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A proper Hamilton-Jacobi-Isaacs (HJI) inequality must be solved in a nonlinear H∞ control problem. The sum of squares (SOS)
method can now be used to solve an analytically unsolvable nonlinear problem. A HJI inequality suitable for SOS approach is
derived in the paper. The SOS algorithm for solving the HJI inequality is also provided. Conservativeness of the SOS method is
then discussed in the paper.The conservativeness of the SOS approach is caused by the method itself, because it is really a synthesis
method over the entire state space. To reduce the conservativeness, a local H∞ design on a restricted state-space region is proposed.
But the SOS approach for the local H∞ design also suffers from the conservativeness problem, because the S-procedure for solving
the set-containment constraint provides only a sufficient condition.The above-mentioned sources of conservativeness are peculiar
for the SOS approaches. So a proper approach must be carefully selected in the design process to get a reasonable result. A design
example is also given in the paper.

1. Introduction

The control problems of complicated nonlinear system are
always the research hotspots [1–4]. The H∞ control of
nonlinearity system is also called the control problems of
the L2 gain of the system, which can finally come down to
the problems of the dissipative system. L2 gain constraint
requires to solve a suitable Hamilton-Jacobi-Isaacs (HJI)
partial differential inequality [5, 6]. However, there has never
been one valid analytical solution for these inequalities,
which is also a project discussed by scholars, as shown in
literature [7] and the following literatures. In order to avoid
solving this complicated HIJ inequality, researchers get L2
gain controller through constructed the Hamilton function
generally [6, 8]. The SOS method [8–10], the abbreviation of
the sum of squares, coming out recent years, has opened up a
newway to solve the HJI inequality a numerical solution. The
SOSpolynomial is used in SOSmethod to study the nonlinear
system. Except for the nonlinearity of the object itself, if we
want to use Lyapunov function higher than quadratic terms,
or design a high order nonlinear control law, a polynomial
in general form has to be studied. But if the polynomial can

be sorted in SOS modality, it must be nonnegative. Though
the method is new, it has been used in some important
applications and shows its superiority, such as the estimation
of the nonlinear system attraction basins [11, 12], the satellite
attitude control under a highmaneuver condition [13, 14], the
attitude control of the aircraft [15], the predictive control of
the nonlinear model [16], and the stability analysis of the time
delay system [17, 18]. But there is not so many SOS literatures
involving the H∞ control of the nonlinear system [19, 20].
Though literature [21] has mentioned the H∞ control of the
nonlinear system, there is no positive reference of the HJI
inequality. SOS approach in this paper is the method solving
HJI inequality directly.This article illustrates how to solveHJI
inequality in a SOS way. The SOS method can come down
to the solving of the linear matrix inequality virtually. So
this article derives a suitable HJI inequality for SOS method
and then turns it into a matrix inequality depending on
the state variables similar to LMI and uses the functions in
SOSTOOLS to solve the linear matrix inequality which is
status-dependent before giving the nonlinearH∞ control law.
The article also discusses the conservatism and the treatment
countermeasures while using SOS to solve the HJI inequality.
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2. HJI Inequalities in SOS Problems

SOS refers to the sum of the polynomial. The polynomial
consisted of a finite number of monomials in a linear
combination way, such as

𝑝 (𝑥1, 𝑥2) = 𝑥21 + 2𝑥41 + 2𝑥31𝑥2 − 𝑥21𝑥22 + 5𝑥42 (1)

Equation (1) is made up of five monomials with two variables.
For the polynomial 𝑝(𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛) ≜ 𝑝(𝑥), if there is a
polynomial 𝑓1(𝑥), ⋅ ⋅ ⋅ , 𝑓𝑚(𝑥)which canmake 𝑝(𝑥)written in
a way of sum of squares, just as

𝑝 (𝑥) = 𝑚∑
𝑖=1

𝑓2𝑖 (𝑥) , (2)

the polynomial in this way can be called SOS polynomial,
sometimes SOS for short. It is obvious that every SOS
polynomial is nonnegative which can be presented as 𝑝(𝑥) ≥0. The collection of the SOS polynomial can be presented
as ∑[𝑥]. So if a polynomial is SOS, it can be written
as

