
Research Article
Sensor Fault Diagnosis Based on Fuzzy Neural Petri Net

Jiming Li , Xiaolin Zhu , and Xuezhen Cheng

College of Electrical Engineering and Automation, Shandong University of Science and Technology,
579 Qianwangang Road, Huangdao District, Qingdao, Shandong Province 266590, China

Correspondence should be addressed to Xuezhen Cheng; zhenxc6411@163.com

Received 8 May 2018; Revised 19 September 2018; Accepted 9 October 2018; Published 23 October 2018

Guest Editor: Zhile Yang

Copyright © 2018 Jiming Li et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This study aims to improve the operating stability of the resistance strain weighing sensor and eliminate fuzzy factors in fault
diagnosis. Based on fuzzy techniques for fault diagnosis, the proposed fuzzy Petri net model uses the fault logical relationship
between a sensor and an improved Petri net model. A formula for confidence-based reasoning is proposed using an algorithm,
which combines neural network regulation algorithm with a transition-enabled ignition judgment matrix. This formula can yield
an accurate assessment of the operating state of the sensor. Backward inference and theminimumcut set theory are also combined to
obtain the priority of faults, which helps avoid blind and ambiguous maintenance.The sensor model was analyzed, and its accuracy
and validity were verified through statistical analysis and comparison with other methods of fault diagnosis.

1. Introduction

The resistance strain weighing sensor (hereinafter referred to
as “the sensor”) is a core component of electronic weighing
instruments, and its quality directly influences the accuracy
of measurement. In practical applications, due to the influ-
ence of raw materials, manufacturing processes, installation
methods, service conditions, and the external environment,
electronic weighing instruments are prone to various faults
with uncertainty. Therefore, accurately predicting and diag-
nosing faults in these instruments are significant to ensure
their accuracy and stability.

As an effective method of parallel computing and behav-
ioral analysis [1], the Petri net has a rigorous mathematical
formulation as well as a straightforward graphic description.
In [2–5], fuzzy technology (a new technology based on fuzzy
mathematics) was combined with the Petri net to propose the
fuzzy Petri net (FPN) method of modeling, which has
exhibited powerful parallel processing capability. However,
optimizing the model structure and developing the matrix
implementation remain to be further researched. It is impor-
tant to find a model that is representative of real environ-
ments.

For calculations in FPN, although the problem in the FPN
related tomatrix reasoning was solved in [1, 6], its weight and

other parameters remain undetermined, and accurate data
are needed to ensure the correctness of the diagnosis.

Based on the operator’s diagnostic experience, a method
for fault diagnosis in expert systems (ES) can be used as the
operating logic of the protection relay and circuit breakers
and has been applied to power systems. Methods of fault
analysis based on ES have been reported in the literature [7–
9]. For example, an advanced logic-based ES was applied in
[7]. The General Diagnosis Engine was used to analyze place
information and evaluate security [9]. However, ES-based
methods of analysis have shortcomings, such as requiring
complex knowledge acquisition and maintenance and slow
reasoning. Modeling based on directivity was proposed in
[10] to reduce the dimensionality of the incidence matrix and
simplify the calculation model, but it fails to provide a suf-
ficient description ofweight.Themethod proposed in [11] sig-
nificantly improves the fault tolerance of the Petri net, but the
Petri net model based on a time sequence does not apply to a
static Petri net with adjustable weights.

