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Weights of evidence (WofE) and logistic regression (LR) are two loglinear methods for mineral potential mapping. Both models are
limited by their respective basic assumptions in application. Ideally, WofE indicator patterns have the property of conditional
independence (CI) with respect to the point pattern of mineral deposits to be predicted; in LR, there supposedly are no
interactions between the point pattern and two or more of the indicator patterns. If the CI assumption is satisfied, estimated LR
coefficients become approximately equal to WofE contrasts and the two methods produce similar results; additionally, bias then
is avoided in that the sum of all estimated posterior probabilities becomes approximately equal to the number of observed
discrete events. WofE allows construction of input layers that have missing data as a separate category in addition to known
presence-absence type input, while logistic regression as such is not capable of handling missing data. As an improved WofE
model based on LR, modified weights of evidence (MWofE) inherit the advantages of both LR and WofE, i.e., eliminates bias
due to lack of CI and can handle missing data as well. Pixel or unit area input for MWofE consists of positive and negative
weights for presence and absence of a pattern plus zeros for missing data. MWofE first is illustrated by application to simple
examples. Next, it is applied to a study area with 20 known gold occurrences in southwestern Nova Scotia in relation to four
input layers based on geological and lake geochemical data. Assuming that geochemical data were missing for the northern part
of the study area, MWofE, like WofE but unlike LR, provides posterior probabilities for the entire area.

1. Introduction

Introductions to basic principles of weights of evidence
(WofE) can be found in Agterberg [1], Bonham-Carter
et al. [2], and Bonham-Carter [3]. The method has been
applied widely in different fields. The reader is referred to
Lindsay et al. [4], Chen et al. [5], and Qin and Liu [6] for
recent examples of application. Besides, as a powerful tool
to deal with missing data, WofE was also used to develop a
spatially weighted logistic regression model for mineral pro-
spectivity mapping [7]. A prerequisite for WofE modeling is
that there is approximately conditional independence (CI)
between the evidential layers with respect to the target layer
[8]. It can be difficult to fully satisfy the CI hypothesis
in practice. Various methods have been developed (1) to
test for CI and (2) to overcome its effects if it exists. Pairwise

G2- and χ2-tests for CI were proposed by Bonham-Carter
et al. [2]. Later, the omnibus test [3], new omnibus test
[9, 10], and Kolmogorov-Smirnov test [11] were introduced
for testing the CI hypothesis. In general, lack of CI can be
reduced by combining interdependent explanatory variables
with one another, or the conditional dependence (CD) prob-
lem can be circumvented by using a different statistical
model. Agterberg [12] introduced the use of logistic regres-
sion (LR); Journel [13] proposed the Tau model which was
refined by Krishnan et al. [14], Caumon et al. [15], and Poly-
akova and Journel [16]. These methods have been discussed
in the comprehensive review paper by Schaeben [17].
Additionally, several weighted WofE and stepwise WofE
models have been developed by Zhang et al. [18], Deng [19],
Agterberg [20, 21], and Cheng [22–24]. It should be kept in
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mind that the purpose of WofE and LR is prediction of prob-
able locations of point events that have not been observed to
exist. In general, the true total number of events in a study area
remains unknown. If unknown events would occur in the
same geological environments as known events, only the prior
probability in WofE is affected by this lack of information. In
general, WofE predictive maps are only valid in a relative
sense, because true event occurrences patterns are either over-
estimated or underestimated. They are used to delineate pro-
spective target areas with no or few known events within a
study area. This approach of using data from the entire study
area differs from the one in which the well-explored part of a
study area is taken as training area, for prediction in a target
area (cf. [25]).