𝑝 (𝑥) ∈ ∑[𝑥] (3)

SOS polynomial can also be presented as the following
special quadratic way:

𝑝 (𝑥) = 𝑍T (𝑥)𝑄𝑍 (𝑥) (4)

where 𝑄 is a positive semidefinite symmetrical matrix and
𝑍(𝑥) is a column vector consisting of everymonomials whose
order numbers are less than d. And the order number of the
polynomial 𝑝(𝑥) is less than or equal to 2d. The polynomial
in (1) is

𝑍 (𝑥) fl [[[[[
[

𝑥1
𝑥21𝑥1𝑥2
𝑥22

]]]]]
]

,

𝑄 = [[[[[
[

1 0 0 0
0 2 1 −0.5
0 1 0 0
0 −0.5 0 5

]]]]]
]

(5)

Suppose the equation of the system is �̇� = 𝑓(𝑥) +𝑔(𝑥)𝑢. If we want to use SOS to analyze, the equation should
be changed into the following class linear form of state
dependence [21], such as

�̇� = 𝐴 (𝑥)𝑍 (𝑥) + 𝐵 (𝑥) 𝑢 (6)

where 𝐴(𝑥) and 𝐵(𝑥) are the polynomial matrix for x, and
𝑍(𝑥) is 𝑁 × 1 monomial vector which satisfies the following
supposes A1:

A1: 𝑍 (𝑥) = 0 iff 𝑥 = 0 (7)

where iff is the symbolic representation of ‘if and only if ’.
There is a good example for (6) in literature [13].

For the H∞ control researching, the equation of the
system is

�̇� = 𝐴 (𝑥)𝑍 (𝑥) + 𝐵1 (𝑥)𝑤 + 𝐵2 (𝑥) 𝑢
𝑧 = [𝐶1 (𝑥) 0

0 𝐷12 (𝑥)] [𝑍 (𝑥)
𝑢

] (8)

where 𝑢(𝑡) is the control input, 𝑤(𝑡) is the disturbance input,
and 𝑧(𝑡) is the performance output of the system. And the
optimal control problem of H∞ control is to solve the state
feedback control law 𝑢(𝑡), which makes the gain L2 the
minimum from disturbance 𝑤 to output 𝑧.

Definition 1. Supposed a nonnegative function 𝑉(𝑥) (𝑉(0) =0) (called storage function). If 𝑉 is differentiable and the
Hamilton function H defined by the following equation is
nonpositive, then system (1) is dissipative [4, 22].

𝐻 fl
d𝑉
d𝑡 (𝑥 (𝑡)) + ‖𝑧‖2 − 𝛾2 ‖𝑤‖2 (9)

The gain of this dissipative system L2 is less than or equal
to 𝛾. If 𝑉(𝑥) is positive definite, then the storage function is
Lyapunov function.

The normal method in related literatures now expresses
the nonlinear system into an affine system and makes the
storage function 𝑉(𝑥) a positive definite quadratic function.
Based on this, theHJI inequality can be deduced and continue
related discussion [4, 5, 23]. However, there is no effective
analytical solution to get theHJI inequality just like this, while
using SOS method, the equation of the system should be
presented as (8) of the state dependent class linear systems
and define the storage function 𝑉(𝑥) as

𝑉 (𝑥) = 𝑍T (𝑥)𝑃 (�̃�)𝑍 (𝑥) (10)

where 𝑍(𝑥) is the 𝑁 × 1 monomial vector shown in
(8) and 𝑃(�̃�) is a symmetric polynomial matrix. Suppose
𝐽 = {𝑗1, 𝑗2, ⋅ ⋅ ⋅ , 𝑗𝑚} showing the label of the line whose
value is zero in (8) [𝐵1(𝑥) 𝐵2(𝑥)]. The corresponding items
in the corresponding state equation can be presented as
follows:

�̇�𝑗1 = 𝐴𝑗1 (𝑥)𝑍 (𝑥)
�̇�𝑗2 = 𝐴𝑗2 (𝑥)𝑍 (𝑥)

...
(11)

The corresponding state variables are defined as �̃� ={𝑥𝑗1, 𝑥𝑗2, ⋅ ⋅ ⋅ , 𝑥𝑗𝑚}. We define 𝑃 the polynomial matrix of
variable �̃�, just 𝑃(�̃�). So, in this way, when we calculate the
derivation of 𝑉(𝑥), there will be no derivation of the input
signals 𝑤 and 𝑢.