Owing to fuzzy behavior in the FPN, a number of meth-
ods for data determination have been proposed. The BP
(back propagation) algorithm endows the Petri net with the
capability of self-learning [12–14], resulting in clear weight
values. However, the model does not improve accordingly.
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The BP neural network has been combined with the tra-
ditional fuzzy fault Petri net to develop the adaptive FPN
[15, 16], which improves the capability of the traditional fuzzy
fault Petri net to learn weights. However, it fails to explicitly
show how to determine the transition confidence coefficient,
leaving the system with a large number of uncertainties. The
forward-backward algorithm was used to implement reason-
ing pertaining to unobservable place events in the model
[17]. Many other fault diagnosis methods, such as data fusion
and the support vector machine (SVM), were proposed as
well. Reference [18] has been applied to effectively solve such
problems as nonlinearity and high dimensionality. However,
due to the characteristics of the SVM, multiple dichotomies
are currently used to solve multiclassification problems; in
this context, the excessive classification is associated with
unnecessary complexity of calculation, and hence a faster
method is needed to ensure system stability.

This study proposes a method to diagnose sensor faults
based on fuzzy neural Petri net. With the resistance strain
weighing sensor as the research object, its FPN fault model
is created. The neural network is applied to adjust the
weight, with the abandonment of the transition confidence
coefficient. The MYCIN confidence reasoning algorithm is
optimized based on the sigmoid function and, consequently,
fault diagnosis is accomplished based on the minimum cut
set of fault rate.

2. Improved Fuzzy Fault Petri Net

2.1. Structure of the Fuzzy Fault Petri Net. Based on the Petri
net and fuzzy Petri net theory [19–22], a nine-parameter
model is defined as 𝑆𝑃 = (𝑃, 𝑇, 𝐼, 𝑂, 𝐾,𝑊, 𝛼, 𝑓, 𝜆).

The variables are as follows:
(1) 𝑃 = (𝑝1, 𝑝2, . . . , 𝑝𝑛)𝑇 is a set of place faults, including

all faults relating to the sensor, such as “broken gate of
the output-adjusting resistance,” “overloaded weighing,” and
“excessively large sensitivity of diaphragm shunting.”

(2)𝑇 = (𝑡1, 𝑡2, . . . , 𝑡𝑛)𝑇 is a set of transitions. If a transition
is enabled, 𝑡𝑗 = 1; otherwise, 𝑡𝑗 = 0.

(3) 𝐼 is the input matrix of the Petri net.
(4) 𝑂 is the output matrix of the Petri net.
(5) 𝐾 = (𝑘1, 𝑘2, . . . , 𝑘𝑛)𝑇 denotes the place label vector.

When a fault occurs in place 𝑖, 𝑘𝑗 = 1; otherwise, 𝑘𝑗 = 0.
(6)𝑊 = {𝜔𝑖𝑗} is an 𝑛×𝑚matrix of the weight of the place.

When ∀𝑡 ∈ 𝑇, 𝑃𝑘 ∈ 𝐼(𝑡),∑𝑛𝑗=1 𝜔𝑘 = 1.
(7) 𝛼 = (𝛼1, 𝛼1, . . . , 𝛼𝑛)𝑇 is an n-dimensional vector of the

confidence coefficients of the place, denoting the confidence
of occurrence of a fault event.

(8) 𝑓 = (𝑓1, 𝑓1, . . . , 𝑓𝑛)𝑇 is a set of probabilities of
the fuzzy occurrence of place events, where 𝑓𝑗 denotes the
probability of occurrence of place event 𝑝𝑖.

(9) 𝜆 = (𝜆1, 𝜆1, . . . , 𝜆𝑛)𝑇 is the threshold vector of
transition.

2.2. Structure of the Improved Fuzzy Fault Petri Net. The con-
nection of sensor components is tight, multiple mappings
between faults, with the complex and diverse fault propaga-
tion mode. Based on this, firstly, the structure of the sensor
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Figure 1: Improved Petri net model.

is analyzed, according to the fuzzy relation to obtain the
fault logic relationship, and then the FPNmode is established
following the basic rules of Petri net, where the confidence
reasoning algorithm is optimized based on the sigmoid func-
tion. In other words, based on the original fuzzy Petri net, the
sigmoid function replaces the initial transition confidence 𝜇
to describe the rules to deduce the FPNmodel and the expres-
sion of fuzzy information. The confidence values of fault
events occurring in different places can be obtained through
reasoning, which provides the necessary conditions for the
positive and negative instances of reasoning pertaining to
faults. Figure 1 shows the basic elements of the improved
Petri net.