Weights of evidence and logistic regression both belong
to the family of loglinear models (e.g., [26–31]). They are
based on different assumptions: (1) ideally, WofE indicator
patterns are conditionally independent with respect to the
point pattern, and (2) in LR there are no interactions between
the point pattern and two or more of the indicator patterns
[12]. Compared to WofE, LR can be applied to avoid or
weaken the effect of CD although it can remain affected by
interactions between groups of three or more variables; LR
necessarily results in a total number of estimated events
(=sum of posterior probabilities for all predicted event occur-
rences) that is exactly equal to the number of known events
[21, 32]. Because of these advantages, Agterberg [20, 21]
and Deng [19] independently proposed to use LR to improve
upon WofE results with lack of CI. Deng’s model does not
result in unbiased estimates but it significantly reduces bias;
in an example used for illustration by Agterberg [21], total
bias in comparison with WofE results was reduced from
92% to 31% of the estimated total number of events when
Deng’s method was used. Later, the theoretical error in
Deng’s original assumption of unbiasedness was pointed
out and described in detail by Schaeben and van den
Boogaart [33]. Deng’s model diminishes lack of CI bias in
WofE results but better results generally can be obtained by
other methods such as boosting [22–24] or by modified
weights of evidence (MWofE) in which WofE and LR are
combined with one another [21, 34]. MWofE was firstly pro-
posed by Agterberg [21] to overcome the lack of CI in WofE
modeling. It used positive and negative weights instead of 1
and 0 to estimate the coefficients in LR and then used these
coefficients as correction factors for the weights of evidential
layers in WofE, Therefore, it belongs to the weighted WofE
models [34]. When the explanatory variables are presence-
absence type and quantified from maps, the weighted logistic
regression (WLR) generally is to be preferred over logistic
regression because numerous “observations” with equal
values for the explanatory variables must be combined with
one another to form “unique conditions,”which are weighted
according to their map areas [12]. The term “unique condi-
tion” describes the set of unit areas or pixels with identical
values for all explanatory variables. The map areas for a
unique condition either can be measured directly or approx-
imated by counting pixels with the same values for all map
patterns. The advantage ofWLR is that the number of unique
conditions (n) generally is much smaller than the number of

pixels or unit areas (n′). For example, in a square study area,
n′ =m2 where m can be as large as several millions so that n′
becomes much too large for practical applications. On the
other hand, n is derived from the number of different input
patterns (p) with n = 2p. In general, n × n ≪ n′ × n′ , thus
facilitating estimation of logistic regression coefficients in
applications using an iterative process that involves succes-
sive inversions of (n × n) instead of (n′ × n′) matrices assum-
ing that all variables have been corrected for their arithmetic
means before matrix inversions are applied. For example, if
n′ = 106 for 7 binary map patterns digitized for a square array
with 1000× 1000 pixels, the (256× 256) WLR input matrix
for the explanatory variables has 65·106 fewer elements than
the corresponding LR input matrix with 1012 elements. Some
software packages (e.g., recent versions of IBM SPSS) allow
weighting of observations in a manner that is equivalent to
WLR. However, in applications to very large data sets, it
can be advantageous to perform a final convergence check
by comparing the sum of all posterior probabilities with the
number of known events. These two quantities should be
equal to one another. If there is a significant discrepancy, iter-
ations should be continued until full convergence is reached
[35]. WLR should obtain the same results as LR if afronding-
sprecisie is not considered.

WofE and LR produce the same coefficients when a point
pattern is related to a single map layer [36, 37] but standard
deviations of these coefficients as obtained by the two
methods are different. When there are relatively few point
events, LR is likely to produce smaller variances of the coeffi-
cients than WofE contrasts provided that the map patterns
are nearly conditionally independent. This is because WofE
variances of weights and contrasts are based on an assump-
tion of asymptotic normality of maximum likelihood estima-
tors [38], a condition that is unlikely to be satisfied when the
number of observed point events is relatively small. It is
noted here that the WofE contrast measures the strength of
spatial correlation between a point pattern and an indicator
pattern. If a WofE contrast would be standardized to the
[−1, 1] interval, it becomes Yule’s original coefficient of asso-
ciation for binary variables [38].

