, and the Poincaré section of the system (6) for 𝜀 = 0.05385, 𝑄 = −1.
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Figure 9: The time history, the phase diagram, spectrum, and the Poincaré section of the system (6) for 𝜀 = 0.06885, 𝑄 = −1.

a function of temperature presented in Figure 11, where the
parameter 𝜀 ∈ [0.02, 0.03]. Larger value of ApEn for larger
disturbance parameter suggests themotion of the shear bands
exhibits a high complexity. In addition, the values of ApEn
are also calculated to evaluate the complexity for different
temperatures [see Table 2], which suggests that at the lower
temperature the system is with less complexity. This result is
consistent with the above analysis that the solution is more
stable at lower temperature.

4. Multiscale Analysis

Themethod ofmultiple scales [26] is developed to analyze the
nonlinear shear banding system (4). Set𝑇𝑛 = 𝜀𝑛𝜉 (𝑛 = 0, 1, 2),𝐷𝑛 ≡ 𝜕/𝜕𝑇𝑛,

𝑑
𝑑𝜉 = 𝐷0 + 𝜀𝐷1 + 𝜀2𝐷2, (10)

𝑑2
𝑑𝜉2 = 𝐷20 + 2𝜀𝐷0𝐷1 + 𝜀2 (𝐷21 + 2𝐷0𝐷2) , (11)

we seek an approximate solution of (4) in the form

𝑈 = 𝑈0 (𝑇0, 𝑇1, 𝑇2) + 𝜀𝑈1 (𝑇0, 𝑇1, 𝑇2)
+ 𝜀2𝑈2 (𝑇0, 𝑇1, 𝑇2) .

(12)

Substituting (10) and (11) into (4) yields

(4𝑀𝑐2
𝜋𝑑2 − 𝑘𝑐ℎ2) [𝐷20 + 2𝜀𝐷0𝐷1 + 𝜀2 (𝐷21 + 2𝐷0𝐷2)]
⋅ (𝑈0 + 𝜀𝑈1 + 𝜀2𝑈2) + 𝑘 (𝑈0 + 𝜀𝑈1 + 𝜀2𝑈2)
= −(𝜎𝑅 − 𝐴1𝐸 (𝑇 − 𝑇𝑅)𝑇𝑔 )[𝜀𝐴1𝑐 (𝐷0 + 𝜀𝐷1
+ 𝜀2𝐷2) (𝑈0 + 𝜀𝑈1 + 𝜀2𝑈2)
+ 𝜀2𝐴21𝑐2 ((𝐷0 + 𝜀𝐷1 + 𝜀2𝐷2)
⋅ (𝑈0 + 𝜀𝑈1 + 𝜀2𝑈2))2] .

(13)

For convenience, set 4𝑀𝑐2𝜀2/𝜋𝑑2 − 𝑘𝑐ℎ2 = 𝐺, 𝑘/𝐺 = 𝜔20 ,(𝜎𝑅 − 𝐴2𝐸(𝑇 − 𝑇𝑅)/𝑇𝑔)/𝐺 = 𝑝, 𝐴1𝑐 = 𝑞; for 𝜀 = 0, we obtain
the linear equations,

𝐷20𝑈0 + 𝜔20𝑈0 = 0, (14)

𝐷20𝑈1 + 𝜔20𝑈1 = −𝑝𝑞𝐷0𝑈0 − 2𝐷0𝐷1𝑈0, (15)

𝐷20𝑈2 + 𝜔20𝑈2 = −2𝐷0𝐷1𝑈1 − (𝐷21 + 2𝐷0𝐷2)𝑈0
− 𝑝𝑞 (𝐷0𝑈1 + 𝐷1𝑈0)
− 𝑝𝑞2 (𝐷0𝑈0)2 .

(16)
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Figure 10: Numerical simulation at different temperatures 𝑇 and perturbation parameters 𝜀. (a) 𝑇 = 293𝐾, 𝜀 = 0.025; (b) 𝑇 = 293𝐾, 𝜀 =0.03001975; (c) 𝑇 = 173𝐾, 𝜀 = 0.03001975; (d) the distribution 𝑁 vs. the sliding speed, 𝑑𝑈/𝑑𝑡, of each block at 𝑇 = 293𝐾, 𝜀 = 0.03001975,
where 𝑁() represents the number of blocks with sliding speed, 𝑑𝑈/𝑑𝑡. V0 = 0.00001, 𝑐 = 340, and the other parameters used here are listed
in Table 1.

Table 2: The ApEn of {𝑑𝑈𝑖/𝑑𝑡, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁} for different temperatures.