3. Algorithms for FPN Fault Reasoning

To clearly and concisely present the reasoning and calculation
of each matrix during the reasoning for the FPN model, the
Petri net is used to describe the capability of the concurrency
system and the mathematical theory of the FPN to define five
special operators [23]:

(1) The comparison operator �: 𝐶 = 𝐴�𝐵, where 𝐴, 𝐵,
and𝐶 are𝑚×𝑛matrices.When𝑎𝑖𝑗 > 𝑏𝑖𝑗, 𝑐𝑖𝑗 = 1; when𝑎𝑖𝑗 < 𝑏𝑖𝑗,𝑐𝑖𝑗 = 0, 𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑛.

(2)Theminimum operator ∧:𝐶 = 𝐴∧𝐵, where𝐴, 𝐵, and𝐶 are𝑚 × 𝑛matrices; 𝑐𝑖𝑗 = min(𝑎𝑖𝑗, 𝑏𝑖𝑗), where 𝑖 = 1, 2, . . . , 𝑚;𝑗 = 1, 2, . . . , 𝑛.
(3)Themaximum operator ∨:𝐶 = 𝐴∨𝐵, where𝐴, 𝐵, and𝐶 are𝑚× 𝑛matrices; 𝑐𝑖𝑗 = max(𝑎𝑖𝑗, 𝑏𝑖𝑗), where 𝑖 = 1, 2, . . . , 𝑚;𝑗 = 1, 2, . . . , 𝑛.
(4) The direct product operator ∗: 𝐶 = 𝐴 ∗ 𝐵, where 𝐴,𝐵, and 𝐶 are 𝑚 × 𝑛 matrices; 𝑏 is an n-dimensional vector;𝑐𝑖𝑗 = 𝑎𝑖𝑗 ∗ 𝑏𝑖, where 𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑛.
(5) The multiplication operator ⊗: 𝐶 = 𝐴 ⊗ 𝐵, where 𝐴,𝐵, and 𝐶 are 𝑚 × 𝑞, 𝑞 × 𝑛, and 𝑚 × 𝑛 matrices, respectively;𝑐𝑖𝑗 = max𝑖≤𝑘≤𝑞(𝑎𝑖𝑗, 𝑏𝑖𝑗), where 𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑛.

3.1. Confidence Algorithm. The confidence algorithm is mod-
ified to achieve higher computational efficiency. Following
the reasoning calculation, the confidence values of all places
are obtained and function as the basis of fault evaluation and
diagnosis.

Weight matrix𝑊 = {𝜔𝑖𝑗}, where 𝜔𝑖𝑗 ∈ (0, 1). When there
is a directional arc𝑝𝑖 to 𝑡𝑗,𝜔𝑖𝑗 is theweight from𝑝𝑖 to 𝑡𝑗.When
there is a directional arc 𝑡𝑗 to 𝑝𝑖, 𝜔𝑖𝑗 = 0.

The reasoning formula is

𝛼𝑘+1 = 𝛼𝑘 ∨ [1 + exp (𝜌𝑘)]−1 (1)

where 𝜌𝑘 = 𝑂 ∙ (𝑊𝑇 ⋅ 𝛼𝑘), 𝑎𝑖+1 = 𝛼𝑖; when and only when
the reasoning is concluded; otherwise, it is continued.
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3.2. Forward Reasoning. The forward reasoning based on the
FPN model reflects the characteristics of fault propagation
and predicts faults according to the work environment, the
detection of components, or symptom-related information
obtained by professionals. The faults that may occur are
evaluated through the judgment matrix of transition firing
and the flow of fault-state marking, and the corresponding
response measures are then taken.

