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In this paper, a spectral entropy algorithm has been used successfully for complexity measure of a discrete permanent-magnet
synchronous motor (PMSM) system. Firstly, the discrete PMSM system is achieved using the forward Euler scheme. Secondly,
by adopting the bifurcation diagram, phase portraits, 0-1 test, and largest Lyapunov exponent, the chaotic dynamics of the
discrete PMSM system are analyzed. The complexity of the discrete PMSM system is discussed by employing the spectral
entropy algorithm. It shows that the spectral entropy complexity analysis is an efficient tool to study chaotic dynamics. Finally,
we illustrate this result through numerical experiments.

1. Introduction

Due to its potential applications in the fields of secure
communication and information encryption, chaos as a
hot topic has been widely studied for nearly three decades,
especially the chaotic dynamics and complexity analysis of
chaotic sequences.

At present, the complexity measure of chaotic sequences
can be analyzed by behavioral complexity and structure
complexity. As we have known, there are several methods of
measuring complexity of chaotic sequences, including the
Lempl-Ziv algorithm [1, 2], ApEn algorithm [3–5], Fuz-
zyEn algorithm [6, 7], LMC algorithm [8–10], SymEn
algorithm [11], sample entropy algorithm [5], permutation
entropy (PE) algorithm [12], entropy algorithm [13–16],
SCM algorithm [16–18], and C0 algorithm [15, 19–22],
which are widely used to analyze chaotic sequences. We
should point out that the spectral entropy algorithm is
based on the power spectrum of the chaotic signal and
describes the irregularity of the signal spectrum, and the
computation cost of this method is low [16]. Therefore, the
entropy algorithm is an efficient tool to deal with complexity
of chaotic sequences.

In recent years, a discrete chaotic system, which is
obtained by the forward Euler scheme for its continuous
system, is widely studied. A natural question to follow is
whether these discrete chaotic systems are more compli-
cated than its continuous systems or not? How to select
the system parameters and step size to get more complex
dynamics? Therefore, it is worthwhile to take the fluctua-
tion of step size into full account for the dynamic problem
of a chaotic system. To our knowledge, the relevant
researches of these questions keep open, and these topics
deserve further investigation.

Based on the above questions, the major task of this
paper is to deal with complexity of chaotic sequences
by means of the spectral entropy algorithm. As a result, a
discrete permanent-magnet synchronous motor (PMSM)
system, which is obtained by a continuous PMSM system,
is considered. The PMSM system is a kind of high-
efficient and high-powered motor, which has been widely
used in the industry [23]. The chaotic dynamics of the
continuous PMSM system becomes one of most active
research areas. Many important research works on the
PMSM system are found in [24–27] and the references
cited therein.
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This paper is organized as follows. In Section 2, the cha-
otic dynamics of the discrete PMSM system, which is
obtained by using the forward Euler scheme, is investigated
by means of the bifurcation diagram, phase portraits, 0-1
test, and largest Lyapunov exponent. In Section 3, the spec-
tral entropy algorithm is described, and the complexity of
chaotic sequences in the discrete PMSM system is calculated.
Finally, conclusions and future direction are presented in
Section 4.

2. Dynamics of the Three-Dimensional Discrete
PMSM System

2.1. The Three-Dimensional Discrete PMSM System. This sec-
tion illustrates the application of the forward Euler method to
a continuous PMSM system.

Recently, the following three-dimensional continuous
PMSM system [23–27] is proposed.

dx
dt

= −x + yz,

dy
dt

= −y − xz + az,

dz
dt

= b y − z ,

1

where a and b are positive parameters. When a = 28 and
b = 3, the PMSM system is chaotic. Its typical butterfly
chaotic attractor is shown in Figure 1.When the forward Euler
is employed, we obtain the following three-dimensional
discrete PMSM system:
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Figure 1: The 3D and 2D projections of system (1) with a, b = 28, 3 in the (a) x − y − z space, (b) x − y plane, (c) x − z plane, and (d) y − z
plane, respectively.
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x n + 1 = x n + δ −x n + y n z n ,
y n + 1 = y n + δ −y n − x n z n + az n ,
z n + 1 = z n + δ b y n − z n ,

2

where a and b are positive parameters andδ > 0 is the step size.