In general, differences in results obtained by two different
loglinear models can be tested for statistical significance
using the G2-test (cf. [12]). If there are p map layers, G2 for
the difference in results obtained by WofE and LR is approx-
imately distributed as chi-square with k degrees of freedom.
For example, k = 1 if p = 2, and k = 4 if p = 3. When p is large,
k rapidly becomes very large, and other strategies for model
comparison may be adopted. For example, Agterberg et al.
[11] related a gold deposit pattern in Nova Scotia to seven
map patterns that were approximately conditionally inde-
pendent of the point pattern. In this situation, the resulting
logistic regression coefficients were close to the WofE
contrasts ([11], Table 1).

Logistic regression prevents lack of CI bias in situations
where WofE does not. However, if the CI condition is not
satisfied, individual regression coefficients normally acquire
large variances because of near singularities in the matrices
to be inverted when the iterative scoring (or any other)
method is used for LR. Contrary to WofE weights, LR
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coefficients then cannot be used individually for interpreta-
tion or prediction purposes. This in itself can be a good rea-
son to prefer usage of WofE. There are many different
strategies for obtaining approximate CI. For example, pat-
terns based on geochemical elements measured across a
whole study area generally have strong mutual interactions
with respect to occurrences of mineral deposits. Approxi-
mate CI then usually can be obtained by combining all ele-
ments into a single index either by multiple regression
analysis (e.g., [39]) or by using scores for the first principal
component of the correlation matrix (e.g., [40]; also see
Section 5 in this paper). Even if CD exists, the new AdaBoost

Table 3: Probabilities estimated for Agterberg et al. [11] seafloor
example. Five binary predictors Bi (i = 1, 2,… , 5) are for age,
topography, contact between youngest volcanics, rock type, and
fissures, respectively. Area of unique condition is given in units of
10m× 10m; n D represents the number of vents per unique
condition. P1 is predicted WofE probability and P2 is predicted
modified WofE probability.

B1 B2 B3 B4 B5 Area n D P1 P2

0 0 0 0 0 10,052 0 0.0000 0.0000

0 0 0 0 1 3363 1 0.0000 0.0000

0 0 0 1 0 3268 0 0.0000 0.0000

0 0 0 1 1 1074 0 0.0000 0.0000

0 1 0 0 0 5455 0 0.0000 0.0001

0 1 0 0 1 25 0 0.0000 0.0000

0 0 1 0 0 3482 0 0.0001 0.0002

0 1 0 1 0 2518 0 0.0001 0.0001

0 0 1 0 1 1474 0 0.0001 0.0001

0 1 0 1 1 1371 0 0.0000 0.0000

1 0 0 0 0 5 0 0.0002 0.0004

1 0 0 0 1 705 0 0.0002 0.0002

0 0 1 1 0 5 0 0.0001 0.0002

0 0 1 1 1 744 0 0.0001 0.0001

1 0 0 1 0 422 0 0.0004 0.0004

1 0 0 1 1 58 0 0.0004 0.0002

0 1 1 0 0 12 0 0.0003 0.0004

0 1 1 0 1 179 0 0.0003 0.0002

1 1 0 0 0 1766 2 0.0009 0.0009

1 1 0 0 1 119 0 0.0008 0.0004

0 1 1 1 0 1055 1 0.0006 0.0004

0 1 1 1 1 33 0 0.0005 0.0002

1 0 1 0 0 10 0 0.0024 0.0033

1 1 0 1 0 146 0 0.0018 0.0009

1 0 1 0 1 623 1 0.0020 0.0014

1 1 0 1 1 145 0 0.0015 0.0004

1 0 1 1 0 504 2 0.0048 0.0033

1 0 1 1 1 1 0 0.0040 0.0014

1 1 1 0 0 317 2 0.0098 0.0069

1 1 1 0 1 277 1 0.0083 0.0029

1 1 1 1 0 348 3 0.0194 0.0069

1 1 1 1 1 295 0 0.0164 0.0029

Table 4: Probabilities estimated for unique conditions in the
artificial example of Schaeben ([42], Figure 1) with two binary
predictors. Area is the number of unit cells; n D represents
number of events per unique condition. P1 is predicted WofE
probability and P2 is predicted modified WofE probability.