3.2.1. Transition Judgment

Definition 1. ∀𝑃𝐼𝑗 ∈ 𝐼(𝑡), ∑𝑛𝑗=1 𝛼(𝑃𝐼𝑗) ∙ 𝜔𝐼𝑗 ≥ 𝜆𝑡, where t is
enabled by potential transition.

Definition 2. If transition 𝑇 can trigger ignition, there is a
new confidence coefficient in the output place 𝑃𝑂𝑗; if not, the
output place is 0.

𝛼 (𝑃𝑂𝑗)

=
{{{{{{{{{

(exp(∑
𝑗

𝛼 (𝑃𝐼𝑗 ∙ 𝜔𝑗)) + 1)−1 , ∑
𝑗

𝛼 (𝑃𝐼𝑗) ∙ 𝜔𝐼𝑗 ≥ 𝜆 (𝑡) ,
0, ∑

𝑗

𝛼 (𝑃𝐼𝑗) ∙ 𝜔𝐼𝑗 < 𝜆 (𝑡) ,
(2)

The transition-triggering ignition matrix is 𝑌, where 𝑌 =(𝑦1, 𝑦2, . . . , 𝑦𝑛)𝑇.
𝑌 = (𝑊𝑇 ∙ 𝛼)�𝜆 (3)

If the ignition conditions are met, 𝑦𝑖 = 1; otherwise,𝑦𝑖 = 0. According to the rules of ignition, the transition-
enabled ignitionmatrix reasoning corresponding to the token
containing the place is calculated out based on [1]

𝑌𝑖 = 𝑦 ∧ [(𝐼 ∗ 𝐾𝑖−1)𝑇 ∙ 𝑙𝑚] , 𝑖 = 1,
𝑌𝑖 = 𝑦 ∧ [𝐼 ∗ (𝐾𝑖−1 − 𝐾𝑖−2)]𝑇 ⋅ 𝑙𝑚, 𝑖 = 2, 3, . . . , (4)

where 𝐾𝑖−1, 𝐾𝑖−2 denote the label vector of the i-1th
ignition and 𝑙𝑚 = (1, 1, . . . , 1)𝑇 is an m-dimensional vector.

3.2.2. Reasoning Matrix of Fault-State Label Vector

𝐾𝑖 = 𝐾𝑖−1 ⊕ (𝐴 ⊗ 𝑌𝑖) (5)

where𝐴 is the incidence matrix,𝐴 = [𝑎𝑖𝑗] ∈ 𝑅𝑛×𝑚, 𝑛 is the
number of places, and 𝑚 is the number of transitions [10].

3.3. Backward Reasoning. FPN backward reasoning deduces
the cause of a fault if it occurs. To avoid blind maintenance
and improve the efficiency of tracking the source of the
fault, the minimum cut set is introduced as the basis of fault
derivation and diagnosis.

Definition 3. If the minimum cut set𝐺 = {𝑝1, 𝑝2, . . . , 𝑝𝑛}, the
rate of fault occurrence is

𝑓 (𝐺) = (𝛼1 + 𝛼2 + . . . + 𝛼𝑛)𝑛 , 𝑛 > 0 (6)

The input and output places of FPN backward reasoning
are the output and input places of FPN forward reasoning,
respectively; namely, 𝐼− = 𝑂,𝑂− = 𝐼.

The backward reasoning matrix is given by

𝑌− = [(𝐼−󳵻𝐾−𝑖−1) ⊗ 𝑙𝑚] ∧ 𝑦,
𝐾−𝑖 = 𝐾−𝑖−1 ⊕ (𝑂− ⊗ 𝑌−𝑖 ) ,

𝑖 = 1, 2, 3, . . . ,
(7)

where 𝑌−𝑘 is the backward-enabled transition sequence of
the kth backward ignition.

