
Research Article
MOFSRank: A Multiobjective Evolutionary Algorithm for
Feature Selection in Learning to Rank

Fan Cheng ,1,2 Wei Guo ,2 and Xingyi Zhang 1,2

1Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, Anhui University, Hefei 230039, China
2School of Computer Science and Technology, Anhui University, Hefei 230601, China

Correspondence should be addressed to Xingyi Zhang; xyzhanghust@gmail.com

Received 28 May 2018; Revised 23 October 2018; Accepted 10 November 2018; Published 2 December 2018

Academic Editor: Rongqing Zhang

Copyright © 2018 Fan Cheng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Learning to rank has attracted increasing interest in the past decade, due to its wide applications in the areas like document retrieval
and collaborative filtering. Feature selection for learning to rank is to select a small number of features from the original large set
of features which can ensure a high ranking accuracy, since in many real ranking applications many features are redundant or even
irrelevant. To this end, in this paper, a multiobjective evolutionary algorithm, termedMOFSRank, is proposed for feature selection
in learning to rank which consists of three components. First, an instance selection strategy is suggested to choose the informative
instances from the ranking training set, by which the redundant data is removed and the training efficiency is enhanced. Then
on the selected instance subsets, a multiobjective feature selection algorithm with an adaptive mutation is developed, where good
feature subsets are obtained by selecting the features with high ranking accuracy and low redundancy. Finally, an ensemble strategy
is also designed inMOFSRank, which utilizes these obtained feature subsets to produce a set of better features. Experimental results
on benchmark data sets confirm the advantage of the proposed method in comparison with the state-of-the-arts.

1. Introduction

As a central issue of many applications, such as document
retrieval [1], collaborative filtering [2], and expert finding
[3], learning to rank has attracted much focus in machine
learning area during the last decade. Rank learning, when
applied to document retrieval, is a task as follows [1]. In
learning, a rankingmodel is constructed by using the training
data that consists of queries, their corresponding retrieved
documents, and relevance levels given by human annotators.
In ranking, given a new query, the documents are sorted by
using the trained ranking model.

Due to thewide usages, a great number of learning to rank
algorithms have been proposed, which achieve the ranking
models with high accuracies [4–11]. However, in several real
ranking applications, such as image retrieval [12, 13] and
biomarker finding [14], the number of features in training
data is large, which brings great challenges to existing ranking
methods, sincemany features in these applications are redun-
dant or even irrelevant, which reduces the performance of

ranking algorithms [15]. To tackle the issue, recently, consid-
erable efforts have been made on designing feature selection
algorithms for learning to rank. For example, Geng et al.
proposed the first filter based work, termed Greedy Search
Algorithm (GAS) for feature selection in learning to rank [15].
In GAS, the feature that maximized total importance scores
and minimized total similarity scores was iteratively selected
to obtain the final feature subset. Experimental results
demonstrated the effectiveness of GAS, when compared
with traditional ranking algorithms. Since then, many other
filter based ranking algorithms have been developed [16–19].
Another type of feature selection algorithms for learning to
rank belongs to the wrapper approach, where a rank learning
algorithm is included in the feature selection procedure to
create a good feature subset. BRTree [20], RankWrapper [21],
BFS-Wrapper [22], and GreedyRankRLS [23] are the repre-
sentative works of this type. Recently, embedded methods
have been proposed to solve feature selection for learning
to rank, where feature selection is embedded in the ranker
construction by introducing a sparse regularization term. For

Hindawi
Complexity
Volume 2018, Article ID 7837696, 14 pages
https://doi.org/10.1155/2018/7837696

http://orcid.org/0000-0003-0175-0818
http://orcid.org/0000-0002-4946-2607
http://orcid.org/0000-0002-5052-000X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/7837696

2 Complexity

example, RSRank [24], FenchelRank [25], and FSMRank [26]
adopted L1 regularization term, whereas in the work of [27],
an embedded based feature selection algorithm by using a
nonconvex regularization was suggested.

The existing feature selection algorithms for learning
to rank have shown promising performance in achieving
the features with small number and high ranking accuracy.
However, all these algorithms solve the problem by only
considering the traditional optimization techniques, such as
greedy method and gradient descent method. Different from
them, in this paper, we tackle the issue by using evolutionary
computation as the optimization technique. To be specific, a
Multi-Objective evolutionary algorithm forFeature Selection
in learning to Rank, named MOFSRank is proposed. The
main contributions of this paper can be summarized as
follows:

(1) A multiobjective feature selection method with an
adaptive mutation is suggested, where the features
with high ranking accuracy and low redundancy are
selected as the feature subsets. Based on the suggested
method, a multiobjective evolutionary algorithm,
named MOFSRank, is proposed for feature selection
in learning to rank.

(2) InMOFSRank, an instance selection strategy is devel-
oped to choose the informative instances from the
training data, bywhich the redundant data is removed
and the learning process of feature selection is sped
up. In addition, an ensemble strategy is also designed
in MOFSRank, where the selected feature subsets are
further utilized to produce a set of better features.

(3) The effectiveness of the proposed MOFSRank is eval-
uated on the benchmark data sets, and the experimen-
tal results show that compared with the existing work
the algorithm we proposed has superior performance
in terms of both ranking accuracy and number of
selected features.

The remainder of the paper is organized as follows. In
Section 2, the preliminaries and related work are presented.
Section 3 gives the details of the proposed algorithm and
empirical results by comparing our algorithm with several
state-of-the-arts on the benchmark data sets are reported in
Section 4. Section 5 concludes the paper and discusses the
future work.

2. Preliminaries and Related Work

2.1. Learning to Rank. Learning to rank, when applied to
document retrieval, can be described as a problem as follows.
Assuming that there is a collection of 𝑚 queries for training,
denoted as {𝑞1, 𝑞2, . . . , 𝑞𝑚} ∈ 𝑄, each query 𝑞𝑘 (1 ≤ 𝑘 ≤ 𝑚)
is associated with a list of 𝑛𝑘 documents, 𝑑𝑘 = {𝑑1𝑘, 𝑑2𝑘, . . . ,
𝑑𝑛𝑘
𝑘
}, whose relevance to 𝑞𝑘 is given by a vector 𝑦𝑘 = (𝑦1𝑘 ,

𝑦2𝑘 , . . . , 𝑦𝑛𝑘𝑘), where 𝑦
𝑗

𝑘
∈ {𝑟1, 𝑟2, . . . , 𝑟𝑙} (1 ≤ 𝑗 ≤ 𝑛𝑘) and

𝑙 is the number of ranks. There exists a total order between
the ranks 𝑟𝑙 ≻ 𝑟𝑙−1 ≻ . . . 𝑟1, where ≻ denotes the partial
order. With the training data, learning to rank is to construct
a ranking model 𝑟, which for a given new query 𝑞 can rank

the documents associated with 𝑞 such that more relevant
documents are ranked higher than less relevant ones.

To obtain accurate ranking models, different learning to
rank algorithms have been proposed, which can be divided
into three categories: Pointwise approach, Pairwise approach,
and Listwise approach [1]. The Pointwise approach uses each
single document as a learning instance, and defines the
loss function on individual documents [4, 28]. The Pairwise
approach regards a pair of documents as a learning instance
and transforms the ranking problem into binary classification
on document pairs [5–7]. The Listwise approach solves the
ranking problem in a straightforward fashion, which takes
the entire ranked list of documents as a learning instance and
defines a Listwise loss function for learning [8–11]. Among
these three approaches, the Pairwise one has attracted much
focus, since in the real ranking applications, such as search
engine and recommendation system, the training data of this
category can be easily obtained from the users’ click through
[5]. More algorithms for learning to rank can be found in [1].

2.2. Feature Selection Methods for Learning to Rank. The
different types of ranking algorithms have shown promising
performance in achieving the models with high accuracy.
However, in several real ranking applications, the number
of training features is large, which brings great challenges
to learning to rank algorithms. To tackle the issue, recently,
researchers introduced feature selection to the ranking meth-
ods and a variety of feature selection algorithms for learning
to rank have been suggested, which mainly fall into three
categories: filter approach, wrapper approach, and embedded
approach [27, 29].

The filter approach is independent of the rankingmethod,
and one representative work isGASproposed byGeng, which
is also the first feature selection algorithm for learning to rank
[15]. The basic idea of GAS is to select a subset of features
with maximum total importance scores and minimum total
similarity scores and use selected features to construct a
ranking model. Experimental results on LETOR data sets
have shown that GAS can achieve good ranking accuracy
with a small number of features. Based on this work, several
other filter based feature selection algorithms have been
developed [16–19, 30].