Because of the differences between the system equation
and 𝑉(𝑥), the HJI inequality should be derived again in this
problem.
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Bring (8) and (10) into (9):

𝐻 = 𝑍T (𝑥) [
[
∑
𝑗∈𝐽

𝜕𝑃𝜕𝑥𝑗 (�̃�) (𝐴𝑗 (𝑥)𝑍 (𝑥))

+ 𝑃 (�̃�)𝑀 (𝑥)𝐴 (𝑥) +𝐴T (𝑥)𝑀T (𝑥)𝑃 (�̃�)]
]
𝑍 (𝑥)

+ 𝑍T (𝑥)𝑃 (�̃�)𝑀 (𝑥) [𝐵1 (𝑥)𝑤 + 𝐵2 (𝑥) 𝑢]
+ [𝑤T𝐵T1 (𝑥) + 𝑢T𝐵T2 (𝑥)]𝑀T (𝑥)𝑃 (�̃�)𝑍 (𝑥)
+ 𝑍T (𝑥)𝐶T1 (𝑥)𝐶1 (𝑥)𝑍 (𝑥) + 𝑢T𝐷T12𝐷12𝑢
− 𝛾2𝑤T𝑤 ≤ 0

(12)

where𝑀(𝑥) is the transform matrix of the derivation from𝑍
to 𝑥. And the corresponding elements are

𝑀𝑖𝑗 (𝑥) = 𝜕𝑍𝑖𝜕𝑥𝑗 (𝑥) (13)

To simplify the process, the following process will
omit the variable 𝑥, �̃� in the symbols. And now we use𝐻[𝑥, 𝑃, 𝑤, 𝑢] to present the Hamilton function in (9).
To solve this inequality, the analysis method is to get
the saddle singularity in the following Hamilton function
[1, 2]:

𝐻[𝑥, 𝑃, 𝑤, �̆�] ≤ 𝐻 [𝑥, 𝑃, �̂�, �̆�]
≤ 𝐻 [𝑥, 𝑃, �̂�, 𝑢] (14)

where �̂� is the worst disturbance making the Hamilton
function 𝐻(∙) maximum. �̆� is the control input making𝐻(∙) min. This is also the conception of H∞ optimization
solution.

In this way, according to (12),

𝜕𝐻𝜕𝑢 = 2𝑍−1𝑃𝑀𝐵2 + 2𝑢T𝐷 = 0, 𝐷 = 𝐷T12𝐷12 (15)

and

�̆� = −𝐷−1𝐵T2𝑀T
𝑃𝑍 (16)

In the same way, we can get

�̂� = 1𝛾2𝐵T1𝑀T
𝑃𝑍 (17)

Bring (16) and (17) into (12); we can get

𝐻 = 𝑍T [
[
∑
𝑗∈𝐽

𝜕𝑃𝜕𝑥𝑗 (�̃�) (𝐴𝑗𝑍) + 𝑃𝑀𝐴 +𝐴T𝑀T
𝑃]
]
𝑍

+ 𝑍T𝑃𝑀 [𝛾−2𝐵1𝐵T1 − 𝐵2𝐷−1𝐵T2 ]𝑀T
𝑃𝑍

+ 𝑍T𝐶T1𝐶1𝑍 ≤ 0
(18)

Equation (18) is the Hamilton-Jacobi-Isaacs (HJI) inequality
in the problem. After getting 𝑃(�̃�) from solving the HJI
inequality, we can bring it into (16) and get the nonlinear state
feedback control law 𝑢(𝑥).