4. Fault Analysis of the
Resistance Strain Weighing Sensor

4.1. Determination of FPN Data. In reasoning relating to
the fuzzy Petri net, the confidence coefficient of the ini-
tial place (the bottom place of FPN model) needs to be
entered externally, whereas those of the middle place and the
concluding places are generally obtained by the reasoning.
Thus, the determination of the confidence coefficient (fuzzy
token) pertaining to place mainly refers to the initial place. In
this study, the method proposed in [24] is used to combine
historical data with expert opinion to set the confidence
coefficient of the initial place.

In the fuzzy Petri net, weight 𝜔 represents the degree
to which each condition influences the conclusion and is
mainly determined based on past studies. This is significantly
subjective and uncertain. As the improved fuzzy Petri net
possesses certain characteristics of a neural network, the
neural network algorithm can be used to train, learn, and
adjust the network. The adjustment algorithm is as follows:𝑑𝑖 is the due output (expected output) of the ith element
and 𝑦𝑖 is its actual output. The element’s error signal is given
by

𝑒𝑖 = 𝑑𝑖 − 𝑦𝑖 (8)

yi = vi ∙ (∑𝛼i ∙ 𝜔i) (9)

V𝑖 (𝑥) = 1
(exp (𝑥) + 1) (10)

𝑥𝑖 = ∑𝛼𝑖 ∙ 𝜔𝑖 (11)

The adjustment of weight is mainly reflected in the
backpropagation of the error, where the square error 𝐸 =(1/2)𝑒2𝑖 is propagated as a regulatory signal. The gradient of
the modifier is

𝜕𝐸𝜕𝜔𝑖 =
𝜕𝐸𝜕𝑒𝑖

𝜕𝑒𝑖𝜕𝑦𝑖
𝜕𝑦𝑖𝜕𝑥𝑖

𝜕𝑥𝑖𝜕𝜔𝑖 = −𝑒𝑖V
󸀠
𝑖 (∑𝛼𝑖 ∙ 𝜔𝑖) 𝛼𝑖 (12)
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The correction value of the weight is 󳵻𝜔𝑖 = −𝜂(𝜕𝐸/𝜕𝜔𝑖),
where 𝜂 is the learning rate. A new weight 𝜔(1)𝑖 = 󳵻𝜔𝑖 + 𝜔𝑖 is
obtained and substituted back into the above formula to con-
duct an iterative operation. Weight adjustment is complete
when the square error is within the range of tolerance.

4.2. Determining the Model. The sensor is primarily com-
posed of a strain gauge and a measuring circuit. The fault
model is established by analyzing the structure of the
weighing sensor and fault sampling and by considering the
influence of the external environment on the sensor, as
shown in Figure 8 in Appendix. See Appendix for fault events
corresponding to each place.

As the scale of the model is large, writing the input and
output matrices is cumbersome. To show the reasoning and
calculation process, the “bridge circuit fault” is used as an
example in this study to illustrate faults in the resistance strain
weighing sensor, and its FPN faultmodel is shown inFigure 2.
The remaining part of the reasoning process is the same as the
example.

4.3. Original Data. According to the method mentioned in
Section 4, the vector form of the confidence coefficient of the
underlying place was obtained as follows: 𝛼0 = (0.89, 0.87,
0.84, 0.71, 0.88, 0.93, 0.89, 0.8, 0.87, 0, 0, 0.69, 0, 0.88, 0.9, 0, 0,
0, 0)𝑇.

Taking transition 𝑇5, 𝑇7 as an example, the weights of 𝑃4,𝑃5, 𝑃6, 𝑃7, and 𝑃8 are adjusted using the method described in
Section 4. Hypothesis: 𝜔45 = 0.3, 𝜔55 = 0.4, 𝜔65 = 0.3, 𝜔77 =0.33,𝜔87 = 0.65. From statistical calculations, the expectation𝛼(𝑃30) = 0.6937, 𝛼(𝑃32) = 0.7003, 𝜂 = 0.1, the largest number
of learning steps was set to 4,000, and the square error was0.1 × 10−5. The training results are shown in Figures 3 and 4.