B1 B2 Area n D P1 P2

1 1 4 1 0.586364 0.640555

1 0 16 6 0.26875 0.277361

0 1 16 5 0.201563 0.214861

0 0 64 2 0.061429 0.05566

Table 1: Probabilities estimated for unique conditions in missing
data variant of artificial example of Schaeben ([42], Figure 1).
Information on B2 was assumed to be missing (m in column 2)
for 30% of the area on the left side of the study area for this
example. Area, n D , P1, and P2 as in Table 4.

B1 B2 Area n D P1 P2

1 1 2 1 0.6842 0.7679

1 0 8 3 0.2207 0.2143

1 m 10 3 0.3500 0.3750

0 1 12 5 0.2784 0.3122

0 0 48 2 0.0480 0.0361

0 m 20 0 0.0875 0.0761

Table 2: Probabilities estimated for Schaeben and van den
Boogaart’s [33] fabricated data set. Binary predictors B1, B2, and
B3 are the explanatory variables and D represents the dependent
variable. P1 is predicted WofE probability and P2 is predicted
modified WofE probability.

B1 B2 B3 D P1 P2
1 1 1 1 0.7805 0.7458

1 1 1 1 0.7805 0.7458

1 1 1 1 0.7805 0.7458

1 1 1 1 0.7805 0.7458

1 1 1 1 0.7805 0.7458

1 1 1 0 0.7805 0.7458

1 1 0 1 0.6400 0.6314

1 1 0 0 0.6400 0.6314

1 0 1 1 0.6400 0.6314

1 0 1 0 0.6400 0.6314

1 0 0 1 0.4706 0.5000

1 0 0 0 0.4706 0.5000

0 1 1 1 0.6400 0.6314

0 1 1 0 0.6400 0.6314

0 1 0 1 0.4706 0.5000

0 1 0 0 0.4706 0.5000

0 0 1 1 0.4706 0.5000

0 0 1 0 0.4706 0.5000

0 0 0 1 0.3077 0.3686

0 0 0 0 0.3077 0.3686
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WofE method still can give good approximations provided
that the number of patterns is not very large [24].

In the following section, it will be discussed that MWofE
is equivalent to LR. A major advantage of MWofE is that, like
WofE, it can handle missing data better than LR. This subject
will be discussed in the remainder of this paper.

2. Why Modified Weights of Evidence Is
Equivalent to General Logistic Regression

Equivalence of LR and MWofE will be reviewed and illus-
trated by two examples of application. In Agterberg’s
study [20], it was pointed out that MWofE is based on a
method originally introduced into the GLADYS medical
expert system [41]. Weights of evidence in GLADYS
usually resulted in biased posterior probabilities. For this
reason, Spiegelhalter and Knill-Jones used logistic regression
of their presence-absence data with explanatory variables for
which the presence/absence data were replaced by positive
and negative weights in order to eliminate this bias.

Schaeben and van den Boogaart [33] illustrated the fact
that Deng’s [19] adjusted WofE model does not produce
unbiased results by using a “fabricated” data set in which
there are three explanatory variables (B1, B2, and B3) and a

binary dependent variable (D). Table 2 shows the values for
these variables in the first four columns. Probabilities (P1)
obtained by WofE are shown in the next column. They differ
from probabilities (P2) in the last column that were obtained
by LR or MWofE, which produce identical results. In Section
4, it will be illustrated that similar results are obtained for a
“practical example with fabricated training data set results”
used by Schaeben [42].

