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This study aims to improve the operating stability of the resistance strain weighing sensor and eliminate fuzzy factors in fault
diagnosis. Based on fuzzy techniques for fault diagnosis, the proposed fuzzy Petri net model uses the fault logical relationship
between a sensor and an improved Petri net model. A formula for confidence-based reasoning is proposed using an algorithm,
which combines neural network regulation algorithm with a transition-enabled ignition judgment matrix. This formula can yield
an accurate assessment of the operating state of the sensor. Backward inference and the minimum cut set theory are also combined to
obtain the priority of faults, which helps avoid blind and ambiguous maintenance. The sensor model was analyzed, and its accuracy
and validity were verified through statistical analysis and comparison with other methods of fault diagnosis.

1. Introduction

The resistance strain weighing sensor (hereinafter referred to
as “the sensor”) is a core component of electronic weighing
instruments, and its quality directly influences the accuracy
of measurement. In practical applications, due to the influ-
ence of raw materials, manufacturing processes, installation
methods, service conditions, and the external environment,
electronic weighing instruments are prone to various faults
with uncertainty. Therefore, accurately predicting and diag-
nosing faults in these instruments are significant to ensure
their accuracy and stability.

As an effective method of parallel computing and behav-
ioral analysis [1], the Petri net has a rigorous mathematical
formulation as well as a straightforward graphic description.
In [2-5], fuzzy technology (a new technology based on fuzzy
mathematics) was combined with the Petri net to propose the
fuzzy Petri net (FPN) method of modeling, which has
exhibited powerful parallel processing capability. However,
optimizing the model structure and developing the matrix
implementation remain to be further researched. It is impor-
tant to find a model that is representative of real environ-
ments.

For calculations in FPN, although the problem in the FPN
related to matrix reasoning was solved in [1, 6], its weight and

other parameters remain undetermined, and accurate data
are needed to ensure the correctness of the diagnosis.

Based on the operator’s diagnostic experience, a method
for fault diagnosis in expert systems (ES) can be used as the
operating logic of the protection relay and circuit breakers
and has been applied to power systems. Methods of fault
analysis based on ES have been reported in the literature [7-
9]. For example, an advanced logic-based ES was applied in
[7]. The General Diagnosis Engine was used to analyze place
information and evaluate security [9]. However, ES-based
methods of analysis have shortcomings, such as requiring
complex knowledge acquisition and maintenance and slow
reasoning. Modeling based on directivity was proposed in
[10] to reduce the dimensionality of the incidence matrix and
simplify the calculation model, but it fails to provide a suf-
ficient description of weight. The method proposed in [11] sig-
nificantly improves the fault tolerance of the Petri net, but the
Petri net model based on a time sequence does not apply to a
static Petri net with adjustable weights.

Owing to fuzzy behavior in the FPN, a number of meth-
ods for data determination have been proposed. The BP
(back propagation) algorithm endows the Petri net with the
capability of self-learning [12-14], resulting in clear weight
values. However, the model does not improve accordingly.
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The BP neural network has been combined with the tra-
ditional fuzzy fault Petri net to develop the adaptive FPN
[15, 16], which improves the capability of the traditional fuzzy
fault Petri net to learn weights. However, it fails to explicitly
show how to determine the transition confidence coefficient,
leaving the system with a large number of uncertainties. The
forward-backward algorithm was used to implement reason-
ing pertaining to unobservable place events in the model
[17]. Many other fault diagnosis methods, such as data fusion
and the support vector machine (SVM), were proposed as
well. Reference [18] has been applied to effectively solve such
problems as nonlinearity and high dimensionality. However,
due to the characteristics of the SVM, multiple dichotomies
are currently used to solve multiclassification problems; in
this context, the excessive classification is associated with
unnecessary complexity of calculation, and hence a faster
method is needed to ensure system stability.

This study proposes a method to diagnose sensor faults
based on fuzzy neural Petri net. With the resistance strain
weighing sensor as the research object, its FPN fault model
is created. The neural network is applied to adjust the
weight, with the abandonment of the transition confidence
coefficient. The MYCIN confidence reasoning algorithm is
optimized based on the sigmoid function and, consequently,
fault diagnosis is accomplished based on the minimum cut
set of fault rate.

2. Improved Fuzzy Fault Petri Net

2.1. Structure of the Fuzzy Fault Petri Net. Based on the Petri
net and fuzzy Petri net theory [19-22], a nine-parameter
model is defined as Sp = (P, T,I,0, K, W, «, f, A).