The square error after 3928 steps of iterative operationwas
within the allowable range. The weights of 𝑃4, 𝑃5, 𝑃6, 𝑃7, and𝑃8 obtained at this point were 0.3936, 0.5160, 0.0904, 0.5177,
and 0.4823, respectively. Weight matrix is used to calculate
the confidence of the entire Petri net:
𝜔

=

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.39 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.52 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.09 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.52 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.48 0.42 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.58 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

(13)

According to the results of the calculation and an analysis
of this model, the threshold value of all transitions was set to
0.5.𝛼0, 𝑊, 𝑂, and 𝐼 were substituted into (1). The reasoning
was not concluded until 𝛼4 = 𝛼3, 𝛼3 = (0.89, 0.87, 0.84, 0.71,
0.88, 0.93, 0.89, 0.8, 0.87, 0.7089, 0.72, 0.69, 0.7, 0.88, 0.9, 0.84,
0.67, 0.71, 0.71)T. Thereafter, the confidence coefficients of
each place were obtained and used as the basis for the forward
and backward reasoning.

4.4. Forward and Backward Reasoning

4.4.1. Forward Reasoning. The sensor ran normally and
no fault occurred, but symptoms of fault were detected,
including “excessively high supply voltage,” “broken out-
put lead,” “insufficient soldering of cable,” “humid envi-
ronment,” and “broken gate of the output adjusting resis-
tance.” The initial labeling vector obtained was 𝐾0 =(1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)𝑇, and 𝛼3 was sub-
stituted into (2) and (3) to calculate the potential transition-
enabled matrix y = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1)T. 𝐾0 and 𝑦 were substituted into (4) to conduct the
reasoning calculation. The final results gained were 𝐾3 =(1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1)𝑇, and 𝑌3 = 𝑌4.
The reasoning was concluded, 𝑌3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 1)T, the final labeling vector was 𝐾3, and the
fault transmission path is shown in Figure 5. The foregoing
conclusions can be used as the basis for fault checking
and maintenance to improve the operational stability of the
sensor.

4.4.2. Backward Reasoning. Backward reasoning was car-
ried out using the example of “no signal output or small
signal output after loading.” The initial labeling vector𝐾−0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)T, and the
potential transition-enabled matrix obtained by the forward
reasoning 𝑦− = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T.𝐾−0 , 𝑦−, 𝐼−, 0− were substituted into (6). As indicated
by the reasoning calculation, when 𝑦−3 = 𝑦−2 , the rea-
soning was concluded, and the labeling vector and back-
ward transition matrix were obtained: 𝐾−2 = (1, 1, 1,1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1)T and 𝑦−2 = (1, 1, 1, 1, 1, 1,1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T. The distribution of places is
shown in Figure 6.

As shown in Figure 6, the minimum cut set enabling 𝑃49
was𝐺1 = {𝑝1},𝐺2 = {𝑝2},𝐺3 = {𝑝3},𝐺4 = {𝑝4},𝐺5 = {𝑝4∙𝑝5},𝐺6 = {𝑝5}, 𝐺7 = {𝑝5 ∙ 𝑝6}, 𝐺8 = {𝑝4 ∙ 𝑝5 ∙ 𝑝6}, and 𝐺9 = {𝑝7}.
According to (6), f(𝐺1) = 0.89, f(𝐺2) = 0.87, f(𝐺3) = 0.84, f(𝐺4)
= 0.88, f(𝐺5) = 0.795, f(𝐺6) = 0.71, f(𝐺7) = 0.93, and f(𝐺8) =
0.89. The fault occurrence probability is shown in Figure 7.

As indicated by Figure 7, the order of diagnosis should
be 𝐺7, 𝐺1, 𝐺9, 𝐺6, 𝐺2, 𝐺3, 𝐺5, and 𝐺4. Thus, the speed of
diagnosis can be improved.