Equivalence of LR and MWofE already had been illus-
trated in Agterberg [20, 21] for a relatively small rectangular
study area of about 4.0 km2 on the East Pacific Rise with 13
volcanic vents that were related to depth below sea level, fis-
sures, relative age, and composition of volcanic rocks. Input
for this seafloor example is shown in the first five columns
of Table 3. The rows in this table are for the 25 = 32 unique
conditions of which the total areas (in units of 10m× 10m)
are given in the sixth column. The dependent variable in
the seafloor example of Table 3 is for the presence or absence
of volcanic vents. The number of volcanic vents per unique
condition is given in the column for n D . In total, there were
39,851 unit areas in this example, and WLR is to be preferred
over LR for the reasons given in Section 1 when the scoring
method is used to estimate the logistic regression coefficients.
As in Table 2, the last two columns of Table 3 show WofE
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Figure 1: (a) The simplified geology and distribution of known gold deposits (black dots) in southern Nova Scotia. Solid black lines are traces
of Devonian anticlines. (b) The locations of 671 lake sediment samples in the area (source: [8], Figure 1).
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(P1) and MWofE (P2) probabilities for (10m× 10m) unit
areas with the same unique conditions. The latter are
equal to posterior probabilities obtained by WLR. In this
example, there is strong conditional dependence of the five
map layers [11]. This can be seen from the fact that the
sum of all (=39,851) WofE posterior probabilities (=24.8)
in Table 3 significantly exceeds the corresponding sum of
MWofE probabilities (=13.0). Lack of CI can be assessed
by estimating the variance of the sum of all WofE posterior
probabilities followed by application of a simple z-test or
t-test to determine whether or not the difference between
the sum of all posterior probabilities and total number of
known events is statistically significant [9].

3. Lack of Constancy of Statistical Parameters in
Large Areas

One of the drawbacks of LR is that estimated regression
coefficients may have large variances unless there is approx-
imate CI. There are several other potentially serious disad-
vantages as well, especially if the method is applied naively
to continuous explanatory variables for prediction purposes.
Agterberg and Bonham-Carter [43] have systematically
compared WofE and WLR predictions with one another in
a number of experiments on the relationship between gold
occurrences with geological, geochemical, and geophysical
map data in the Gowganda area on the Canadian Shield
in east-central Ontario. The results of these experiments

clearly showed that discretization (reducing map patterns
to binary or ternary form, before using them as explana-
tory variables) and integration of training and testing areas
in mineral potential evaluation studies result in better pre-
dictions when logistic regression is used. The reason for
this is that a primary requirement for validity of applica-
tion of a mathematical model in nature is constancy of
statistical parameters within the entire study area. Extrap-
olation from a training area to a testing area that is geo-
graphically distinct from the training area is possible but
special arrangements have to be made to ensure approxi-
mate equality of statistical parameters for the explanatory
variables (cf. [25]).

Because of the widespread uniqueness of geological
phenomena that can rapidly change within the same study
area, a single target population with constant parameters
such as means, variances, and covariances often does not
exist. The parameters of interest can change systematically
from place to place but methods are available to reduce or
eliminate the effects of systematic changes in the values of
the parameters of interest. Some geological properties such
as lithological composition or anomalies versus back-
ground are intrinsically binary. Discretization by Heaviside
(0 or 1) transformation of nonbinary geochemical or geophys-
ical variables can stabilize statistical parameters within a
region. Another example of stabilization of statistical param-
eters is to replace observed data by residuals after regional
trend elimination.
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Figure 2: Posterior probability maps obtained by (a) weights of evidence and (b) logistic regression in experiment 3.
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4. Map Patterns with Missing Data