Different from filter approach, the wrapper approach
includes a rank learning algorithm in the feature subset
evaluation step, where the ranking algorithm is used as a
black box by awrapper to evaluate the goodness (i.e. the rank-
ing accuracy) of the selected features. Example algorithms
include BRTree, which uses boosted regression trees [20],
RankWrapper with Ranking SVM [21], BFS-Wrapper utiliz-
ing search [22], GreedyRankRLS with Rank RLS algorithm
[23], and LMIR using smoothing language model [31].

Recently, embedded approach (Note that some research-
ers categorize feature selection algorithms into two groups,
where embedded approach is included in wrapper approach.)
has been suggested to solve feature selection for learning to
rank, where feature selection and rank learning are integrated
into one single process. For example, Sun et al. [24] proposed
an embedded feature selection ranking algorithm, termed
RSRank, where L1 regularization term was introduced into

Complexity 3

Feature selection phase Ensemble PhaseInstance Selection Phase

MOIS MOFS MOENPairwise
Data set

rn

r3FS3

r2FS2

r1FS1

FSn

IS1

IS2

IS3

ISm

The final Feature subset F３∗

Figure 1: TheMain Procedure of MOFSRank.

ranking optimization. The experiment results onOHSUMED
andTD2003 data sets have shown that RSRank outperformed
several baseline rankers with only selecting thirty percent
features. In recognizing the competitiveness of RSRank,many
other embedded based methods have emerged. Lai et al.
suggested another L1 based ranking method, named Fenchel-
Rank [25], where Fenchel duality was used to solve the sparse
ranking optimization. Empirical evaluations indicated that
FenchelRank was not only better than the classical rank-
ing algorithms but also provided better performance than
RSRank. Following this work, Lai et al. further developed
a new embedded feature selection algorithm for learning to
rank, termed FSMRank [26]. The algorithm solved a joint
convex optimization problem by simultaneously minimizing
ranking error and conducting feature selection. Experiments
on the LETOR collections demonstrated that FSMRank can
obtain better results than the filter approach, such as GAS.
Different from the algorithms above, which all used convex L1
regularization, Laporte et al. designed a feature selection algo-
rithm for learning to rank with a nonconvex regularization,
which resulted in both good ranking accuracy and a small
number of selected features [27]. Other embedded feature
selection ranking algorithms can also be found in [32, 33].

The algorithms mentioned above have shown the effec-
tiveness of feature selection for learning to rank, and in
this paper, we continue this research line by proposing a
multiobjective evolutionary algorithm for ranking feature
selection. Before giving the details of the proposed algorithm,
it should be noted that recently, multiobjective evolution-
ary algorithms (MOEAs) have been successfully applied to
solve different problems in machine learning areas, such as
classification [34–36], clustering [37, 38], and pattern mining
[39]. In the following, we will propose an MOEA for feature
selection in learning to rank.

3. The Proposed Algorithm

The proposed algorithm (MOFSRank) is a feature selection
algorithm. To be specific, it is a multiobjective feature
selection algorithm for learning to rank, where Pairwise
documents are used as the learning instances. To select
feature subset from the training set with 𝑂(𝑛2) size (𝑛 is the
number of training data), we first choose some informative
instance subsets from the Pairwise training set and then fea-
ture selection is performed on those selected instance subsets.
Lastly, the outputs of feature selection are combined together
to achieve a better feature subset. The main procedure

of MOFSRank is shown in Figure 1, which consists of three
phases: (1) instance selection phase, (2) feature selection
phase, (3) and ensemble phase. In the first phase, a multi-
objective evolutionary algorithm, termed MOIS, is suggested
to select the informative instances from the original Pairwise
training set, which has two advantages. First, it removes the
possible noisy data in the original set and improves the quality
of training set. Second, the instance selection reduces the
number of training instances and makes the feature selection
more efficient. In the second phase, the final nondominated
solutions of MOIS are used for feature selection. To this
end, an MOEA for feature selection (MOFS) is proposed,
where ranking accuracy and number of the selected features
are defined as two optimization objectives. In addition, an
adaptive mutation probability is also designed in MOFS, by
which the proposed method can choose the features with
high ranking accuracy and low redundancy. In the last phase,
a mixed coding based multiobjective ensemble algorithm,
namely, MOEN, is developed, where the Pareto solutions in
the second phase are utilized to produce a better feature
subset as the final output. The framework of the proposed
MOFSRank is demonstrated in Algorithm 1.

3.1. Instance Selection Phase. As mentioned before, in this
paper, we focus on Pairwise ranking, whose training set is
of 𝑂(𝑛2) size, where 𝑛 is the number of training data. Thus,
before feature selection, an instance selection operation is
carried on the Pairwise training set. To be specific, an MOEA
named MOIS is proposed for instance selection, where two
optimization objectives are the number of selected instances
and the value of 1 − 𝑅𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (in general, the larger value
of 𝑅𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (0 ≤ 𝑅𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ≤ 1) means better ranking
performance; however, since the multiobjective optimization
problem is often described as a minimum problem, thus, in
this paper, we use 1 − 𝑅𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 as the second objective.
), where 𝑅𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 denotes the accuracy value measured
by ranking metrics, such as NDCG or MAP. Thus, the
corresponding multiobjective instance selection problem can
be described as

𝑀𝑂𝑃1 :
{
{
{

min𝑓1 = 𝑛 (𝐼𝑆)
min𝑓2 = 1 − 𝑅𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝐼𝑆

(1)

where 𝐼𝑆 denotes the selected instance subset, 𝑛(𝐼𝑆) is the
number of the instances in 𝐼𝑆, and 𝑟𝐼𝑆 is a ranker learned
on 𝐼𝑆 set. In this paper, we adopt linear SVM to create the
ranker, which has been widely used in many feature selection

4 Complexity

Input: 𝑚𝑎𝑥𝑔𝑒𝑛1: maximum generations of multi-objective instance selection, 𝑝𝑜𝑝1: population size of
multi-objective instance selection, 𝑝𝑐1 : crossover probability of multi-objective instance selection,
𝑝𝑚1 : mutation probability of multi-objective instance selection,𝑚𝑎𝑥𝑔𝑒𝑛2: maximum generations
of multi-objective feature selection, 𝑝𝑜𝑝2: population size of multi-objective feature selection, 𝑝𝑐2 : crossover
probability of multi-objective feature selection, 𝑝𝑚2 : mutation probability of multi-objective
feature selection,𝑚𝑎𝑥𝑔𝑒𝑛3: maximum generations of multi-objective ensemble, 𝑝𝑜𝑝3: population size of
multi-objective ensemble, 𝑝𝑐3 : crossover probability of multi-objective ensemble, 𝑝𝑚3 : mutation
probability of multi-objective ensemble;
Output: The final selected feature subset 𝐹𝑆∗;
(1) 𝑂𝑇𝐷𝑆 ←󳨀 Reading original Pairwise training data set;

/∗∗Instance Selection Phase∗∗/
(2) 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑢𝑏𝑠𝑒𝑡 ←󳨀MOIS(𝑚𝑎𝑥𝑔𝑒𝑛1,𝑝𝑜𝑝1,𝑝𝑐1 ,𝑝𝑚1 ,𝑂𝑇𝐷𝑆);

/∗∗Feature Selection Phase∗∗/
(3) (𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑢𝑏𝑠𝑒𝑡, 𝑟𝑠𝑒𝑡) ←󳨀MOFS(𝑚𝑎𝑥𝑔𝑒𝑛2,𝑝𝑜𝑝2,𝑝𝑐2 ,𝑝𝑚2 ,𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑢𝑏𝑠𝑒𝑡);

/∗∗Ensemble Phase∗∗/
(4) 𝐹𝑆∗ ←󳨀MOEN(𝑚𝑎𝑥𝑔𝑒𝑛3,𝑝𝑜𝑝3,𝑝𝑐3 ,𝑝𝑚3 ,𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑢𝑏𝑠𝑒𝑡,𝑟𝑠𝑒𝑡);
(5) Return 𝐹𝑆∗;

Algorithm 1: The Framework of MOFSRank.

Input: 𝑚𝑎𝑥𝑔𝑒𝑛1: maximum generations of multi-objective instance selection, 𝑝𝑜𝑝1: population
size of multi-objective instance selection, 𝑝𝑐1 : crossover probability of multi-objective instance selection,
𝑝𝑚1 : mutation probability of multi-objective instance selection,𝑂𝑇𝐷𝑆: original training data set;
Output: A set of non-dominated instance subsets 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑢𝑏𝑠𝑒𝑡;
(1) Initializing the population 𝑃1 = {𝐼𝑆1, . . . , 𝐼𝑆𝑝𝑜𝑝1};
(2) for 𝑖 = 1 to𝑚𝑎𝑥𝑔𝑒𝑛1do
(3) 𝑃𝑖 ←󳨀 Evaluating 𝑃𝑖 by two proposed objectives; // formula (1)
(4) 𝑀𝑖 ←󳨀 Binary Tournament (𝑃𝑖);
(5) 𝑄𝑖 ←󳨀 Variation (𝑀𝑖, 𝑝𝑐1 , 𝑝𝑚1);
(6) 𝑃𝑖+1 ←󳨀 Environmental (𝑃𝑖 ∪ 𝑄𝑖);
(7) end for
(8) 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑢𝑏𝑠𝑒𝑡 ←󳨀 selecting the solutions on the Pareto front;
(9) Return 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑢𝑏𝑠𝑒𝑡;

Algorithm 2: MOIS(𝑚𝑎𝑥𝑔𝑒𝑛1, 𝑝𝑜𝑝1, 𝑝𝑐1 , 𝑝𝑚1 , 𝑂𝑇𝐷𝑆).

algorithms for learning to rank, such as FenchelRank and
FSMRank. 𝑅𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝐼𝑆 is ranking accuracy of the learned
ranker 𝑟𝐼𝑆 on original training set.