𝑇 173 213 253 293
𝐴𝑝𝐸𝑛 1.5559 1.6267 1.6709 1.6798

The solution of (14) can be written as

𝑈0 = 𝐴 (𝑇1, 𝑇2) 𝑒𝑖𝜔0𝑇0 + 𝐴 (𝑇1, 𝑇2) 𝑒−𝑖𝜔0𝑇0 , (17)

where 𝜔0 = √𝑘/𝐺, 𝐴 is the undetermined complex function,
and 𝐴 is the complex conjugate of 𝐴.

Substituting (17) into (15), it can be deduced that

𝑘𝑐ℎ2𝐷20𝑈1 − 𝑘𝑈1 = − (2𝐷1𝐴 + 𝑝𝑞𝐴) 𝑖𝜔0𝑒𝑖𝜔0𝑇0 + 𝑐𝑐, (18)

where 𝑐𝑐 is the complex conjugate of the preceding terms.
Eliminating the secular term in (18), we obtain

2𝐷1𝐴 + 𝑝𝑞𝐴 = 0, (19)

which means the amplitude 𝐴 varies with 𝑇1. From (18) we
get

𝑈1 = 𝐴 (𝑇1, 𝑇2) 𝑒𝑖𝜔0𝑇0 + 𝐴 (𝑇1, 𝑇2) 𝑒−𝑖𝜔0𝑇0 . (20)

Substituting (17) and (20) into (16) yields

𝑘𝑐ℎ2𝐷20𝑈2 − 𝑘𝑈2 = − [2𝑖𝜔0𝐷1𝐴 + 𝐷21𝐴 + 2𝐷2𝐴𝑖𝜔0
+ 𝑝𝑞 (𝑖𝜔0𝐴 + 𝐷1𝐴)] 𝑒𝑖𝜔0𝑇0 + 𝑝𝑞2𝜔20𝐴2𝑒2𝑖𝜔0𝑇0 + 𝑐𝑐. (21)

Eliminating the secular term in (21), we have

2𝑖𝜔0𝐷1𝐴 + 𝐷21𝐴 + 2𝐷2𝐴𝑖𝜔0 + 𝑝𝑞 (𝑖𝜔0𝐴 + 𝐷1𝐴) = 0. (22)

The solution of (21) can be expressed as

𝑈2 = −𝑝𝑞2𝐴2
3 𝑒2𝑖𝜔0𝑇0 + 𝑐𝑐. (23)
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Figure 11:TheApEn of {𝑑𝑈𝑖/𝑑𝑡, 𝑖 = 1, 2, . . . ,𝑁} based on the system
(2) for different disturbance parameter 𝜀. The parameters used here
are listed in Table 1.

Equation (22) determines the amplitude 𝐴 varying with𝑇2. Considering
𝑑𝐴
𝑑𝜉 = 𝐷0𝐴 + 𝜀𝐷1𝐴 + 𝜀2𝐷2𝐴, (24)

where 𝐷0𝐴 = 0, 𝐷1𝐴, and 𝐷2𝐴 are determined by (19) and
(22), respectively, we can deduce the differential equation 𝐴
satisfying

𝑑𝐴
𝑑𝜉 = −𝜀𝑝𝑞𝐴2 − 𝜀2𝑝2𝑞2𝐴8𝜔0 𝑖, (25)

Set

𝐴 (𝜉) = 1
2𝑎 (𝑡) 𝑒𝑖𝜃(𝜉), (26)

From (25) we get

̇𝑎 = −𝜀𝑝𝑞
2 𝑎,

̇𝜃 = −𝜀2𝑝2𝑞2
8𝜔0 .

(27)

It can be deduced that

𝑎 = 𝑒−(𝜀𝑝𝑞/2)𝜉 + 𝑐1,
𝜃 = −𝜀2𝑝2𝑞2

8𝜔0 𝜉 + 𝑐2.
(28)

where 𝑐1, 𝑐2 are constants. Set 𝛼 = 𝜀𝑝𝑞/2, 𝛽 = 𝜀2𝑝2𝑞2/8𝜔0;
then we get

𝐴 (𝜉) = 1
2 (𝑒−𝛼𝜉 + 𝑐1) 𝑒𝑖(−𝛽𝜉+𝑐2). (29)

Substituting (17), (20), and (23) into (12) yields the
solution

𝑈 = 𝐴 (𝑇1, 𝑇2) 𝑒𝑖𝜔0𝑇0 + 𝜀𝐴 (𝑇1, 𝑇2) 𝑒𝑖𝜔0𝑇0
− 𝜀2𝑝𝑞2𝐴23 𝑒2𝑖𝜔0𝑇0 + 𝑐𝑐.