Notice that each item in (16) has a premultiplication
𝑍
T and a postmultiplication 𝑍. So we can get 𝑍T[∙]𝑍.

And the inequality requirements for (18) change into the
seminegative definite requirements of the synthetic item, just
as the seminegative definite requirements of the following
equation:

𝐴
T
𝑀

T
𝑃 + 𝑃𝑀𝐴 + ∑

𝑗∈𝐽

𝜕𝑃𝜕𝑥𝑗 (𝐴𝑗𝑍)
+ 𝑃𝑀 [𝛾−2𝐵1𝐵T1 − 𝐵2𝐷−1𝐵T2 ]𝑀T

𝑃 + 𝐶T1𝐶1
≤ 0

(19)

The new equation (19) is a kind of Riccati equation. However,
Riccati equation is a quadratic equation which is not suitable
in SOS. SOS can come down to solve the inequality matrix,
exactly the state dependent type LMI.Thematrix (nonlinear)
is a polynomial matrix, but the decision variables are all
linear. We can know from the method of linear matrix
inequality (LMI) that the solution 𝑃 of the Riccati equation
does not make up a convex problem, but if we use the inverse
of the solution, just 𝑃−1, to present, we can get LMI [2]. In
addition, 𝛾 in (19) comes in square form. while we use it
to optimize the decision variables of the problem, a linear
relationship for 𝛾 is also required. Considering the above two
points, we can take

𝑃 = 𝛾𝑄−1 (20)

Bring 𝑄 into the equation and we can get a matrix inequality
of the HJI inequality above, as shown in the following
theorem.

Theorem 2. For system (8), suppose that there is a symmetric
polynomial matrix 𝑄(�̃�) > 0 which satisfies the matrix
inequality,

[[[[[[
[

𝑀𝐴𝑄 + 𝑄𝐴T𝑀T − 𝛾𝑀𝐵2𝐷−1𝐵T2𝑀T − ∑
𝑗∈𝐽

𝜕𝑄𝜕𝑥𝑗 (𝐴𝑗𝑍) 𝑄𝐶T1 𝑀𝐵1
𝐶1𝑄 −𝛾𝐼 0
𝐵
T
1𝑀

T 0 −𝛾𝐼

]]]]]]
]

≤ 0 (21)
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�e gain of the system is less than or equal to 𝛾, and the
nonlinear H∞ state feedback controller can be given in the
following equation:

𝑢 (𝑥) = −𝛾𝐷−1 (𝑥)𝐵T2 (𝑥)𝑀T (𝑥)𝑄−1 (�̃�)𝑍 (𝑥) (22)

If𝑄(�̃�) is a constant matrix, the stability of the system and the
boundary of the gain L2 are both global.

Proof. Bring (20) into HJI inequality equation (19) and then
use Schur complement lemma [2]; we can get it proved. Pay
attention that we use a relation in literature [21]:

𝜕𝑃𝜕𝑥𝑗 (𝑥) = −𝑃 (𝑥) 𝜕𝑃−1𝜕𝑥𝑗 (𝑥)𝑃 (𝑥) (23)

3. SOS Algorithm in Solving HJI Inequalities

Equation (21) represents the negative semidefinite require-
ment of a symmetric polynomial matrix. Because the prob-
lems SOS solved are nonnegative, the inequality, just like
(21), has to put on a negative sign which makes it become a
positive semidefinite problem. Suppose 𝐹(𝑥) represent such
a problem:

𝐹 (𝑥) ≥ 0 (24)

Suppose that 𝐹(𝑥) is a 𝑁 × 𝑁 symmetrical matrix, a 𝑥 ∈ R𝑛
polynomial matrix whose order is equal to 2𝑑.

The positive semidefinite requirement of𝐹(𝑥) is achieved
by the quadratic polynomial 𝑣T𝐹(𝑥)𝑣 ∈ ∑[𝑥], 𝑣 ∈ R𝑁 in SOS.
Because if

𝑣
T
𝐹 (𝑥) 𝑣 ∈ ∑[𝑥] (25)

it presents that there is 𝑣T𝐹(𝑥)𝑣 ≥ 0 for every (𝑣,𝑥) ∈ R𝑁×𝑛
which is equivalent to 𝐹(𝑥) ≥ 0 for 𝑥 ∈ R𝑛 [21].