For the MOP1, we use binary encoding scheme, which
means that the 𝑖-th individual (instance subset) can be
represented as 𝐼𝑆𝑖 = (𝑖𝑠𝑖,1, . . . , 𝑖𝑠𝑖,𝑛), where 𝑖𝑠𝑖,𝑗 ∈ {0, 1},
𝑗 ∈ {1, . . . , 𝑛}, 𝑛 is the total number of the instances in the
original training set. If 𝑖𝑠𝑖,𝑗 = 1 denotes that the 𝑗-th instance
is selected in the 𝑖-th individual, otherwise means not. With
this encoding scheme, the proposed MOIS adopts a similar
framework of NSGA-II [40], and Algorithm 2 presents the
procedure of MOIS in detail.

3.2. Feature Selection Phase. We take the non-dominated
solutions of MOIS as the training data sets, and the feature
selection is carried on them. To this end, a bi-objective
evolutionary algorithm with an adaptive mutation for fea-
ture selection (MOFS) is suggested, where two conflicting
objectives are the number of features and the value of 1 −

𝑅𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦. Thus, the biobjective optimization problem for
feature selection is defined as

𝑀𝑂𝑃2 :
{
{
{

min𝑓1 = 𝑛 (𝐹𝑆)
min𝑓2 = 1 − 𝑅𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝐹𝑆

(2)

where 𝐹𝑆 denotes the selected feature subset and 𝑛(𝐹𝑆) is the
number of features in 𝐹𝑆 set. 𝑟𝐹𝑆 is the ranker learned with
features in 𝐹𝑆 set. Since each 𝐹𝑆 is evaluated on the Pareto
instance subsets, we choose the largest value as the value of
𝑅𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝐹𝑆 .

We also use the binary encoding scheme for the MOP2.
Thus, the 𝑖-th individual (feature subset) in population is
represented as 𝐹𝑆𝑖 = (𝑓𝑠𝑖,1, . . . , 𝑓𝑠𝑖,𝑑), where 𝑓𝑠𝑖,𝑗 ∈ {0, 1}, 𝑗 ∈
{1, . . . , 𝑑}, 𝑑 is the total number of features in𝑂𝑇𝐷𝑆 (original
training data set). 𝑓𝑠𝑖,𝑗 = 1 denotes that the 𝑗-th feature is
included in the 𝑖-th individual, otherwise means not. With
the binary encoding strategy, we solve the MOP2 by adopting
a similar framework as NSGA-II. To further improve the

Complexity 5

Input: 𝑚𝑎𝑥𝑔𝑒𝑛2: maximum generations of multi-objective feature selection, 𝑝𝑜𝑝2: population size of multi-objective
feature selection, 𝑝𝑐2 : crossover probability of multi-objective feature selection, 𝑝𝑚2 : mutation probability
of multi-objective feature selection, 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑢𝑏𝑠𝑒𝑡: a set of non-dominated instance subsets;
Output: a set of non-dominated feature subsets 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑢𝑏𝑠𝑒𝑡, and their corresponding rankers set 𝑟𝑠𝑒𝑡;
(1) Initializing the population 𝑃1 = {𝐹𝑆1, . . . , 𝐹𝑆𝑝𝑜𝑝2};
(2) for 𝑖 = 1 to𝑚𝑎𝑥𝑔𝑒𝑛2 do
(3) /∗Evaluating 𝑃𝑖 by two proposed objectives with formula (2)∗/
(4) for 𝑗 = 1 to 𝑝𝑜𝑝2 do
(5) 𝑓𝑗,1 ←󳨀 calculating the number of non-zero features in 𝐹𝑆𝑗; //the first objective value of 𝑗-th individual 𝐹𝑆𝑗
(6) 𝑟𝑗 ←󳨀 argmin1≤𝑙≤|𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑢𝑏𝑠𝑒𝑡|(𝑟𝑗,𝑙 | 1 − 𝑅𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝑗,𝑙); //select the ranker with the smallest value of

1 − 𝑅𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 on the 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑢𝑏𝑠𝑒𝑡 as the ranker of individual 𝐹𝑆𝑗
(7) 𝑓𝑗,2 ←󳨀 1 − 𝑅𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝑗 ; //the second objective value of 𝑗-th individual 𝐹𝑆𝑗
(8) end for
(9) 𝑀𝑖 ←󳨀 Binary Tournament (𝑃𝑖);
(10) 𝑃∗𝑚 ←󳨀 calculating with formulas (3), (5) and (6);
(11) 𝑄𝑖 ←󳨀 Variation (𝑀𝑖, 𝑝𝑐2 , 𝑝

∗
𝑚);

(12) 𝑃𝑖+1 ←󳨀 Environmental (𝑃𝑖 ∪ 𝑄𝑖);
(13) end for
(14) 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑢𝑏𝑠𝑒𝑡 ←󳨀 selecting the solutions on the Pareto front;
(15) 𝑟𝑠𝑒𝑡 ←󳨀 the corresponding ranker set of 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑢𝑏𝑠𝑒𝑡;
(16) Return 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑢𝑏𝑠𝑒𝑡 and 𝑟𝑠𝑒𝑡;

Algorithm 3: MOFS(𝑚𝑎𝑥𝑔𝑒𝑛2, 𝑝𝑜𝑝2, 𝑝𝑐2 , 𝑝𝑚2 , 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑢𝑏𝑠𝑒𝑡).

performance of MOFS, an adaptive mutation strategy is also
suggested, whose basic idea is from the intuition that during
the mutation, the important features should have greater
probability of being selected, whereas the redundant features
should have greater probability of being removed. Thus, the
suggested adaptive mutation probability is defined as

𝑝∗𝑚 (𝑗)

=
{
{
{

[𝑝𝑚 − 𝜎 ⋅ (Impo (𝑗) − 𝑅𝑒𝑑𝑢 (𝑗))]0−1 if 𝐹𝑆 (𝑗) is 1
[𝑝𝑚 + 𝜎 ⋅ (Impo (𝑗) − 𝑅𝑒𝑑𝑢 (𝑗))]0−1 if 𝐹𝑆 (𝑗) is 0

(3)

where function

[𝑥]0−1 =
{{{{
{{{{
{

𝑥, if 0 ≤ 𝑥 ≤ 1
0, if 𝑥 < 0
1, 𝑒𝑙𝑠𝑒,

(4)

𝐹𝑆(𝑗) denotes the value of 𝑗-th bit in an individual 𝐹𝑆. 𝑝∗𝑚(𝑗)
is the adaptive mutation probability of 𝑗-th bit in 𝐹𝑆, and 𝑝𝑚
is the basic mutation probability that used in NSGA-II. 𝜎 is
a decaying factor and, in this paper, we set 𝜎 = 𝑒−𝑔𝑒𝑛, where
𝑔𝑒𝑛 is the number of current generation. Impo(𝑗) and𝑅𝑒𝑑𝑢(𝑗)
represent the important degree and redundant degree of 𝑗-th
feature in 𝐹𝑆, which are formally defined as

Impo (𝑗) = 𝑅𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟 (𝑗)
∑𝑑𝑖=1 𝑅𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟 (𝑗)

(5)

𝑅𝑒𝑑𝑢 (𝑗) =
∑𝑑(𝑖=1,𝑖 ̸=𝑗) (

󵄨󵄨󵄨󵄨󵄨𝑐𝑜𝑟𝑟𝑗,𝑖
󵄨󵄨󵄨󵄨󵄨 × 𝐹𝑆 (𝑖))

∑𝑑(𝑖=1,𝑖 ̸=𝑗)
󵄨󵄨󵄨󵄨󵄨𝑐𝑜𝑟𝑟𝑗,𝑖

󵄨󵄨󵄨󵄨󵄨
(6)

where 𝑅𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟(𝑗) denotes the ranking accuracy value
of the single 𝑗-th feature on original training set. 𝑐𝑜𝑟𝑟𝑗,𝑖 is
Pearson’s correlation coefficient between the 𝑗-th feature and
the 𝑖-th feature (𝑖 ̸= 𝑗) in 𝐹𝑆. By using the adaptive mutation
strategy, we can select the features with high ranking accuracy
and low redundancy. The whole procedure of MOFS is
presented in Algorithm 3.