The variables are as follows:

()P =(py, py--- ,pn)T is a set of place faults, including
all faults relating to the sensor, such as “broken gate of
the output-adjusting resistance,” “overloaded weighing,” and
“excessively large sensitivity of diaphragm shunting.”

)T = (t,t5, .-, tn)T isa set of transitions. If a transition
is enabled, ¢; = 1; otherwise, ¢; = 0.

(3) I is the input matrix of the Petri net.

(4) O is the output matrix of the Petri net.

(5) K = (k;,ky,...,k,)" denotes the place label vector.
When a fault occurs in place i, k =L otherwise, k. = 0.

6)YW = {wij} is an 7 x m matrix of the weight of the place.
When Vt € T, P € I(t), Y, @ = 1.

(7)o = (o, 055 ocn)T is an n-dimensional vector of the
confidence coeflicients of the place, denoting the confidence
of occurrence of a fault event.

(8) f = (firfis---» f)" is a set of probabilities of
the fuzzy occurrence of place events, where f; denotes the
probability of occurrence of place event p;.

9 A = (Al,/\l,...,/\n)T is the threshold vector of
transition.

2.2. Structure of the Improved Fuzzy Fault Petri Net. The con-
nection of sensor components is tight, multiple mappings
between faults, with the complex and diverse fault propaga-
tion mode. Based on this, firstly, the structure of the sensor
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FIGURE 1: Improved Petri net model.

is analyzed, according to the fuzzy relation to obtain the
fault logic relationship, and then the FPN mode is established
following the basic rules of Petri net, where the confidence
reasoning algorithm is optimized based on the sigmoid func-
tion. In other words, based on the original fuzzy Petri net, the
sigmoid function replaces the initial transition confidence y
to describe the rules to deduce the FPN model and the expres-
sion of fuzzy information. The confidence values of fault
events occurring in different places can be obtained through
reasoning, which provides the necessary conditions for the
positive and negative instances of reasoning pertaining to
faults. Figure1 shows the basic elements of the improved
Petri net.

3. Algorithms for FPN Fault Reasoning

To clearly and concisely present the reasoning and calculation
of each matrix during the reasoning for the FPN model, the
Petri net is used to describe the capability of the concurrency
system and the mathematical theory of the FPN to define five
special operators [23]:

(1) The comparison operator &: C = AOB, where A, B,
and C aremxn matrices. Whenay; > b, ¢;; = 1; whena;; < by,
Gj = 0,i=12,....mj=12,...,n.

(2) The minimum operator A: C = AA B, where A, B, and

C are m X n matrices; ¢;; = min(a bij), wherei =1,2,...,m;

ij ij>

j=L2,...,n

(3) The maximum operator V: C = AV B, where A, B, and
C are m X n matrices; Gj = max(aij, b,-j), wherei=1,2,...,m;
j=L2,...,n

(4) The direct product operator #: C = A * B, where A,
B, and C are m X n matrices; b is an n-dimensional vector;
Gj = a;j * b, wherei=1,2,...,m; j=1,2,...,n.

(5) The multiplication operator ® C = A ® B, where A,
B, and C are m x g, q x n, and m X n matrices, respectively;
Gj = MaXjqeq(a, b)), wherei = 1,2,...,m; j = 1,2,...,n.
3.1. Confidence Algorithm. The confidence algorithm is mod-
ified to achieve higher computational efficiency. Following
the reasoning calculation, the confidence values of all places
are obtained and function as the basis of fault evaluation and
diagnosis.

Weight matrix W = {wij}, where w;; € (0,1). When there
isadirectional arc p; tot , w;; is the weight from p; tot;. When
there is a directional arc ¢ to p;, w;; = 0.

The reasoning formula is

k+1 -1

o :ockv[1+exp(pk)] 1)

where pk =0e«WT-a"),a,, = a; when and only when
the reasoning is concluded; otherwise, it is continued.
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3.2. Forward Reasoning. The forward reasoning based on the
FPN model reflects the characteristics of fault propagation
and predicts faults according to the work environment, the
detection of components, or symptom-related information
obtained by professionals. The faults that may occur are
evaluated through the judgment matrix of transition firing
and the flow of fault-state marking, and the corresponding
response measures are then taken.

3.2.1. Transition Judgment

Definition 1. VPy; € I(t), ¥, a(Py)) = wy; > Ay, where tis
enabled by potential transition.