There are two vector variables in (25) of SOS, 𝑣 and𝑥. And
we call 𝑣T𝐹𝑣 a bipartite scalar polynomial. In theory, there are
no differences between this polynomial and the normal ones

in essence. For example, suppose a bipartite scalar polynomial
is 𝑣T𝐹𝑣, 𝑣 = [V1 V2]T

𝐹 = [𝑥2 − 2𝑥 + 2 𝑥
𝑥 𝑥2] (26)

After finishing,

𝑣
T
𝐹𝑣 = [[[[[

[

V1𝑥V1
V2𝑥V2

]]]]]
]

T

[[[[[
[

2 −1 0 1
−1 1 0 0
0 0 0 0
1 0 0 1

]]]]]
]

[[[[[
[

V1𝑥V1
V2𝑥V2

]]]]]
]

= (V1 + 𝑥V2)2 + (𝑥V1 − V1)2
(27)

Equation (27) shows that 𝑣T𝐹𝑣 is a polynomial in the sum of
squares. So, for (26), all 𝑥 is the positive definite. Though it
is the same in theory, if the special sparse multiple structure
statements in SOSTOOLS are used, the calculating workload
will decrease greatly. Still take (26) for an example, the
corresponding command statements are as follows:

>> syms x v1 v2 real
>> F = [x∧2 – 2∗x + 2, x; x, x∧2]
>> v = [v1; v2]
>> p = v’∗F∗v
>> prog = sosprogram([x, v1, v2])
>> prog = sosineq(prog, p, ’sparsemultipartite’, {[x],
[v1, v2]})
>> prog = sossolve(prog)

In this example, prog is the program, and p is the
polynomial solution which is solved. sosineq is the SOS
inequality constraint [4], while sparsemultipartite refers to
the sparse multivariate structure, and the last statement is the
solution; the result is given in (27).

Then Theorem 2 and the requirements of (21) can be
written SOS constraints as follows.

𝑣
T
1 (𝑄 (�̃�) − 𝜀1𝐼) 𝑣1 ∈ ∑ [𝑥] (28)

−[𝑣1
𝑣2

]T [[[[[
[

𝑀𝐴𝑄 +𝑄𝐴T𝑀T − 𝛾𝑀𝐵2𝐷−1𝐵T2𝑀T − ∑
𝑗∈𝐽

𝜕𝑄𝜕𝑥𝑗 (𝐴𝑗𝑍) + 𝜀2𝐼 𝑄𝐶
T
1 𝑀𝐵1

𝐶1𝑄 − (𝛾 − 𝜀2) 𝐼 0
𝐵
T
1𝑀

T 0 − (𝛾 − 𝜀2) 𝐼

]]]]]
]

[𝑣1
𝑣2

] ∈ ∑ [𝑥] (29)

where (28) corresponds to 𝑄(�̃�) > 0 and (29) corre-
sponds to (21). 𝜀1, 𝜀2 are both decimal numbers, such
as 0.001, 𝑣1 ∈ R𝑁, and the dimension of 𝑣2 is deter-
mined by the block matrix in (29). The SOS constraints of

(28) and (29) are implemented using the sosineq function.
The solution of this SOS problem is 𝑄(�̃�), and we can
obtain the state feedback control law 𝑢(𝑥) by substituting
(22).
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4. Examples

Suppose the parameter array in (8) as

𝐴 (𝑥)
= [−1 + 𝑥1 − 1.5𝑥21 − 0.75𝑥22 0.25 − 𝑥21 − 0.5𝑥220 0 ]

𝑍 (𝑥) = [𝑥1𝑥2] ,

𝐵1 (𝑥) = [10] ,

𝐵2 (𝑥) = [01]
𝐶1 (𝑥) = [1 0] ,
𝐷12 (𝑥) = 1,
𝑀 = 𝐼

(30)

According to (28) and (29), we calculate the state feedback
control law 𝑢 tominimize the L2 gain from the disturbance to
the output system though corresponding SOS program. And
let 𝜀1 = 𝜀2 = 0.001 in (29).