3.3. Ensemble Phase. After the second phase, a set of non-
dominated solutions (feature subsets) are obtained. To pro-
duce a better final feature subset, a biobjective ensemble algo-
rithm, named MOEN is proposed, where two optimization
objectives are the number of selected features and the value
of 1-RAccuracy with the selected features. The basic idea of
MOEN is that a better feature subset can be achieved by
weighted combining these nondominated solutions together.
To this end, a mixed coding strategy is developed in MOEN,
which consists of two parts. The first part uses the binary
encoding, whose length 𝑙 denotes the number of different
features in the nondominated solutions of MOFS, the 𝑖-th
bit corresponds to the 𝑖-th feature, and if this bit is 1, means
this feature is selected, 0 indicates otherwise. The second
part utilizes real encoding, and its length equals |𝑟𝑠𝑒𝑡| ×
𝑙, where |𝑟𝑠𝑒𝑡| is the number of Pareto solutions in the
second phase. Figure 2 provides an example to illustrate the
suggested mixed encoding scheme in detail.

In Figure 2, there is an individual 𝑖𝑛𝑑.The first part of 𝑖𝑛𝑑
has 4 bits, which means there are 4 different features in the
non-dominated solutions of MOFS.The second part consists
of 3 sub-part, which indicates that the number of feature
subsets is 3. Let assume they are 𝐹𝑆1, 𝐹𝑆2 and 𝐹𝑆3, thus the 𝑖-
th sub-part denotes the ensemble weight for 𝐹𝑆𝑖(𝑖 ∈ {1, 2, 3}).
During the optimization, for the individual 𝑖𝑛𝑑, we need to

6 Complexity

ind

part1 part2

sub-part1 sub-part2
real encodingbinary encoding

sub-part3

1 010 0.03 0.540.2 0.1 0.15 0.01 0.650.090.20.780.08 0.3

Figure 2: An example to illustrate the suggested mixed encoding scheme.

Input: 𝑚𝑎𝑥𝑔𝑒𝑛3: maximum generations of multi-objective ensemble, 𝑝𝑜𝑝3: population size of multi-objective
ensemble, 𝑝𝑐3 : crossover probability of multi-objective ensemble, 𝑝𝑚3 : mutation probability of multi-objective
ensemble, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑢𝑏𝑠𝑒𝑡: a set of non-dominated feature subsets, 𝑟𝑠𝑒𝑡: the set of corresponding rankers;
Output: the final feature subset 𝐹𝑆∗;
(1) Initializing the population 𝑃1 = {𝑝1, . . . , 𝑝𝑝𝑜𝑝3 };
(2) for 𝑖 = 1 to𝑚𝑎𝑥𝑔𝑒𝑛3 do
(3) /∗Evaluating 𝑃𝑖 by two proposed objectives with formula (2) ∗/
(4) for 𝑗 = 1 to 𝑝𝑜𝑝3 do
(5) 𝑓𝑗,1 ←󳨀 calculating the number of non-zero features in 𝑖𝑛𝑑𝑗;// the first objective value of 𝑗-th individual 𝑖𝑛𝑑𝑗
(6) 𝑟𝑗 ←󳨀 constructing the ranker with formula (7); // corresponding to the 𝑗-th individual 𝑖𝑛𝑑𝑗
(7) 𝑓𝑗,2 ←󳨀 1 − 𝑅𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝑗 ;// the second objective value of 𝑗-th individual 𝑖𝑛𝑑𝑗
(8) end for
(9) 𝑀𝑖 ←󳨀 Binary Tournament (𝑃𝑖);
(10) 𝑄𝑖 ←󳨀 Variation (𝑀𝑖, 𝑝𝑐3 , 𝑝𝑚3);
(11) 𝑃𝑖+1 ←󳨀 Environmental (𝑃𝑖 ∪ 𝑄𝑖);
(12) end for
(13) 𝑒𝑛-𝐹𝑆 ←󳨀 selecting the solutions on the Pareto front;
(14) 𝐹𝑆∗ ←󳨀 selecting the solution from 𝑒𝑛-𝐹𝑆 with the minimal value of 1 − 𝑅𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦;
(15) Return 𝐹𝑆∗;

Algorithm 4: MOEN(𝑚𝑎𝑥𝑔𝑒𝑛3, 𝑝𝑜𝑝3, 𝑝𝑐3 , 𝑝𝑚3 , 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑢𝑏𝑠𝑒𝑡, 𝑟𝑠𝑒𝑡).

calculate its two objectives. The value of the first objective
(the number of selected features) can be easily obtained from
the part1 of ind. To get the value of second objective (the
value of 1-RAccuracy of selected features), first, we should
achieve the ranker 𝑒𝑛-𝑟 corresponding to ind. To this end,
we utilize the non-dominated solutions of the second phase
and the weights in the part2 of ind. To be specific, let suppose
𝑒𝑛-𝑟 = (𝑤1, 𝑤2, . . . , 𝑤𝑙); thus each 𝑤𝑖 ∈ 𝑅 (𝑖 = 1, . . . , 𝑙) is
obtained by the following formula:

𝑤𝑖 = 𝐼 (𝑝𝑎𝑟𝑡1𝑖) ×
|𝑟𝑠𝑒𝑡|

∑
𝑗=1

(𝑝𝑎𝑟𝑡2𝑖,𝑗 × 𝑟𝑖,𝑗) (7)

where 𝐼(𝑝𝑎𝑟𝑡1𝑖) is an indicator function which returns 1 if the
𝑖-th bit in part1 is 1 and 0 otherwise. 𝑝𝑎𝑟𝑡2𝑖,𝑗 ∈ 𝑅 denotes the
value of 𝑖-th bit in 𝑝𝑎𝑟𝑡2𝑗, and 𝑝𝑎𝑟𝑡2𝑗 is the 𝑗-th subpart of
part2. 𝑟𝑗,𝑖 ∈ 𝑅 represents for the value of 𝑖-th bit in the ranker
𝑟𝑗, where 𝑟𝑗 is the ranker that corresponds to the output
feature subset 𝐹𝑆𝑗 in 𝑟𝑠𝑒𝑡(Line (15) of Algorithm 3).

In the following, we also take the individual 𝑖𝑛𝑑 in
Figure 2 as an example, and show how to obtain the ensemble
ranker 𝑒𝑛-𝑟 of 𝑖𝑛𝑑 in detail. Firstly, let us assume that
𝑟1 = (0, 0.7, 0.3, 0), 𝑟2 = (0.12, 0.6, 0.25, 0.01), and 𝑟3 =
(0.08, 0.9, 0.12, 0.1) are corresponding rankers of 𝐹𝑆1 to 𝐹𝑆3.
Then from the part2 of ind, we have 𝑝𝑎𝑟𝑡21 = (0.03, 0.2, 0.54,
0.1), 𝑝𝑎𝑟𝑡22 = (0.15, 0.08, 0.01, 0.3), and 𝑝𝑎𝑟𝑡23 = (0.78,

0.2, 0.09, 0.65). Thus the ensemble ranker 𝑒𝑛-𝑟 = (𝑤1, 𝑤2,
𝑤3, 𝑤4), where

𝑤1 = 1 × (0 × 0.03 + 0.12 × 0.15 + 0.08 × 0.78) ,
𝑤2 = 0 × (0.7 × 0.2 + 0.6 × 0.08 + 0.9 × 0.2)
𝑤3 = 1 × (0.3 × 0.54 + 0.25 × 0.01 + 1.2 × 0.09) ,
𝑤4 = 0 × (0 × 0.1 + 0.01 × 0.3 + 0.1 × 0.65)

(8)

With the ranker 𝑒𝑛-𝑟, we can calculate the second objec-
tive of 𝑖𝑛𝑑 in population and obtain a new set of Pareto
solutions by solving the biobjective ensemble algorithm.
From the Pareto feature subsets, we choose the one with the
minimal value of 1 − 𝑅𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 as the final output 𝐹𝑆∗. The
whole multiobjective ensemble (MOEN) algorithm is shown
in Algorithm 4.

4. Experiments

In this section, we empirically verify the performance of the
proposed MOFSRank by comparing it with several state-of-
the-arts ranking algorithms. To be specific, we first present
the experimental setting (including the data sets, comparison
algorithms, and evaluation measures) and then report the
comparison results between the proposed algorithm and the

Complexity 7

Table 1: Characteristics of the LETOR Data Sets.

Data set Queries Features Rel.levels Query-document pairs
NP2004 75 64 2 75747
HP2004 75 64 2 80306
TD2004 75 64 2 1079810
MQ2008 784 46 2 80925
OHSUMED 106 45 3 582588

baselines (including the classical ranking algorithms and the
representative feature selection algorithms for learning to
rank). Lastly, we discuss the effectiveness of the suggested
strategies in MOFSRank.