Definition 2. If transition T can trigger ignition, there is a
new confidence coefficient in the output place Py;; if not, the
output place is 0.

«(Poy)
-1
(e"p<2“ (By 'wj)> i 1> » Ya(Py) ez A0, (@)
= J J
0, Z(x (P,j) cwy; < A(t),
j
The transition-triggering ignition matrix is Y, where Y =
T
W Yaoeea Yu)
Y=(W'ea)oA 3)
If the ignition conditions are met, y; = 1; otherwise,
y; = 0. According to the rules of ignition, the transition-

enabled ignition matrix reasoning corresponding to the token
containing the place is calculated out based on [1]

RN (23 T A NI
; 4)
Yi=yA[l* (Ko - Kio)] b i=2,3,..,

where K;_;, K;_, denote the label vector of the i-1th
ignition and [,, = (1,1,..., I)T is an m-dimensional vector.

3.2.2. Reasoning Matrix of Fault-State Label Vector

K;=K,_,®(A®Y)) (5)

where A is the incidence matrix, A = [a;;] € R™"™, nis the

number of places, and m is the number of transitions [10].

3.3. Backward Reasoning. FPN backward reasoning deduces
the cause of a fault if it occurs. To avoid blind maintenance
and improve the efficiency of tracking the source of the
fault, the minimum cut set is introduced as the basis of fault
derivation and diagnosis.

Definition 3. If the minimum cut set G = {p;, p5,..., p,}, the
rate of fault occurrence is
a o+ +a
f@=(12 ”,mo (6)

The input and output places of FPN backward reasoning
are the output and input places of FPN forward reasoning,
respectively; namely, I” = O,0™ = 1.

The backward reasoning matrix is given by

Yo =[(TaK ) @l Ay,
K, =K_,®(0 ®Y;), 7)

i=1,23...,

where Y, is the backward-enabled transition sequence of
the kth backward ignition.

4. Fault Analysis of the
Resistance Strain Weighing Sensor

4.1. Determination of FPN Data. In reasoning relating to
the fuzzy Petri net, the confidence coefficient of the ini-
tial place (the bottom place of FPN model) needs to be
entered externally, whereas those of the middle place and the
concluding places are generally obtained by the reasoning.
Thus, the determination of the confidence coefficient (fuzzy
token) pertaining to place mainly refers to the initial place. In
this study, the method proposed in [24] is used to combine
historical data with expert opinion to set the confidence
coefficient of the initial place.

In the fuzzy Petri net, weight w represents the degree
to which each condition influences the conclusion and is
mainly determined based on past studies. This is significantly
subjective and uncertain. As the improved fuzzy Petri net
possesses certain characteristics of a neural network, the
neural network algorithm can be used to train, learn, and
adjust the network. The adjustment algorithm is as follows:

d; is the due output (expected output) of the ith element
and y, is its actual output. The element’s error signal is given
by

e =d;—y (8)

Vi=Vie (Z“i'wi) 9)
1

T et ) 1)

x; = Z o e w; (11)

The adjustment of weight is mainly reflected in the
backpropagation of the error, where the square error E =
(1/2)e} is propagated as a regulatory signal. The gradient of
the modifier is

OE _ OE Oe; 0y; 0x;

dw;  Oe; By, Ox; dw; - (z o w,-) v



The correction value of the weight is Aw;, = —1(0E/dw;),
where 7 is the learning rate. A new weight wi( ) = Aw; + w; is
obtained and substituted back into the above formula to con-
duct an iterative operation. Weight adjustment is complete
when the square error is within the range of tolerance.

4.2. Determining the Model. The sensor is primarily com-
posed of a strain gauge and a measuring circuit. The fault
model is established by analyzing the structure of the
weighing sensor and fault sampling and by considering the
influence of the external environment on the sensor, as
shown in Figure 8 in Appendix. See Appendix for fault events
corresponding to each place.

As the scale of the model is large, writing the input and
output matrices is cumbersome. To show the reasoning and
calculation process, the “bridge circuit fault” is used as an
example in this study to illustrate faults in the resistance strain
weighing sensor, and its FPN fault model is shown in Figure 2.
The remaining part of the reasoning process is the same as the
example.