In this example, the disturbances 𝑤 and control inputs 𝑢
affect the dynamics characteristics of both 𝑥1 and 𝑥2 through
𝐵1 and 𝐵2. Because 𝑗 = 0 in (11), so 𝑃(�̃�) is a constant matrix
in (10). We use the dichotomy method to find the optimal
value, and the minimum value 𝛾 obtained is 1.15; that is, the
L2 gain from the system is not larger than 1.15. The resulting
control law in (22) is as follows:

𝑢 = −1.1216𝑥1 − 2.5401𝑥2 (31)

As a comparison, we examine the results of the linearized
design of this system, in which the same SOS optimization
program is used; just the system matrix 𝐴(𝑥) in (30) is
changed to the state matrix of the linearization system as
follows:

𝐴 (𝑥) = [−1 0.25
0 0 ] (32)

The result of the optimization design for this linearization
system is 𝛾 = 0.83, and the corresponding control law is

𝑢 = −116.8346𝑥1 − 141.2178𝑥2 (33)

Because the system is linear, the L2 gain of the system is
the H∞ norm which can also be obtained from the transfer
function 𝑇𝑧𝑤 from𝑤 to 𝑧. Figure 1 is the Bode diagram of the
singular value 𝜎[𝑇𝑧𝑤(𝑗𝜔)] of this linearized system. It can be
read as 𝛾 = ‖𝑇𝑧𝑤(𝑗𝜔)‖∞ = −1.6 dB = 0.83 from the Figure 1.
And this figure also shows Bode diagram of |𝑇𝑥1𝑤| and |𝑇𝑢𝑤|,
which are transfer function from input 𝑥1 and 𝑢 to the output𝑧.
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Figure 1 shows that the SOS solution of HJI inequality is
consistent with the system’s H∞ norm if it is a linear system.
However, the actual system is nonlinear. Substituting the
matrix 𝑃 obtained by this linearization design into (18), the
Hamilton function 𝐻 was obtained of the nonlinear system.
Figure 2 shows the graph when𝐻 > 0. Figure 2 shows that in
this system the area which satisfies 𝐻 ≤ 0, satisfies 𝛾 = 0.83
only near the origin. The area farther away from the origin
the graph is upturned and 𝐻 > 0, which does not satisfy the
HJI inequality.

The above nonlinear design result in equation (31) shows
that, after considering the nonlinearity, the minimum value𝛾 that can be achieved is 1.15, which is greater than the
minimum value of the linearized system 0.83. It is necessary
to measure the frequency response characteristics from 𝑤 to𝑧 at different frequencies under different input amplitudes
for the verification of the gain of the nonlinear system L2.
However, the frequency response when the signal amplitude
of 𝑤 is 1, 2, 3, respectively, indicates that the amplitude ratio
of the frequency response is only slightly larger than 0.83
and does not exceed 1, let alone 1.15. This conservativeness in
solving HJI inequalities is because the HJI inequality contains
the entire state space, but some values of the state variables in
the actual system may not be so large at all. For example, in
(30), plus state feedback, 𝑥2 is just an intermediate variable
of the feedback system. As long as the system is stable, 𝑥2
will not be too large. Regardless of these factors, the entire
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state space is included and the resulting value 𝛾will be greater
than the actual value of the actual system. This conservation
is due to the positive solution to the HJI inequality (including
the entire state space) and is unique to the SOS positive
solution method. In order to reduce the conservativeness, it is
necessary to limit the state space to the normal working range
of the system. This is the local H∞ control.