4.1. Experiment Setting

4.1.1. Data Sets. We conduct our experiments on the publicly
available LETOR data collections [41], which are considered
as the benchmark data sets in learning to rank. We select
four data sets (NP2004, HP2004, TD2004, and OHSUMED)
from LETOR 3.0 and one data set (MQ2008) from LETOR
4.0. Among them, OHSUMED is a three-level ranking set,
while others are all bilevel data sets. The detail characteristics
of those data sets are depicted in Table 1.

It should be noted that in LETOR collections, each
data set is divided into five-folds and each fold contains
a training/validation/test set, respectively. In the following
experiments, we adopt the same splits as LETORprovides and
report the results by averaging on the five folds.

4.1.2. Comparison Algorithms. The comparison algorithms
used in this paper can be divided into two categories. The
first group is the classical ranking algorithms provided by
the LETOR. In this paper, we select RankSVM-Primal [42],
RankSVM-Struct [43], ListNet [8], and AdaRank-NDCG [11]
as the comparison algorithms, among which the former two
belong to Pairwise approach, while the latter two optimize
Listwise loss functions. The second group of comparison
algorithms are the recently suggested feature selection algo-
rithms for learning to rank, which include FenchelRank
[25], FSMRank [26], and a nonconvex regularization feature
selectionmethod for learning to rank, proposed by Laporte et
al. [27]. It is worth noting that, in the work [27], the authors
presented three algorithms, and we choose the one, termed
𝑙0.5, since it has the best mean performance on LETOR data
sets.

For fair comparisons, we adopt the recommended param-
eters values for all comparison algorithms, which were
suggested by the authors in their original papers. For the pro-
posed MOFSRank, since it is composed of three sub-MOEAs
(MOIS, MOFS, and MOEN), we need to set parameters for
each sub-MOEA. The population sizes, cross probabilities
and mutation probabilities of three sub-MOEAs are set to
𝑝𝑜𝑝1 = 𝑝𝑜𝑝2 = 𝑝𝑜𝑝3 = 50, 𝑝𝑐1 = 𝑝𝑐2 = 𝑝𝑐3 = 1.0, 𝑝𝑚1 =0.01, 𝑝𝑚2 = 𝑝𝑚3 = 1/𝑚, where 𝑚 is the length of the individ-
ual in the sub-MOEAs.Themaximumnumbers of generation

for MOIS, MOFS, and MOEN are set to 𝑔𝑒𝑛1 = 200,
𝑔𝑒𝑛2 = 300, and 𝑔𝑒𝑛3 = 500, respectively. For 𝑅𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
used in the second objective of each sub-MOEA, we adopt
NDCG@10, which is a popular criterion to measure the
accuracy of a ranking algorithm and, in the next section, we
will discuss this criterion in detail.

4.1.3. Evaluation Measures. On the data sets above (NP 2004,
HP2004, TD2004, MQ2008 and OHSUMED), we compare
the proposed MOFSRank with several baselines, and the
results of different algorithms are reported in terms of
NDCG [44] and MAP [45], which are two most widely used
metrics in learning to rank. NDCG (Normalized Discounted
Cumulative Gain) is often used in the case with multilevel
relevance judgments and, for a query, DCG score at position
𝑘 is formally defined as

𝐷𝐶𝐺@𝑘 =
𝑘

∑
𝑖=1

2𝑟(𝑖) − 1
log2 (1 + 𝑖)

(9)

where 𝑟(𝑖) is the relevance label of the 𝑖-th document in the
sorted list. Then Normalized DCG score at position 𝑘 in the
ranking list of documents can be calculated by the equation
as follows:

𝑁𝐷𝐶𝐺@𝑘 = 𝑍 ⋅
𝑘

∑
𝑖=1

2𝑟(𝑖) − 1
log2 (1 + 𝑖)

(10)

where 𝑍 is the normalization constant so that the value of
NDCG ranges from 0 to 1. In the rest of this paper, we use
N@k as the abbreviation of NDCG@k.

Another evaluation metric is MAP (Mean Average Preci-
sion), which deals with binary relevance judgments: relevant
and irrelevant. First, we shall introduce the definition of
precision at 𝑘, which denotes the proportion of relevant
documents at the top 𝑘 positions:

𝑃𝑟𝑒@𝑘 = 1
𝑘
𝑘

∑
𝑖=1

𝜁𝑖 (11)

where 𝜁𝑖 is an indicator function. If the document at position
𝑖 is relevant, 𝜁𝑖 = 1, otherwise 𝜁𝑖 = 0. Then the average
precision of a given query 𝑞 is defined as the follows:

𝐴𝑃 (𝑞) = ∑𝑛𝑖=1 𝑃𝑟𝑒@𝑘 × 𝜁𝑘
𝑛𝑟𝑒𝑙

(12)

where 𝑛 and 𝑛𝑟𝑒𝑙 represent the total number of documents
and relevant documents associated with query 𝑞, respectively.

8 Complexity

Table 2: The Comparison Results between MOFSRank and Classical Ranking Algorithms on LETOR Data Sets, Averaged on Five Folds.

N@1 N@2 N@3 N@4 N@5 N@6 N@7 N@8 N@9 N@10 MAP
NP2004

RankSVM-Primal 0.5600 0.7000 0.7236 0.7662 0.7719 0.7816 0.7864 0.7908 0.7950 0.7950 0.6755
RankSVM-Struct 0.5600 0.7000 0.7321 0.7746 0.7746 0.7843 0.7890 0.7935 0.7977 0.7977 0.6771
ListNet 0.5333 0.7267 0.7587 0.7879 0.7965 0.8037 0.8084 0.8128 0.8128 0.8128 0.6720
AdaRank-NDCG 0.5067 0.6133 0.6722 0.7122 0.7122 0.7225 0.7273 0.7384 0.7384 0.7384 0.6269
MOFSRank 0.5547 0.8000 0.8218 0.8411 0.8466 0.8505 0.8514 0.8518 0.8543 0.8543 0.7064

HP2004
RankSVM-Primal 0.5733 0.6867 0.7129 0.7413 0.7528 0.7683 0.7706 0.7706 0.7720 0.7720 0.6715
RankSVM-Struct 0.5867 0.6733 0.7248 0.7465 0.7523 0.7652 0.7652 0.7666 0.7666 0.7666 0.6784
ListNet 0.6000 0.6867 0.7213 0.7618 0.7694 0.7797 0.7845 0.7845 0.7845 0.7845 0.6899
AdaRank-NDCG 0.5867 0.7333 0.7512 0.7862 0.7920 0.7971 0.7971 0.8016 0.8037 0.8057 0.6914
MOFSRank 0.6720 0.8080 0.8343 0.8406 0.8477 0.8508 0.8541 0.8585 0.8594 0.8622 0.7614

TD2004
RankSVM-Primal 0.3067 0.3067 0.3131 0.3026 0.3062 0.3003 0.2951 0.2921 0.2942 0.2913 0.2061
RankSVM-Struct 0.3467 0.3467 0.3371 0.3287 0.3192 0.3129 0.3102 0.3146 0.3084 0.309 0.2196
ListNet 0.3600 0.3467 0.3573 0.3469 0.3325 0.327 0.3251 0.3206 0.3188 0.3175 0.2231
AdaRank-NDCG 0.4267 0.3800 0.3688 0.3524 0.3514 0.3376 0.3297 0.3284 0.3212 0.3163 0.1936
MOFSRank 0.4533 0.4467 0.4105 0.3901 0.3795 0.3711 0.3616 0.3579 0.3551 0.3560 0.2427

MQ2008
RankSVM-Primal 0.3725 0.4065 0.4333 0.4566 0.4765 0.4893 0.4940 0.4604 0.2263 0.2309 0.4744
RankSVM-Struct 0.3626 0.3984 0.4285 0.4508 0.4695 0.4851 0.4905 0.4564 0.2239 0.2279 0.4785
ListNet 0.3754 0.4112 0.4324 0.4568 0.4747 0.4894 0.4978 0.4630 0.2265 0.2303 0.4833
AdaRank-NDCG 0.3826 0.4211 0.4420 0.4653 0.4821 0.4948 0.4993 0.4636 0.2270 0.2307 0.4763
MOFSRank 0.3957 0.4300 0.4521 0.4718 0.4888 0.5021 0.5064 0.4700 0.2360 0.2406 0.4867

OHSUMED
RankSVM-Primal 0.5460 0.5010 0.4855 0.4766 0.4689 0.4552 0.4534 0.4500 0.4490 0.4504 0.4447
RankSVM-Struct 0.5515 0.5000 0.4850 0.4820 0.4729 0.4584 0.4570 0.4587 0.4568 0.4523 0.4478
ListNet 0.5326 0.4810 0.4732 0.4561 0.4432 0.4400 0.4409 0.4460 0.4459 0.4410 0.4457
AdaRank-NDCG 0.5330 0.4922 0.4790 0.4688 0.4673 0.4597 0.4596 0.4575 0.4541 0.4496 0.4498
MOFSRank 0.5707 0.5353 0.5144 0.4970 0.4872 0.4774 0.4719 0.4676 0.4646 0.4641 0.4489

Based on (11) and (12), MAP can be formally defined
as

𝑀𝐴𝑃 = 1
|𝑄| ∑𝑞∈𝑄

𝐴𝑃 (𝑞) (13)

where𝑄 is the set of all queries.