4.3. Original Data. According to the method mentioned in
Section 4, the vector form of the confidence coefficient of the
underlying place was obtained as follows: «, = (0.89, 0.87,
0.84,T0.71, 0.88, 0.93, 0.89, 0.8, 0.87, 0, 0, 0.69, 0, 0.88, 0.9, 0, 0,
0,0)".

Taking transition T, T as an example, the weights of P,,
P, P, P,, and Py are adjusted using the method described in
Section 4. Hypothesis: wy5 = 0.3, ws5 = 0.4, wgs = 0.3, wy; =
0.33, wg; = 0.65. From statistical calculations, the expectation
a(Py) = 0.6937, a(P5,) = 0.7003, 77 = 0.1, the largest number
of learning steps was set to 4,000, and the square error was
0.1 x 107, The training results are shown in Figures 3 and 4.

The square error after 3928 steps of iterative operation was
within the allowable range. The weights of P,, P, P;, P,, and
Py obtained at this point were 0.3936, 0.5160, 0.0904, 0.5177,
and 0.4823, respectively. Weight matrix is used to calculate
the confidence of the entire Petri net:

w
(1000 O O O 0 000000O0O0O0]
0100 O O O 0 000000CO0OO0O
0010 0 0 O 0 000000COO0OO
0001 0 O O 0 000000CO0OO0O
00000390 0 0 000000CO0OO0O
00000520 0 0 000000COO0O
00000091 0 0 000000CO0OO0OO
0000 O 0052 0 0000O0CO0OO0OO0CO
0000 O 0048 042000000000
=|0000 0 O O 058000000000 (13)
0000 O O O 0 100000000O0
0000 O O O 0 0100000O0O
0000 O O O 0 00100000O00O0
0000 O O O 0 000100000O0
0000 O O O 0 00001000O00O0
0000 O O O 0 000001000O0
0000 O O O 0 000000100O0
0000 O O O 0 000000CO0OT1O0
(10000 0 0 O 0 0000O0O0O0O O]
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According to the results of the calculation and an analysis
of this model, the threshold value of all transitions was set to
0.5.

&y, W, O, and I were substituted into (1). The reasoning
was not concluded until o, = a5, a3 = (0.89, 0.87, 0.84, 0.71,
0.88, 0.93,0.89, 0.8, 0.87,0.7089, 0.72, 0.69, 0.7, 0.88, 0.9, 0.84,
0.67, 0.71, 0.71)T. Thereafter, the confidence coefficients of
each place were obtained and used as the basis for the forward
and backward reasoning.

4.4. Forward and Backward Reasoning

4.4.1. Forward Reasoning. The sensor ran normally and
no fault occurred, but symptoms of fault were detected,
including “excessively high supply voltage,” “broken out-
put lead,” “insufficient soldering of cable,” “humid envi-
ronment,” and “broken gate of the output adjusting resis-
tance.” The initial labeling vector obtained was K, =
(1,0,0,1,1,0,0,0,1,0,0,0,0,0,1,0,0,0, O)T, and «; was sub-
stituted into (2) and (3) to calculate the potential transition-
enabled matrix y = (1, , 1, 1,1, 1,1, 1, 1,1, 1,1, 1, L L, 1,
1, l)T. K, and y were substituted into (4) to conduct the
reasoning calculation. The final results gained were K5 =
(1,0,0,1,1,0,0,0,1,1,1,0,0,0,1,1,1,1,1)", and Y, = Y,
The reasoning was concluded, Y35 = (0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0, I)T, the final labeling vector was Kj, and the
fault transmission path is shown in Figure 5. The foregoing
conclusions can be used as the basis for fault checking
and maintenance to improve the operational stability of the
Sensor.

4.4.2. Backward Reasoning. Backward reasoning was car-
ried out using the example of “no signal output or small
signal output after loading.” The initial labeling vector
K, = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0, 0)", and the
potential transition-enabled matrix obtained by the forward
reasoning y~ =(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1, l,l)T.

K,,y ,17,0 were substituted into (6). As indicated
by the reasoning calculation, when y; = y,, the rea-
soning was concluded, and the labeling vector and back-
ward transition matrix were obtained: K; = (1,1,1,
1,1,1,1,0,0,1,1,1,1,0,0,0, 1, 0, 1)T and y, =(1,1,1,1,1,1,
1,0,0,0,0,0,0,0,0,0,0,0)". The distribution of places is
shown in Figure 6.