(30)

The approximate solution of (4) can be expressed as

𝑈 (𝜉) = (𝑒−𝛼𝜉 + 𝑐1) cos (𝜉𝜔0 − 𝛽𝜉 + 𝑐2)
+ 𝜀 (𝑒−𝛼𝜉 + 𝑐1) cos (𝜉𝜔0 − 𝛽𝜉 + 𝑐2)
− 𝜀2𝑝𝑞26 (𝑒−𝛼𝜉 + 𝑐1)2 cos (2𝜉𝜔0 − 2𝛽𝜉 + 2𝑐2)

(31)

To investigate the numerical solution 𝑈(𝜉) qualitatively,
for convenience, set the constant 𝑐1 = 0, 𝑐2 = 0; the curve
of 𝑈(𝜉) at the temperature 𝑇 = 293 𝐾 for perturbation
parameter 𝜀 = 10−8 is shown in Figure 12(a), and the
curve for perturbation parameter 𝜀 = 10−7 is shown in
Figure 12(b). It manifests that the system is unstable in the
form of oscillation for smaller perturbation 𝜀 = 10−8, while
it is stable for larger perturbation 𝜀 = 10−7. The value of the
perturbation parameter 𝜀 can be considered as the strength
of the interaction between the shear bands. If 𝜀 is in this
small zone, the system evolves from unstable to stable state
as 𝜀 increases; this is consistent with the conclusion based on
the experimental data analysis that the system is in unstable
chaotic state for the weaker interaction between the shear
bands corresponding to the brittle BMGs [5].

In addition, we investigate the approximate solution of the
system (4) for different temperatures. Choose the parameter𝜀 = 5 × 10−8; the curves of 𝑈(𝜉) at the temperatures 𝑇 =293 𝐾 and 𝑇 = 173 𝐾 are shown in Figures 13(a) and
13(b). Zooming in on the two curves in Figure 13(c), it can
be seen that the amplitude of solution decreases with the
decreasing of temperature. The oscillation of the solution
becomes weaker at lower temperature of 173 𝐾. It shows that
the decreasing of the temperature can reduce the instability.
This result is in accordance with our previous work based on
the experimental data analysis. The serration in the stress-
strain curves is smaller and the serrated flow dynamics is
more stable at lower temperature [8].The fractal dimension of
the stress rate signal ranges from 1.22 to 1.72 with decreasing
temperature and a larger shear-branching rate occurs at lower
temperature. As the temperature changes, there is a temporal
scale free behavior in the serrated flow [27], corresponding to
the self-organized critical state.

5. Conclusion and Discussion

The system containing a series of sliding blocks has com-
plex nonlinear dynamical behavior, which occurred in, for
example, earthquake [28–30], slope forecasting, and friction
experiment of rock mass [31–34]. The motion of an elastic
string everywhere in contact with a frictional surface was
constructed to explore the earthquake mechanism by Bur-
ridge andKnopoff in 1967 [35]. In this paper, a spatiotemporal
dynamical model considering the temperature is proposed
for describing the plastic deformation in bulkmetal glass.The
stability analysis, the numerical simulation, and multiscale
analysis are applied to investigate the complex motions of
the shear sliding blocks. The stability analysis shows that the
shear slipping displacement system can evolve from stable
to unstable with the parameter varying, and there is limit
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Figure 12: The curve of 𝑈(𝜉) at the temperature𝑇 = 293𝐾 for perturbation parameters (a) 𝜀 = 10−8 and (b) 𝜀 = 10−7.
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cycle at a transition stage. It presents theoretical support for
explaining the transition from unstable states to stable states
in the plastic dynamic systemunder different condition [8, 9].

Furthermore, we find that the system is unstable at
larger perturbation parameter, which is corresponding to
the stronger interference between the multiple shear bands,
while, for the smaller perturbation parameter, there exists a
stable state accompanied by weaker interaction between the
multiple shear bands. Meanwhile, the numerical simulation
shows that, at larger 𝜀, the sliding speed of the shear bands
is larger, and the solution is less regular. There is power law
distribution during the motion for certain condition. The
value of ApEn is calculated to measure the complexity of
the system, and it suggests that larger disturbance makes
the motion of the shear bands exhibit a higher complexity.
This result provides clear theoretical explanation for the
conclusion that the system is self-organized to a critical state
for ductile BMGs [5], noting that the perturbation parameter
reflects the degree of ductility.

In addition, based on the multiscale analysis, the influ-
ence of the temperature is investigated in the dynamical
model. It suggests that the amplitude of the solution reduces
with the decreasing of the temperature, which is consistent
with the experimental data analysis that the serration in the
stress-strain curves is smaller at lower temperature [8]. As
temperature decreases, the system evolves to a more stable
state, which is consistent with our previous experimental
results [8, 27].

In conclusion, with the varying of the parameters, the
spatiotemporal model manifests complex dynamical behav-
iors. The results are corresponding with the data analysis
based on the experiment involving fractal [27, 36], chaos, self-
organized critical state [5, 8], and the scaling behavior [27].
The motion of the shear bands is illustrated by the theoret-
ical analysis and numerical simulation based on dynamical
model, providing a fresh approach to the study of plastic
deformation of bulk metallic glasses.
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