4.2. Experimental Results and Analysis

4.2.1. Comparison Results between MOFSRank and Classical
Ranking Algorithms. In the first part of experiments, we com-
pare our method with several classical ranking algorithms,
which are all the algorithms without using feature selec-
tion. Specifically, we evaluate MOFSRank with RankSVM-
Primal, RankSVM-Struct, ListNet, and AdaRank-NDCG on
five LETOR data sets. Table 2 presents the performances of
different algorithms, averaged on five-folds.

From Table 2, we can find that on all data sets, the
proposed algorithm performs significantly better than the
existing classical ranking methods. The comparison results

have shown that MOFSRank can achieve the best ranking
accuracy on 53 of 55 statistical points, which demonstrates the
superiority of MOFSRank on LETOR data set and indicates
the effectiveness of feature selection for learning to rank.

4.2.2. Comparison Results between MOFSRank and Feature
Selection Algorithms for Learning to Rank. In the second part
of experiments, we are interested in how ourMOFSRank per-
forms, when compared with other feature selection baselines
for learning to rank. To this end, we report the comparison
results between the proposed algorithm and FenchelRank,
FSMRank, and 𝑙0.5, which are all recently suggested ranking
feature selection methods with good performances. Tables 3
and 4 depict the ranking accuracy and the number of the
selected featureswith different algorithms on the LETORdata
sets, averaged on five-folds.

It can be observed from Table 3 that the proposed
MOFSRank achieves the highest ranking values on most
statistical points, which is much better than the existing
feature selection baselines for learning to rank. Here, we

Complexity 9

Table 3: The Comparison Results between MOFSRank and Feature Selection Baselines for Ranking on LETOR Data Sets, Averaged on Five
Folds.

N@1 N@2 N@3 N@4 N@5 N@6 N@7 N@8 N@9 N@10 MAP
NP2004

FenchelRank 0.5600 0.7400 0.7636 0.7728 0.7808 0.7962 0.801 0.8054 0.8096 0.8157 0.6830
FSMRank 0.5467 0.7800 0.7784 0.7943 0.8000 0.8071 0.8190 0.8279 0.8279 0.8279 0.6837
𝑙0.5 0.5867 0.7533 0.7686 0.7711 0.7848 0.7899 0.7899 0.8055 0.8097 0.8137 0.6963
MOFSRank 0.5547 0.8000 0.8218 0.8411 0.8466 0.8505 0.8514 0.8518 0.8543 0.8543 0.7064

HP2004
FenchelRank 0.6667 0.7667 0.7961 0.8095 0.8181 0.8232 0.8232 0.8232 0.8274 0.8274 0.7447
FSMRank 0.6133 0.7933 0.8070 0.8187 0.8187 0.8255 0.8302 0.8383 0.8383 0.8383 0.7205
𝑙0.5 0.6267 0.7867 0.8035 0.8135 0.8135 0.8135 0.8182 0.8182 0.8224 0.8265 0.7242
MOFSRank 0.6720 0.8080 0.8343 0.8406 0.8477 0.8508 0.8541 0.8585 0.8594 0.8622 0.7614

TD2004
FenchelRank 0.3600 0.3933 0.3725 0.3606 0.3462 0.3363 0.3329 0.3263 0.3220 0.3202 0.2368
FSMRank 0.3600 0.3400 0.3384 0.3260 0.3151 0.3080 0.3092 0.3128 0.3138 0.3133 0.2267
𝑙0.5 0.3733 0.3933 0.3630 0.3462 0.3324 0.3279 0.3262 0.3261 0.3213 0.3205 0.2314
MOFSRank 0.4533 0.4467 0.4105 0.3901 0.3795 0.3711 0.3616 0.3579 0.3551 0.3560 0.2427

MQ2008
FenchelRank 0.3762 0.4164 0.4402 0.4598 0.4790 0.4933 0.4989 0.4619 0.2277 0.2317 0.4785
FSMRank 0.3750 0.4211 0.4404 0.4611 0.4809 0.4938 0.4986 0.4624 0.2283 0.2321 0.4760
𝑙0.5 0.3720 0.4167 0.4390 0.4614 0.4805 0.4934 0.4995 0.4625 0.2268 0.2307 0.4800
MOFSRank 0.3957 0.4300 0.4521 0.4718 0.4888 0.5021 0.5064 0.4700 0.2360 0.2406 0.4867

OHSUMED
FenchelRank 0.5456 0.5390 0.5166 0.4989 0.4826 0.4742 0.4721 0.4680 0.4652 0.4637 0.4486
FSMRank 0.5397 0.5124 0.5070 0.4938 0.4808 0.4725 0.4692 0.4637 0.4567 0.4534 0.4455
𝑙0.5 0.5489 0.5337 0.5032 0.4812 0.4765 0.4688 0.4631 0.4591 0.4594 0.4610 0.4477
MOFSRank 0.5707 0.5353 0.5144 0.4970 0.4872 0.4774 0.4719 0.4676 0.4646 0.4641 0.4489

Table 4: The number of selected features between MOFSRank and feature selection baselines for ranking on LETOR data sets, averaged on
five-folds.

NP2004 HP2004 TD2004 MQ2008 OHSUMED
FenchelRank 18.60 12.00 32.40 15.80 13.00
FSMRANK 32.00 13.80 28.20 13.20 18.00
𝑙0.5 14.60 7.00 17.20 2.40 9.60
MOFSRank 5.72 5.12 5.88 4.80 5.40

present a few statistics on different data sets in terms of N@10.
On NP2004, HP2004 and MQ2008 data sets, MOFSRank
obtains the NDCG values of 0.8543, 0.8622 and 0.2406.
Compared to the second best algorithms (FSMRank), its
performances increase 3.2%, 2.9% and 3.7%, respectively.
On TD2004 data set, the value of N@10 for MOFSRank is
0.3560, which shows 11.1% improvement than the second best
algorithms (𝑙0.5). Similarly, the increase of MOFSRank on
OHSUMED set is 0.1%, in comparison with the second best
algorithm, FenchelRank.

Table 4 presents the number of selected features of dif-
ferent algorithms on LETOR data sets, averaged on five
folds. From the table, we can find that, on NP2004, HP2004,
TD2004, and OHSUMED data sets, the features selected by
MOFSRank are much fewer than those of other baselines.
On MQ2008 data set, the proposed algorithm achieves the

second best performance, whose number of selected features
is slightly larger than the nonconvex feature selection algo-
rithm 𝑙0.5. The statistics in Tables 3 and 4 have demonstrated
the competitiveness of MOFSRank, when compared with
other feature selection algorithms for learning to rank.

To further investigate the performance of different feature
selection algorithms on the LETORdata sets, in the following,
we detailed report the value of N@10 (y-axis) with respect to
different number of selected features (x-axis), and the results
are plotted in Figure 3. Note that since three feature selection
baselines cannot directly select a given number of features, we
adopt the strategy used in [26], which can choose top 𝑘 (𝑘 ≥
1) best features from the whole features. From the figures,
we can find that although the NDCG accuracy of different
algorithms varies with the number of selected features, our
MOFSRank can always achieve the best trade-off between the

10 Complexity

FenchelRank
FSMRank MOFSRank

0.55

0.6

0.65

0.7

0.75

0.8

0.85
N

D
CG

@
10

5 10 15 20 25 30 35 40 450
Number of Features

Ｆ0.5

(a) NP2004

0.6

0.65

0.7

0.75

0.8

0.85

N
D

CG
@

10

2 4 6 8 10 12 14 16 18 20 220
Number of Features

FenchelRank
FSMRank MOFSRank

Ｆ0.5

(b) HP2004

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

N
D

CG
@

10

10 20 30 40 500
Number of Features

FenchelRank
FSMRank MOFSRank

Ｆ0.5

(c) TD2004

0.22

0.225

0.23

0.235

0.24
N

D
CG

@
10

5 10 15 20 250
Number of Features

FenchelRank
FSMRank MOFSRank

Ｆ0.5

(d) MQ2008

0.38

0.4

0.42

0.44

0.46

0.48

0.5

N
D

CG
@

10

5 10 15 20 250
Number of Features

FenchelRank
FSMRank MOFSRank

Ｆ0.5

(e) OHSUMED

Figure 3:The NDCG accuracy of four feature selection algorithms on LETOR sets with different feature numbers.