Weights of evidence as well as logistic regression were origi-
nally developed by Good [44], Spiegelhalter and Knill-Jones
[41], and many others for independent identically distributed
observations. Mosaic-type map data that are quantities for
vanishingly small unit areas or pixels constitute observations
of a very different type. Nevertheless, WofE and WLR,
including Spiegelhalter’s [45] refinement in GLADYS to han-
dle missing data can be applied successfully to mosaic data.
Geoscience patterns often have gaps for different reasons:
geochemical lake or stream sediment data may be available
for parts of a study area only (obviously, they are missing
in subareas where there are no lakes or rivers). Biogeochem-
ical data are restricted to areas where specific plants or trees
occur. It may be that only a limited part of an area was
mapped to obtain a particular kind of data; e.g., a geochemi-
cal survey may have been restricted to parts of an area. Also,
exposure of bedrock can be uneven. Locally, it may not be
known whether or not a rock type is present. In situations
of this type, the binary presence-absence pattern of one or
more explanatory variables has gaps that can be quantified
separately so that the binary pattern becomes a ternary pat-
tern with separate states for presence, absence, and unknown.
WofE and MWofE can cope with missing or unknown data
and will first be illustrated in the following simple example.

Tables 1 and 4 show results for an artificial example with
a square study area ([42], Figure 1) that contains (10× 10)
regularly spaced data points located at the centers of square
cells for which presence or absence is assumed to be known
for two rock types (B1 and B2) and for the point event of
interest. These data are shown in Table 4 together with prob-
abilities of occurrence estimated by WofE and MWofE. As in
Tables 2 and 3, MWofE results are identical to those obtained
by LR. These probabilities are the same as those previously
reported by Schaeben [42].

As a variant on this artificial example, we assumed that
information for B2 was incomplete in that it was not available
for the 30% of the study area on the left side of Schaeben’s
Figure 1. This means that the binary pattern for B2 becomes
a ternary pattern with three states (yes, no, and missing).
Both WofE and modified WofE were applied to this new
artificial data set with the results shown in Table 1. In this
application, Spiegelhalter’s [45] method for dealing with
missing data was applied twice: initially to obtain the WofE
weights and again when MWofE was applied.

The example of Table 1 illustrates how missing data
problems can be solved by recognizing “missing” as a sepa-
rate state that requires special consideration. Other possible
methods to apply LR when there are missing data for a
predictor variable were discussed in detail by Agterberg and
Bonham-Carter [46]. In their paper, four methods are
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Figure 3: Posterior probability maps obtained by (a) weights of evidence and (b) logistic regression in experiment 1.
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applied to the previously mentioned example of gold deposits
in Nova Scotia: (1) the variable with missing data is deleted;
(2) the missing data are replaced by zeros for absence; (3)
all polygons or subareas with missing data are deleted; and
(4) the missing data are replaced by a mean value for the
same variable estimated in the part of the study area where
it is known. It was concluded that patterns of posterior prob-
abilities resulting from methods (1) and (3) were relatively
poor in comparison with patterns resulting from methods

(2) and (4). A motivation for the development of MWofE
was to provide an even better method that can remedy miss-
ing data problems in the same way as WofE [21].

5. Case History Study of Gold Deposits in
Southwestern Nova Scotia, Canada

This larger-scale example builds on a study of weights-of-
evidence modeling originally published by Cheng [8].
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Figure 4: t values for weights of evidence and logistic regression in experiment 1.
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Geology, occurrences of gold deposits, and locations of lake
sediment samples are given in Figure 1 (after [8], Figure 1).
The geochemical lake sediment data consisted of 671 samples
with concentration values for 16 elements (Cu, Pb, Zn, Ag, F,
Li, Nb, Rb, Sn, Zr, Ti, Au, Sb, As, Th, and W) originally pub-
lished by Rogers et al. (1987). Sampling density was about 1
sample per 5 km2. Results of principal component analysis
and application of high-pass and low-pass filtering to princi-
pal component scores are described in detail by Cheng [8].