2.2. Fixed Points and Their Stability. The fixed points
O1 0, 0, 0 , O2 −1 + a, −1 + a, −1 + a , and O3 −1 + a,
− −1 + a, − −1 + a of system (2) are obtained by solving
the equations:

−x n + y n z n = 0,
−y n − x n z n + az n = 0,
b y n − z n = 0

3

In order to study the stability of the fixed point O1, we
calculate the Jacobian matrix of system (2) at O1 as

JO1
=

1 − δ 0 0
0 1 − δ aδ

0 bδ 1 − bδ

, 4

and its characteristic polynomial equation is

λ3 + αλ2 + βλ + γ = 0, 5

where α = 2δ + bδ − 3, β = 2bδ2 + δ2 − abδ2 − 4δ − 2bδ + 3,
and γ = bδ3 − abδ3 + abδ2 − 2bδ2 − δ2 + 2δ + bδ − 1. Accord-
ing to the Schur-Cohn criterion [28], we derive the stabil-
ity conditions of O1 as follows: (a) α + γ < 1 + β and (b)
β − αγ < 1 − γ2. As a result, by taking b = 3 and δ = 0 01,
the stability condition of O1 is 0 < a < 1. Here, we only con-
sider stability of the fixed point O1, and the stability of the
fixed points O2 and O3 can be studied in a similar manner
as for O1.

2.3. Chaos in the Three-Dimensional Discrete PMSM System.
In this section, by means of the phase portraits, bifurcation
diagram, 0-1 test and largest Lyapunov exponent, the
dynamics of system (2) is researched.

In particular, variations of the parameter a are consid-
ered by keeping b = 3 and δ = 0 02. The largest Lyapunov
exponent diagram of system (2) is obtained using the Jacobi
matrix method as shown in Figure 2. Letting δ = 0 02 and
fixing b = 3, the bifurcation diagram of system (2) in
Figure 3 is obtained for a in the range 0, 30 . From
Figures 2 and 3, of particular interest is that it has a chaotic
attractor with one positive Lyapunov exponent in a large
range of parameters. As a result, starting with a = 8, a stable
solution is obtained, and the corresponding phase diagram
is given in Figure 4(a). By increasing the value of a, a
two-scroll chaotic attractor is obtained for a = 28 as shown
in Figure 4(b). By adopting 0-1 test [29], the corresponding
trajectories in the p − s plane are shown in Figures 5(a)

and 5(b). Here, p and s are two real valued functions,
respectively,

p n = 〠
n

j=1
ϕ j cos θ j ,

s n = 〠
n

j=1
ϕ j sin θ j ,

6

where θ j = jc +∑ j
i=1ϕ i , j = 1, 2, 3⋯ , n, and c is a ran-

dom number in the range π/5, 4π/5 . Also note that
bounded trajectories in the p − s plane correspond to reg-
ular dynamics, whereas Brownianlike (unbounded) trajecto-
ries correspond to chaotic dynamics [29]. See Gottwald and
Melbourne [29] for details.
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Figure 2: The largest Lyapunov exponent of system (2) with
b, δ = 3, 0 02 and a ∈ 0, 30 .
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Figure 3: The bifurcation diagram of system (2) with b, δ =
3, 0 02 and a ∈ 0, 30 .
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From Figures 2–4, it is clear that the stable, periodic solu-
tions and ensuing transition to chaos are observed.

3. Complexity Analysis

In this section, the complexity of system (2) is discussed by
employing the spectral entropy algorithm.

The spectral entropy algorithm is a method that deals
with the complexity of a time series. The spectral entropy
reflects the disorder in the Fourier transformation domain,
if a flatter spectrum has a larger value of spectral entropy,
which shows a higher complexity of the time series [16].
Consider a set of discrete data ϕ n , n = 0, 1, 2,⋯,N − 1
with a length of N , representing a one-dimensional observ-
able data set. According to discrete Fourier transformation
approach, the spectral entropy algorithm [13–16] is briefly
described as follows.

Step 1. Data processing. In order to better reflect the
energy information of the data ϕ n , transform the data
ϕ n as follows:

ϕ′ n = ϕ n − ϕ, 7

where ϕ = 1/N ∑N−1
n=0 ϕ n .

Step 2. Discrete Fourier transformation. Taking the discrete
Fourier transform for the data ϕ′ n and its corresponding
discrete Fourier transform is defined as

Φ k = 〠
N−1

n=0
ϕ′ n e−j 2π/N nk = 〠

N−1

n=0
ϕ′ n Wnk

N , 8

where k = 0, 1,…N − 1 and j = −1 is the unit imaginary.
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Figure 4: The phase diagrams of system (2) with b, δ = 3, 0 02 : (a) a = 8 and (b) a = 28.
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Figure 5: The dynamics of the translation components p − s of system (2) with (a) a = 8 and (b) a = 28.
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Step 3. Calculating relative power spectrum. If the power of a
discrete power spectrum with the kth frequency is Φ k 2,
then the “probability” of this frequency is defined as

Pk =
1/N Φ k 2

1/N ∑N/2−1
k=0 Φ k 2 = Φ k 2

∑N/2−1
k=0 Φ k 2 9

Step 4. Spectral entropy is calculated. Applying the Pk, the
spectral entropy is defined by

SE = 1
ln N/2 〠

N/2−1

k=0
Pk ln Pk 10

Based on the above four steps, the spectral entropy of a
given time series with length N is calculated, without choos-
ing any other parameters [15].