Complexity 11

Table 5: The training instances of MOFSRank and MOFSRank-NonIS on LETOR data sets.

NP2004 HP2004 TD2004 MQ2008 OHSUMED
#Ins of MOFSRank-NonIS 45445 48183 647886 48555 349552
#Ins of MOFSRank 14493 8563 20407 2611 10399
Instances ratio 0.32 0.19 0.04 0.06 0.03

MOFSRank-NonIS
MOFSRank

4 6 8 10 12 14 16 182
Number of Features

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

N
D

CG
@

10

(a) NP2004

MOFSRank-NonIS
MOFSRank

4 6 8 10 12 142
Number of Features

0.22

0.225

0.23

0.235

0.24

0.245

N
D

CG
@

10

(b) MQ2008

Figure 4: The final nondominated Solutions Obtained by MOFSRank and MOFSRank-NonIS on LETOR Data Sets in Objective Space.

accuracy and the number of selected features, which indicates
the superior performance of the proposed method.

4.3. Effectiveness of the Suggested Strategies in MOFSRank.
As mentioned before, in the proposed MOFSRank, three
strategies (instance selection, adaptive mutation, and Pareto
based ensemble) are suggested and, in the following, we
will empirically investigate the influence of these strategies
on the performance of MOFSRank for LETOR data sets,
respectively.

4.3.1. Effectiveness of the Instance Selection Strategy. In the
first phase of MOFSRank, an instance selection strategy
is suggested, which can reduce the number of training
instances, and improve the performance of MOFSRank. To
verify this fact, we compare the proposed algorithm with
MOFSRank-NonIS, which is the same one as our MOFS-
Rank, except that it excludes the instance selection strategy,
and uses the original Pairwise instances in the training set.
The comparison results on LETOR data sets are shown from
two aspects. Firstly, we present the real training instances of
two algorithms in Table 5, where #Ins ofMOFSRank and #Ins
of MOFSRank-NonIS denote the numbers of real training
instances of MOFSRank and MOFSRank-NonIS. It can be
easily observed from Table 5, that on all the LETOR data
sets the suggested instance selection strategy does reduces
the training instances greatly, especially on the data sets with

hundreds of thousands of training instances (TD2004 and
OHSUMED), and the ratios of the selected instances are only
0.04 and 0.03.

Secondly, we take N@10 as the ranking measure, and plot
the final non-dominated solutions obtained by MOFSRank
and MOFSRank-NonIS in objective space in Figure 4. Note
that due to space limitation, in the following experiments,
we only list the results on one LETOR 3.0 data set (NP2004)
and one LETOR 4.0 data set (MQ2008), and the results on
other LETOR data sets are similar. As can be seen from
Figure 4, on both data sets, the MOFSRank can obtain better
nondominated solutions than the MOFSRank-NonIS, which
demonstrates the effectiveness of the suggested instance
selection strategy in MOFSRank.

4.3.2. Effectiveness of the Adaptive Mutation Strategy. In the
second phase of MOFSRank, an adaptive mutation strat-
egy is developed, which can enhance the performance of
MOFSRank. To confirm the fact, we compare the proposed
method withMOFSRank-NonAM, where the adaptive muta-
tion strategy is removed from the original MOFSRank. The
final nondominated solutions obtained by MOFSRank and
MOFSRank-NonAM in objective space for LETOR data sets
are plotted in Figure 5, from which, we can find that com-
pared with MOFSRank-NonAM, the MOFSRank achieves
better nondominated solutions on the experimental sets,
which indicates the effectiveness of the adaptive mutation
strategy.

12 Complexity

MOFSRank-NonAM
MOFSRank

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
N

D
CG

@
10

4 6 8 10 12 14 16 182
Number of Features

(a) NP2004

MOFSRank-NonAM
MOFSRank

0.22

0.225

0.23

0.235

0.24

0.245

N
D

CG
@

10

4 6 8 10 12 142
Number of Features

(b) MQ2008

Figure 5: The final nondominated solutions obtained by MOFSRank and MOFSRank-NonAM on LETOR data sets in objective space.

MOFSRank-NonPE
MOFSRank

10 15 20 25 305
Number of Features

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

N
D

CG
@

10

(a) NP2004

MOFSRank-NonPE
MOFSRank

10 15 20 255
Number of Features

0.22

0.225

0.23

0.235

0.24

0.245

N
D

CG
@

10

(b) MQ2008

Figure 6: The final nondominated solutions obtained by MOFSRank and MOFSRank-NonPE on LETOR data sets in objective space.

4.3.3. Effectiveness of Pareto Based Ensemble Strategy. In the
third phase of MOFSRank, to obtain a better feature subset, a
Pareto based ensemble strategy is suggested, where the Pareto
solutions of the second phase are combined together. In order
to verify the effectiveness of this ensemble strategy, we com-
pare the MOFSRank with MOFSRank-NonPE. The only dif-
ference between them lies in the fact thatMOFSRank-NonPE
does not include the Pareto based ensemble operation. The
experimental results of two algorithms on LETOR data sets
are plotted in Figure 6, from which we can clearly find that
with the suggested ensemble strategy, the proposed algorithm

achieves better nondominated solutions than MOFSRank-
NonPE. This fact demonstrates the effectiveness of the sug-
gested Pareto based ensemble strategy.

5. Conclusion

In this paper, we have proposed a multiobjective evolution-
ary algorithm, termed MOFSRank, for feature selection in
ranking. In MOFSRank, an MOEA for instance selection
(MOIS) has been suggested, where the informative instances
were chosen from the original training set and made the

Complexity 13

following feature selection more effective and efficient. Then
a multiobjective feature selection (MOFS) algorithm with
an adaptive mutation has been performed on these chosen
instances subsets, which can obtain the features with high
ranking accuracy and low redundancy. Finally, a multiob-
jective ensemble (MOEN) algorithm has been developed
to integrate the Pareto solutions of MOFS, by which the
performance of MOFSRank can be further improved. Exper-
imental results on LETOR data sets have demonstrated the
competitiveness of the proposed algorithm.

There still remains some interesting work related to
MOFSRank that deserves to be further investigated. The
proposed MOFSRank has shown that MOEA is a promising
method to solve feature selection for learning to rank and, in
this paper, wemainly focus on thePairwise ranking approach.
In the future, we plan to further design feature selection
algorithm for other type of learning to rank approach, such as
Listwise approach. In addition, in our MOFSRank, we adopt
NSGA-II as the framework, it is also interesting to combine
the proposedmethod with other frameworks ofMOEA, such
as MOEA/D [46], SPEA2 [47], and AR-MOEA [48].

Data Availability

The data used to support the findings of our study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (61672033, 61502004, 61502001, and
61502012), theNatural Science Foundation of Anhui Province
(1708085MF166), Humanities and Social Sciences Project of
ChineseMinistry of Education (Grant no. 18YJC870004), and
the Key Program of Natural Science Project of Educational
Commission of Anhui Province (KJ2017A013).

References

[1] T.-Y. Liu, “Learning to rank for Information retrieval,” Founda-
tions and Trends in Information Retrieval, vol. 3, no. 3, pp. 225–
231, 2009.

[2] Y. Shi, M. Larson, and A. Hanjalic, “Collaborative filtering
beyond the user-item matrix: A survey of the state of the art
and future challenges,” ACM Computing Surveys, vol. 47, no. 1,
2014.

[3] C. Moreira, P. Calado, and B. Martins, “Learning to rank
academic experts in the DBLP dataset,” Expert Systems with
Applications, vol. 32, no. 4, pp. 477–493, 2015.

[4] D. Cossock and T. Zhang, “Subset ranking using regression,” in
Proceedings of the Conference on Learning Theory, pp. 605–619,
2006.

[5] T. Joachims, “Optimizing search engines using clickthrough
data,” in Proceedings of the Eighth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 133–
142, July 2002.

[6] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, “An efficient
boosting algorithm for combining preferences,” Journal of
Machine Learning Research, vol. 4, no. 6, pp. 933–969, 2003.

[7] C. Burges, T. Shaked, E. Renshaw et al., “Learning to rank
using gradient descent,” in Proceedings of the 22nd International
Conference on Machine Learning (ICML ’05), pp. 89–96, ACM,
August 2005.

[8] Z. Cao, T.Qin, T.-Y. Liu,M.-F. Tsai, andH. Li, “Learning to rank:
from pairwise approach to listwise approach,” in Proceedings of
the 24th International Conference on Machine Learning (ICML
’07), pp. 129–136, ACM, Corvallis, Ore, USA, June 2007.

[9] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li, “Listwise
approach to learning to rank - Theory and algorithm,” in Pro-
ceedings of the International Conference on Machine Learning,
pp. 1192–1199, 2008.