5. Local 𝐻∞ Control

The local H∞ control heremeans the L2 gain control problem
which is related to a state space in a local area of the actual
working scope. The local area Χ in SOS can be described in
terms of polynomial inequality 𝑔𝑙(𝑥) ≥ 0:

Χ = {𝑥 ∈ R𝑛 : 𝑔𝑙 (𝑥) ≥ 0, 𝑙 = 1, . . . , 𝑚} (34)

The shape of the local area should be determined by the
problem. For an example in this article, 𝑥2 is an intermediate
variable of the feedback control system,whichwill not change

a lot. Sowe can limit this local area in the area of𝑥21+36𝑥22 ≤ 9,
which is written in a polynomial inequality as

𝑔 (𝑥) = 9 − 𝑥21 − 36𝑥22 ≥ 0 (35)

SOS design is designed to solve different inequality constraint
originally. While the constraint of the local area needs to
be considered, we should satisfy the constraint of (35) with
satisfying the original SOS inequality constraint, that is, a
set-containment constraint problem. And set-containment
constraint can deal with S-procedure problem [24], that is,
a constraint item 𝑔(𝑥) with each one multiplied by 𝑠(𝑥, 𝑣),
based on (28) and (29). For this example, they are the two
inequality constraints:

𝑣
T
1 (𝑄 (�̃�) − 𝜀1𝐼) 𝑣1 − 𝑠1 (𝑥, 𝑣1) 𝑔 (𝑥) ∈ ∑[𝑥] (36)

−[𝑣1
𝑣2

]T 𝑊(𝑥) [𝑣1
𝑣2

] − 𝑠2 (𝑥, 𝑣1, 𝑣2) 𝑔 (𝑥) ∈ ∑[𝑥] (37)

where

𝑊(𝑥) = [[[[
[

𝑀𝐴𝑄 + 𝑄𝐴T𝑀T − 𝛾𝑀𝐵2𝐷−1𝐵𝑇2𝑀𝑇 − ∑
𝑗∈𝐽

𝜕𝑄𝜕𝑥𝑗 (𝐴𝑗𝑍) + 𝜀2𝐼 𝑄𝐶T
1 𝑀𝐵1

𝐶1𝑄 − (𝛾 − 𝜀2) 𝐼 0
𝐵T
1𝑀T 0 − (𝛾 − 𝜀2) 𝐼

]]]]
]

(38)

where 𝑠1(𝑥, 𝑣1) and 𝑠2(𝑥, 𝑣1, 𝑣2) are the multipliers of the sum
of squares of polynomials. In the example, the twomultipliers
are polynomials with two orders.

Combining with the example equation (30), using SOS to
solve (36) and (37), we can get the minimum value of 𝛾 as
1.145. But in the local area of (35), making a simulation verify
the different amplitudes, the frequency response at different
frequencies shows that the amplitudes of frequency response
are not more than 1. In other words, local H∞ control has
conservatism. The conservatism is brought by S method. S
method makes some collections which contain constrained
problems and are not easy to solve, but S method is also a
sufficient condition which has some conservatisms.

In a word, not only the design of local area with SOS
method but also that of local area with S method con-
tained full state space (in third segment), and they are both
conservative. Because the example is easy, the conservatism
is not so obvious. But in actual design, we would better
make a comparison between the two methods. Especially
when the full state space has no solution or has some
obvious unreasonable data, local area H∞ control may give
a reasonable result.

6. Conclusion

The method of the sum of squares is a numerical solution
method, used to solve the nonlinear problems which are not
so easy to get an analytical solution. The article shows an

algorithm which is suitable to SOS and the HJI inequality
of nonlinear H∞ control. Solving HJI inequality in a SOS
method is different to the existing methods. In practice,
the solution thought of the nonlinear H∞ control problem
is based on the design of the linear system first and then
attaching the nonlinear control law,making thewholeHamil-
ton function of the system H maintain or less than zero in
actual working scope [25, 26]. The method in the article is
a direct design method, or is called synthesis, which solve
the HJI inequality positively. Because the solution is positive,
it contains the whole space of the state. But after designing,
because of the negative feedback control, some of the state
variables cannot be so large. So there is certain conservatism
in this positive direct design. If the design limits the area
of the state space, it is a local H∞ control. But in SOS,
the collection of the inequality contains constraints which
require the S method to be solve. Though S method is an
efficient method, it has a sufficient condition which is also
conservative. The two conservations are unique for SOS, so
we would better make a comparison to get more reasonable
results.
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