Here, we choose parameter planes a, b , a, δ , and
b, δ to calculate its complexity, for example, to see how the
complexity changes as the parameters a, b, and δ increase (or
decrease). As a result, the length of data ϕ n , n = 1, 2⋯
for spectral entropy is 4× 104 after removing the first 1× 104
points of data [15]. By taking δ = 0 02, the spectral entropy
complexity of x series of system (2) is calculated and illustrated
in Figure 6.

From Figure 6, it can be seen that the parameter b has
a larger range of choices when parameter a is smaller. For
example, the parameter a is selected in the range 0, 1 ;
the system (2) maintains a high complexity for parameter
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Figure 6: The spectral entropy complexity of system (2) with δ = 0 02 in the a − b parameter plane.

a

𝛿

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
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b ∈ 0, 30 . When the parameters a and b are selected in
the two light-colored areas in the upper right, the sys-
tem (2) maintains the largest complexity. Hence, for this
chaotic system (2), the complexity depends on parameters
a and b sensitively.

Next, we calculate the complexity of system (2), when
the step size δ is selected in the range 0, 0 035 . By taking
b = 3, the spectral entropy complexity in Figure 7 is
obtained for parameters a and δ in the range 0, 30 and
0, 0 035 , respectively.

From Figure 7, it can be seen that the largest value of
spectral entropy complexity of system (2) fluctuates
within a small range for parameters a and δ. Similarly,
by taking a = 28, the spectral entropy complexity in
Figure 8 is obtained for parameters b and δ in the range
0, 30 and 0, 0 035 , respectively. According to Figure 8,
it can be seen that the largest value of spectral entropy
complexity of system (2) is 0.7. For parameters b and δ,
they are roughly in the range of 3, 10 and 0 015,
0 0 025 , respectively.
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Figure 8: The spectral entropy complexity of system (2) with a = 28 in the b − δ parameter plane.
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Figure 9: The spectral entropy complexity of system (2) (a) versus a ∈ 0, 30 with b, δ = 3, 0 02 ; (b) versus b ∈ 0, 30 with a, δ =
28, 0 02 .
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Based on the discussion above, we found that spectral
entropy complexity analysis is a convenient method to
choose parameters for a discrete system.

In the following discussion, two of the parameters are
fixed and the spectral entropy complexity is calculated. By
taking b = 3 and δ = 0 02, the spectral entropy complexity
in Figure 9(a) is obtained for parameter a in the range
0, 30 . Similarly, fixing a = 28 and δ = 0 02, the spectral
entropy complexity is calculated for parameter b in the
range 0, 30 as shown in Figure 9(b). Combined with
Figure 9, we find that the spectral entropy complexity cal-
culation is similar to that of the Lyapunov exponent,
which reflects the complexity of chaos. In Figure 9(a), letting
a = 15, b = 3, and δ = 0 02, the 0-1 test is obtained as shown
in Figure 10. In Figure 9(b), letting a = 28, b = 7, and
δ = 0 02, the 0-1 test is obtained as shown in Figure 11.

In addition, it is worth noting that the spectral entropy
complexity of system (2) increases with the increasing step
size δ. In particular, variations of the step size δ is considered
by keeping a = 28 and b = 3. The spectral entropy complexity
is shown in Figure 12.

4. Conclusions

In this paper, by means of the largest Lyapunov exponent,
phase diagram, bifurcation diagram, 0-1 test, and spectral
entropy algorithm, we investigated the chaotic dynamics
and complexity of the discrete PMSM system obtained
by the forward Euler scheme. The conclusions are drawn
as follows.

The discrete PMSM system contains rich dynamical
behaviors. The two-scroll stronger chaotic attractor is
observed with the increasing parameter a. Moreover, the dis-
crete PMSM system is chaotic in large range for parameter a.
Furthermore, by calculating the chaos complexity of discrete
PMSM system, we found that it has a high complexity.
Therefore, the discrete PMSM system has higher application
value in the real-word applications. For example, this system
can be considered for chaotic encryption.

We also found an interesting phenomenon that the spec-
tral entropy complexity of discrete PMSM system increases
with increasing step size δ. Thus, the spectral entropy com-
plexity analysis is a convenient method to choose step size.
In fact, it also provides a reference for Euler method to study
the chaotic dynamics of continuous dynamical system.

It is expected that the results enrich our knowledge of
the dynamics of discrete systems, which is obtained by the
forward Euler scheme. Furthermore, it suggests that the
results are beneficial to researchers who explore other
dynamical behaviors.
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Figure 10: The dynamics of the translation components p − s of
system (2) with a = 15, b = 3, and δ = 0 02.
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system (2) with a = 28, b = 7, and δ = 0 02.
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