[10] Y. Yue, T. Finley, F. Radlinski, and T. Joachims, “A support
vectormethod for optimizing average precision,” in Proceedings
of the International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 271–278, 2007.

[11] J. Xu andH. Li, “AdaRank: a boosting algorithm for information
retrieval,” in Proceedings of the International ACM SIGIR Con-
ference on Research and Development in Information Retrieval,
pp. 391–398, 2007.

[12] J. Weston, S. Bengio, and N. Usunier, “Large scale image anno-
tation: learning to rank with joint word-image embeddings,”
Machine Learning, vol. 81, no. 1, pp. 21–35, 2010.

[13] J. Yu, D. Tao, M. Wang, and Y. Rui, “Learning to Rank Using
User Clicks and Visual Features for Image Retrieval,” IEEE
Transactions on Cybernetics, vol. 45, no. 4, pp. 767–779, 2015.

[14] R. Leaman, R. I. Doğan, and Z. Lu, “DNorm: disease name
normalization with pairwise learning to rank,” Bioinformatics,
vol. 29, no. 22, pp. 2909–2917, 2013.

[15] X.Geng, T.-Y. Liu, T.Qin, andH. Li, “Feature selection for rank-
ing,” in Proceedings of the International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 407–
414, 2007.

[16] G. Hua, M. Zhang, Y. Liu, S. Ma, and L. Ru, “Hierarchical
feature selection for ranking,” in Proceedings of the International
Conference on World Wide Web, WWW 2010, pp. 1113-1114,
Raleigh, North Carolina, USA, 2010.

[17] K. D. Naini and I. S. Altingovde, “Exploiting Result Diversi-
fication Methods for Feature Selection in Learning to Rank,”
in Proceedings of the European Conference on Information
Retrieval, pp. 455–461, 2014.

[18] M. B. Shirzad and M. R. Keyvanpour, “A feature selection
method based on minimum redundancy maximum relevance
for learning to rank,” in Proceedings of the Ai & Robotics, pp. 1–
5, 2015.

[19] A. Gigli, C. Lucchese, F.M. Nardini, and R. Perego, “Fast feature
selection for learning to rank,” inProceedings of the International
Conference on the Theory of Information Retrieval, pp. 167–170,
2016.

[20] F. Pan, T. Converse, D. Ahn, F. Salvetti, and G. Donato, “Feature
selection for ranking using boosted trees,” in Proceedings of the
ACM Conference on Information and Knowledge Management,
pp. 2025–2028, 2009.

[21] H. Yu, J. Oh, and W. Han, “Efficient feature weighting methods
for ranking,” in Proceedings of the ACM Conference on Informa-
tion and Knowledge Management, pp. 1157–1166, 2009.

14 Complexity

[22] V. Dang and B. Croft, “Feature selection for document ranking
using best first search and coordinate ascent,” in Proceedings
of the SIGIR Workshop on Feature Generation and Selection for
Information Retrieval, pp. 1–5, 2010.

[23] T. Pahikkala, A. Airola, P. Naula, and T. Salakoski, “Greedy
rankrls: a linear time algorithm for learning sparse ranking
models,” in Proceedings of the International ACM SIGIR Con-
ference on Research and Development in Information Retrieval,
pp. 11–18, 2010.

[24] Z. Sun, T. Qin, Q. Tao, and J. Wang, “Robust sparse rank
learning for non-smooth ranking measures,” in Proceedings
of the International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 259–266, 2009.

[25] H. Lai, Y. Pan, C. Liu, L. Lin, and J.Wu, “Sparse learning-to-rank
via an efficientprimal-dual algorithm,” Institute of Electrical and
Electronics Engineers. Transactions on Computers, vol. 62, no. 6,
pp. 1221–1233, 2013.

[26] H.-J. Lai, Y. Pan, Y. Tang, and R. Yu, “FSMRank: Feature
selection algorithm for learning to rank,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 24, no. 6, pp. 940–
952, 2013.

[27] L. Laporte, R. Flamary, S. Canu, S. Dejean, and J. Mothe,
“Nonconvex regularizations for feature selection in ranking
with sparse SVM,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 25, no. 6, pp. 1118–1130, 2014.

[28] P. Li, C. J. C. Burges, andQ.Wu, “Mcrank: learning to rank using
multiple classification and gradient boosting,” in Proceedings of
the International Conference on Neural Information Processing
Systems, pp. 897–904, 2007.

[29] M. B. Shirzad and M. R. Keyvanpour, “A Systematic Study of
Feature Selection Methods for Learning to Rank Algorithms,”
International Journal of Information Retrieval Research, vol. 8,
no. 3, pp. 46–67, 2018.

[30] X. Han and S. Lei, “Feature selection and model compari-
son on microsoft learning-to-rank data sets,” https://arxiv.org/
abs/1803.05127, 2018.

[31] Y. Lin, H. Lin, K. Xu, and X. Sun, “Learning to rank using
smoothing methods for language modeling,” Journal of the
Association for Information Science and Technology, vol. 64, no.
4, pp. 818–828, 2013.

[32] D. X. Sousa, S. D. Canuto, T. C. Rosa, W. S. Martins, and M.
A. Gonçalves, “Incorporating Risk-Sensitiveness into Feature
Selection for Learning to Rank,” in Proceedings of the 25th
ACM International Conference on Information and Knowledge
Management, pp. 257–266, ACM, 2016.

[33] L. Du, Y. Pan, J. Ding, H. Lai, and C. Huang, “EGRank: an
exponentiated gradient algorithm for sparse learning-to-rank,”
Information Sciences, vol. 467, pp. 342–356, 2018.

[34] Z. Wang, M. Li, and J. Li, “A multi-objective evolutionary
algorithm for feature selection based on mutual information
with a new redundancymeasure,” Information Sciences, vol. 307,
pp. 73–88, 2015.

[35] J. Lee,W. Seo, andD.W.Kim, “Effective EvolutionaryMultilabel
Feature Selection under a Budget Constraint,” Complexity, vol.
2018, Article ID 3241489, 14 pages, 2018.

[36] G. Acampora, F. Herrera, G. Tortora, and A. Vitiello, “A multi-
objective evolutionary approach to training set selection for
support vectormachine,”Knowledge-Based Systems, vol. 147, pp.
94–108, 2018.

[37] W. Ying, Y. Xie, Y. Wu, B. Wu, S. Chen, and W. He, “Universal
partially evolved parallelization ofMOEA/D formulti-objective

optimization on message-passing clusters,” Soft Computing, vol.
21, no. 18, pp. 5399–5412, 2017.

[38] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “A Decision Vari-
able Clustering-Based Evolutionary Algorithm for Large-Scale
Many-Objective Optimization,” IEEE Transactions on Evolu-
tionary Computation, vol. 22, no. 1, pp. 97–112, 2018.

[39] X. Zhang, F. Duan, L. Zhang, F. Cheng, Y. Jin, and K. Tang,
“Pattern Recommendation in Task-oriented Applications: A
Multi-Objective Perspective,” IEEE Computational Intelligence
Magazine, vol. 12, no. 3, pp. 43–53, 2017.

[40] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–
197, 2002.

[41] T. Qin, T.-Y. Liu, J. Xu, and H. Li, “LETOR: A benchmark
collection for research on learning to rank for information
retrieval,” Information Retrieval, vol. 13, no. 4, pp. 346–374, 2010.

[42] O. Chapelle and S. S. Keerthi, “Efficient algorithms for ranking
with SVMs,” Information Retrieval, vol. 13, no. 3, pp. 201–215,
2010.

[43] T. Joachims, “Training linear SVMs in linear time,” in Pro-
ceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 217–226, 2006.

[44] K. Rvelin, Kek, and J. Inen, “Cumulated gain-based evaluation
of ir techniques,”ACMTransactions on Information Systems, vol.
20, no. 4, pp. 422–446, 2002.

[45] B. Y. Ricardo, R. N. Berthier et al., “Modern information
retrieval,” ACM, vol. 43, no. 1, pp. 26–28, 1999.

[46] H. B. Nguyen, B. Xue, H. Ishibuchi, P. Andreae, and M. Zhang,
“Multiple reference points MOEA/D for feature selection,”
in Proceedings of theGenetic and Evolutionary Computation
Conference Companion, pp. 157-158, Berlin, Germany, 2017.

[47] E. Ziztler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength pareto evolutionary algorithm for multiobjective opti-
mization,” in Evolutionary Methods for Design, Optimization,
and Control, pp. 95–100, 2002.

[48] Y. Tian, R. Cheng, X. Zhang, F. Cheng, and Y. Jin, “An Indicator
Based Multi-Objective Evolutionary Algorithm with Reference
Point Adaptation for Better Versatility,” IEEE Transactions on
Evolutionary Computation, 2017.

https://arxiv.org/abs/1803.05127
https://arxiv.org/abs/1803.05127

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