Originally, four binary maps (cf. [8], Figure 2; Table 2)
were used as input for WofE. The same input data were used
by us for the current study, although there were slight differ-
ences in choice of binary maps and resolution. Here, we used:
(A) proximity to traces of anticlines; (B) proximity to contact
between Goldenville and Halifax Formations; (C) high-pass
filter applied to scores of first principal component; and (D)
low-pass filter applied to scores of first principal component.
Figure 3 shows WofE results in comparison with LR results
for the same four input layers. These results are for experi-
ment 1 in a series of five experiments of which the other four
experiments will be described later. Our Figure 3(a) differs
slightly (but not significantly) from the earlier WofE map
of Cheng [8]. The two maps in Figure 3 for the 20 gold
deposits are similar in appearance. However, from the leg-
ends, it can be seen that estimated posterior probabilities of
gold deposits are much larger in Figure 3(a) than in
Figure 3(b). On average, the WofE probabilities are more
than twice as large as the LR probabilities. The sums of all

posterior probabilities were 46.9 (WofE) and 20 (LR), respec-
tively. LR results are unbiased in the sense that this sum is
exactly equal to the number of gold deposits used. The WofE
results are systematically too large due to violations of the
conditional independence (CI) assumption. It is noted that,
even if the WofE would be corrected for bias due lack of CI,
both totals would remain too low because of undiscovered
gold deposits. Such bias is likely because intensity of explora-
tion varied greatly across the area. Also, undiscovered gold
deposits may not only occur near the surface of bedrock in
relatively unexplored parts of the area, but probably every-
where in favorable environments at greater depths.

Student’s t-test (cf. [38]) can be used to measure the
strength of spatial correlation between known deposits and
prognostic contours as shown in Figure 4. Every t-value in
Figure 4 is for a comparison of the contrast C in two subareas
as follows. One of these subareas consists of all points within
a given distance of one or more gold deposits. Its area is
shown along the horizontal axis in Figure 4. The other sub-
area is simply for the complement representing the remain-
der of the study area. Due to spatial correlation effects, the
number of degrees of freedom for t-tests of this type is not
known exactly. However, for a one-tailed t-test with signifi-
cance level set at 0.05, values greater than approximately
1.645 would indicate positive spatial correlation between
the point pattern for deposits and the patterns of posterior
probabilities for WofE or LR. Obviously, there is a relatively
strong spatial correlation between the pattern of gold
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Figure 6: Posterior probability maps obtained by (a) weights of evidence and (b) logistic regression in experiment 2.
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deposits and either one of the posterior probability maps
shown in Figure 3.

The results shown in Figure 3 are for experiment 1 from a
series of five experiments conducted to compare WofE, LR,
and modified weights-of-evidence (MWofE) for the 20 gold
deposits in this study area. In the other four experiments,
the study area was divided into two parts according to the
east-west line in Figure 5 showing gold deposits and pairs
of binary layers as were used in the four experiments.
Experiments 2 to 4 used deposits in the southern part of
the area (A) only for prediction in the northern part (B),
and all deposits were used in experiment 5.

Results for experiments 2 and 3 are shown in Figures 2
and 6. The difference between these two experiments is that
four binary layers were used as input from the entire study
area (A + B) for Figure 6 and from subarea A only for
Figure 2. Both WofE and LR could be used for experiments
2 and 3. It could not be used for LR in experiments 4 and 5
because geochemical information in northern half of the
study area was assumed to be missing. Contrary to LR,
MWofE could be used in experiments 4 and 5 because, like
WofE, MWofE can cope with missing data. The geochemical
input layers in these two experiments were assumed to be
ternary instead of binary. The difference in modeling then
is that WofE immediately produces a result for the two
binary and the two ternary input layers, but for MWofE the

ones and zeros used in the WofE input layers are replaced
by weights for all four independent variables using as much
information as was available for each of them. As in WofE,
zeros were used as evidential weights in MWofE for subarea
B where the two geochemical input layers were assumed to
be missing. The difference between experiments 4 and 5 is
that both areas A and B were used as training area in exper-
iment 5 whereas only deposits in area A were used in exper-
iment 4. Results for these two experiments are shown in
Figures 7 and 8, respectively.

Table 1 shows the expected number of deposits (EDN)
for all models in the five experiments. If there are no missing
data, the sum of posterior probabilities for LR is exactly equal
to the number of deposits, whereas the WofE sum is larger
due to violation of the conditional independence assumption.
On the other hand, for MWofE (experiments 4 and 5), the
expected number of deposits in the training area is equal to
the number of deposits in such area that were assumed to
be known.