5. Statistics and Verification of
Fault Reasoning

5.1. Fault Statistics. In this study, the maintenance record of
CSY-3000 (an instrument manufactured by Zhejiang Golink
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Technology Development Co., Ltd., China) for the last two
years (2016–2017) and data from themanufacturer’s reliability
manual (“other” fault causes were introduced due to loss of
data records; we render the data true and reliable, including
the statistics) were statistically analyzed and compared with
the results of reasoning. The data on “no signal output or
small signal output after loading” were sorted out, as shown
in Table 1.

The correlation coefficient can be obtained based on the
data mentioned in Table 1, which can then be used to verify

the correctness of the results of reasoning. The correlation
coefficient is calculated as follows:

𝑟 = ∑𝑛𝑖=1 (𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)
√∑𝑛𝑖=1 (𝑥𝑖 − 𝑥)2 ∙ ∑𝑖𝑛=1 (𝑦𝑖 − 𝑦)2 (14)

The average values were calculated first: 𝑥=43.4 and 𝑦
= 0.74766. 𝑥𝑖 and 𝑦𝑖were substituted into (14) to obtain
the correlation coefficient r = 0.8865. As indicated by the
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Table 1: Fault-related data.

Causes of fault Number of faults/frequency (xi) Confidence of place (yi)𝑃1 60 0.89
𝑃2 46 0.87
𝑃3 40 0.84
𝑃4 47 0.88
𝑃5 70 0.93
𝑃6 58 0.89
𝑃29 34 0.7089
𝑃30 32 0.72
Others 4 0

Table 2: Comparison and validation of different methods.

Reference [18] [13] This study
Source of weight None BP algorithm BP algorithm
Confidence of transition None Experts’ experience Sigmoid function
Reasoning method Data integration Calculation and reasoning The modified reasoning method
Case # Case 1 Case 2 Case 1 Case 2 Case 1, Case 2
Field fault p1, p4, p5 p9 p1, p4, p5 p9 p1, p4, p5 p9
Diagnosis results p1, p4 p9 p1, p4, p5 p9 p1, p4, p5 p9
Undetected p5 None None
Correlation 0.7516 0.8865

results of the calculation, those of the diagnosis were strongly
correlated with actual statistics.

5.2. Case Analysis. To further verify the accuracy of this
method, the techniques proposed in [13, 18] were used to ana-
lyze two cases: “no signal output or small signal output
after loading” and “unstable indicating instrument.” The re-
sults are shown in Table 2.

It can be seen from the table that, in terms of effectiveness,
compared with the results of [13], the results were verified
as valid. From the aspect of fault tolerance, the authors of
[13] and this paper observed no leakage detection, whereas
the work in [18] reported leakage in “insufficient soldering
of cable.” In terms of data selection, the other methods were
excessively dependent on expert experience, whereas this
paper used a neural network and the sigmoid function as
trigger modes, thus increasing the value of the correlation
coefficient in the final diagnosis and bringing it closer to the
actual fault state.

6. Conclusion

Amethod of fault diagnosis in Petri net sensors was proposed
in this study based on a new confidence reasoning method
and was applied to the fault prediction and diagnosis of a
resistance strain weighing sensor.(1)A fault diagnosis model of the resistance strain weigh-
ing sensor was established based on the structure, operating
characteristics, and fault occurrence of the sensor.(2)A neural network algorithm was applied to determine
the parameters of the model, and a confidence reasoning

formula proposed to deduce the pathway and mode of fault
propagation, which improved speed and diagnosis efficiency.(3) Forward and backward reasoning were combined to
obtain the order of occurrence of faults for each component,
which helps avoid blind detection and maintenance. The
relationship between events was clearly presented by the Petri
net diagrams.

Despite the contributions of this study, the proposed
method has some limitations. The logical relationship, the
optimization of threshold setting in the sensormodel, and the
numerical simulation of the model will be studied in future
work.
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See Figure 8 and Table 3.
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