As shown in Figure 6, the minimum cut set enabling P,
wasGy = {pi}, Gy = {p,}, G5 = {3}, Gy = (P4}, Gs = {paepshs
Go = {ps} G7 = {ps * Pe} Gs = {py * Ps * pe) and Gy = {p,}.
According to (6), f(G,) =0.89, (G,) = 0.87, f(G;) = 0.84, f(G,)
= 0.88, f(Gs) = 0.795, f(Gg) = 0.71, f(G,) = 0.93, and f(Gg) =
0.89. The fault occurrence probability is shown in Figure 7.

As indicated by Figure 7, the order of diagnosis should
be G;, G;, Gy, G4, G, G, G5, and G,. Thus, the speed of
diagnosis can be improved.

5. Statistics and Verification of
Fault Reasoning

5.1 Fault Statistics. In this study, the maintenance record of
CSY-3000 (an instrument manufactured by Zhejiang Golink
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F1GURE 5: Token distribution after forward reasoning.

Technology Development Co., Ltd., China) for the last two
years (2016-2017) and data from the manufacturer’s reliability
manual (“other” fault causes were introduced due to loss of
data records; we render the data true and reliable, including
the statistics) were statistically analyzed and compared with
the results of reasoning. The data on “no signal output or
small signal output after loading” were sorted out, as shown
in Table 1.

The correlation coefficient can be obtained based on the
data mentioned in Table 1, which can then be used to verify

the correctness of the results of reasoning. The correlation
coefficient is calculated as follows:

DY
\/Z?:l (x; - E)Z ° Zi::l (i - ?)2

(14)

The average values were calculated first: X=43.4 and y
= 0.74766. x; and y;were substituted into (14) to obtain
the correlation coefficient » = 0.8865. As indicated by the
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FIGURE 6: Token distribution after backward reasoning.
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TABLE 1: Fault-related data.

Causes of fault Number of faults/frequency (x;) Confidence of place (y;)
P, 60 0.89
P, 46 0.87
P, 40 0.84
P, 47 0.88
P, 70 0.93
P, 58 0.89
Py 34 0.7089
P, 32 0.72
Others 4 0
TaBLE 2: Comparison and validation of different methods.
Reference (18] [13] This study
Source of weight None BP algorithm BP algorithm
Confidence of transition None Experts’ experience Sigmoid function

Reasoning method Data integration

Case # Casel Case 2 Casel
Field fault P> Py Ps J2) Py Py Ps
Diagnosis results Pi>Pa Do Py P Ps
Undetected Ps

Correlation

Calculation and reasoning

The modified reasoning method

Case2 Case 1, Case 2
Po Pv Py Ps Po
Po Pv Po Ps Po
None None
0.7516 0.8865

results of the calculation, those of the diagnosis were strongly
correlated with actual statistics.

5.2. Case Analysis. To further verify the accuracy of this
method, the techniques proposed in [13, 18] were used to ana-
lyze two cases: “no signal output or small signal output
after loading” and “unstable indicating instrument.” The re-
sults are shown in Table 2.

It can be seen from the table that, in terms of effectiveness,
compared with the results of [13], the results were verified
as valid. From the aspect of fault tolerance, the authors of
[13] and this paper observed no leakage detection, whereas
the work in [18] reported leakage in “insufficient soldering
of cable.” In terms of data selection, the other methods were
excessively dependent on expert experience, whereas this
paper used a neural network and the sigmoid function as
trigger modes, thus increasing the value of the correlation
coefficient in the final diagnosis and bringing it closer to the
actual fault state.

6. Conclusion

A method of fault diagnosis in Petri net sensors was proposed
in this study based on a new confidence reasoning method
and was applied to the fault prediction and diagnosis of a
resistance strain weighing sensor.

(1) A fault diagnosis model of the resistance strain weigh-
ing sensor was established based on the structure, operating
characteristics, and fault occurrence of the sensor.

(2) A neural network algorithm was applied to determine
the parameters of the model, and a confidence reasoning

formula proposed to deduce the pathway and mode of fault
propagation, which improved speed and diagnosis efficiency.

(3) Forward and backward reasoning were combined to
obtain the order of occurrence of faults for each component,
which helps avoid blind detection and maintenance. The
relationship between events was clearly presented by the Petri
net diagrams.

Despite the contributions of this study, the proposed
method has some limitations. The logical relationship, the
optimization of threshold setting in the sensor model, and the
numerical simulation of the model will be studied in future
work.

Appendix

See Figure 8 and Table 3.
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