Tables 5 and 6 show the weights and contrasts with stan-
dard deviations for WofE results as shown in Figures 7(a)
and 8(a) followed by MWofE regression coefficients with
their standard deviations. As in experiments 1–3, the WofE
weights in Tables 5 and 6 are too large. The corresponding
contrasts with standard deviations also are too large because
of the lack of conditional independence. Moreover, the
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Figure 7: Posterior probability maps obtained by (a) weights of evidence and (b) modified weights of evidence in experiment 4.
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standard deviations of the contrasts were derived by using
the standard asymptotic formula which is not necessarily sat-
isfied. The MWofE coefficients as well as their standard devi-
ations are probably more realistic.

6. Concluding Remarks

Equivalence of the modified WofE and logistic regression
was discussed in Section 2. However, the question can be
asked about whether or not there are advantages in using
modified WofE given that this method and logistic regres-
sion produced the same results for the three examples
(Tables 2–4). There are three potential advantages:

(1) Most existing LR computer software/programs
including those written in R do not offer satisfactory
remedies for missing data, because they require input
values for the explanatory variables at all data points
and do not allow for data gaps. The problem is that if
data are missing for one or more patterns at a given
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Figure 8: Posterior probability maps obtained by (a) weights of evidence and (b) modified weights of evidence in experiment 5.

Table 5: Estimated deposit number (EDN) for three methods in the 5 experiments; modified weight-of-evidence (MWofE) for experiments
4 and 5 in the last two columns.

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
WofE LR WofE LR WofE LR WofE MWofE WofE MWofE

EDN in area A (9 deposits) 25.2 11.7 11.4 5.6 22.7 9 22.7 9 16.9 13.9

EDN in area B (11 deposits) 21.8 8.3 8.7 3.4 19.9 7.1 5.1 4.0 7.8 6.1

Total EDM 46.9 20 20.1 9 42.6 16.1 27.8 13.0 24.7 20

Table 6: Comparison of WofE weights and contrasts with MWofE
coefficients and their standard deviations (Sdev) in experiment 4.

Independent variables
WofE MWofE

W+ W− C Sdev Coefficient Sdev

B1 0.56 −0.92 1.48 0.80 0.34 0.58

B2 0.90 −1.75 2.65 1.06 0.75 0.42

B3 2.10 −0.22 2.32 0.81 0.70 0.36

B4 1.20 −1.24 2.44 0.80 0.56 0.37
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point, other data may have to be deleted as well
before LR can be applied. This is because the unit
areas or pixels used for quantification of map pat-
terns are exceedingly small. They are subject to
strong spatial correlation simply because they can
be made arbitrarily small so that neighboring pixels
for any pixel probably belong to the same unique
condition. An example of missing data with predic-
tions for the entire study area without deletion of data
blocks was given in Figures 7 and 8 and Tables 1, 5–7.

(2) Variances of logistic regression coefficients and
posterior probabilities are likely to become more
precise than variances of WofE weights, contrasts,
and posterior probabilities, because the latter are
based on an assumption of normality for maxi-
mum likelihood estimators that can provide poor
results, especially if there are relatively few discrete
events for the dependent variable. However, a
requirement for this advantage would be that the
input map patterns are approximately conditionally
independentwith respect to the discrete event pattern.
Otherwise, the variances of individual logistic regres-
sion coefficients can become very large, although the
corresponding variances of posterior probabilities
would not suffer from this drawback. This potential
advantage as well as the previous one will have to be
tested further in other experiments and applications.

(3) WofE is easy to understand and MWofE retains this
feature. Although the coefficients in LR obtained
through maximum likelihood estimation are used in
MWofE to adjust the positive and negative weights
for all evidential layers [34], the MWofE almost
maintains the framework of WofE, which confirms
to the geologists’ intuitive understanding in mineral
prospectivity mapping.
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