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A two-degree-of-freedom shape memory oscillator derived using polynomial constitutive model is investigated. Periodic,
quasiperiodic, chaotic, and hyperchaotic oscillations are shown by the shape memory alloy based oscillator for selected values of
the operating temperatures and excitation parameters. Bifurcation plots are derived to investigate the system behavior with change
in parameters. A fractional order model of the shape memory oscillator is presented and dynamical behavior of the system with
fractional orders and parameters are investigated.

1. Introduction

A shape memory alloy (SMA) shows temperature and stress
inducedmartensitic phase transformation, drastically chang-
ing the material’s mechanical properties. In other words,
after an apparent plastic deformation, it will return to their
original shape when heated. The same materials, in a certain
temperature range, can be strained up to approx. 10% and
still will return to their original shape when unloaded.
These unusual effects are called thermal shape memory and
superelasticity (elastic shape memory), respectively, which
can use both sensor and actuator [1]; it is increasing range of
potential applications, such as Biomedical [2], Robotics [3],
and Aerospace. Stress-strain curve study reveals hysteretic
phenomenon of SMAs. Hysteretic effect leads to nonlinearity.
This property results in high damping capacity [2] which
can be utilized for amplitude attenuation in vibrating system
[4] so the application of these materials can be extended to
control elements too.

Various constitutive models of shape memory oscillators
(SMO) have been developed since 1990, in order to analyze
the dynamical behavior [5–9]. The study reveals that SMOs
can expose to chaotic region when it is treated as single

degree-of-freedom system but can extend to hyperchaos
when it is treated as two-degree-of-freedom system [10, 11].
Similar property is noted down in other SMAs. According to
Falkmodel strain and temperature are the only state variables;
free energy is validated for various temperatures and shows
unstable points and is not considering twinned martensite.
Brinson’s model describes the reorientation process clearly
compared to other models, the numerical simulations reveals
the internal subloops present in thermomechanical [12]
loading. Tanaka model considered martensitic volumetric
fraction so it can describe compressive behavior accurately
[13]. The transient response and attractor’s multistability are
interesting property in nonlinear study, and the numerical
analysis of SMOs nonlinear models shows these properties
significantly [10]. Dynamical jumps of SMOs were studied
and found that the response is not only depending on the
forcing amplitude but also on the way the forcing frequency
is modified [14].

Experimental dynamic analysis of SMAs was carried out
and found nonlinearity in phase transformation leads to
complicated dynamic behavior of the system [15]. Nonlinear
dynamics of SMAs are investigated experimentally and it
is noted that the actuator response shows unpredictability,
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Figure 1: The two-degree-of-freedom oscillator with shape memory alloys.

when low-to-moderate voltage was applied to the system
and added that could affect the system design and can cause
control difficulties in precise applications [3].

The real systems are fractional in nature, so there is no
surprise on treatment of fractional order describing behavior
of the system more accurate than the integer methods.
Because of holding nonlocal property, that is, the next
state of a system depends not only upon its current state
but also upon all of its historical states, fractional calculus
can provide more realistic results. Recently fractional order
calculus used to refine the results in various fields like
thermodynamics, mechatronics systems, chaos theory, and
biomedical system as well. When a chaotic nonlinear system
is treated as integer order, it demands minimum order of
3 for chaos to appear [16]. Conversely while the system
is treated as fractional order, chaos can be identified with
lesser order. For example, Chau’s circuit with order 2.7 can
produce chaotic attractor [17]. Recently the active and passive
vibration damping capacity of SMAs are studied. Oberaigner
model has been taken, and fractional order results reveal
the chaotic behaviors precisely [18]. The generalized theory
of electrothermoelasticity of fractional order heat transfer
describes the behavior of the particles of an elastic bodymore
realistically than the theory of generalized thermoelasticity
with integer order [19]. Yu et al. developed the theory of frac-
tional order generalized electro-magneto-thermoelasticity

for anisotropic and linearly electro-magneto-thermo-elastic
media and extended that the fractional order has great effect
on the response when the material is imposed a sudden
heating [20].

2. Dynamics of the Two-Degree-of-Freedom
Shape Memory Alloy (2DOF SMA) Oscillator

Even though the authors of [11] have done a [0-1] test on
different models of SMAs, the complete dynamical analysis
of the system is less investigated. Hence we are interested
in analyzing the two-degree-of-freedom (2DOF) SMA [21]
shown in Figure 1 because of its higher dimension and
complex behaviors.

The dimensionless mathematical model of the 2DOF
SMA polynomial constitutive model can be derived using the
equation of motions and is given by [11, 21]

𝑥̇ = 𝑦,
̇𝑦 = [𝛿1 sin (𝜔1𝑡) − (𝜀1 + 𝜀2V21𝜇) 𝑦 + 𝜀2V21𝜇𝑧
− [(𝜃1 − 1) + V21

2𝜇 (𝜃2 − 1)] 𝑥 + V21
2𝜇 (𝜃2 − 1) 𝑧

+ 𝜙1𝑥3 − 𝜆1𝑥5 − 𝜙2V212𝜇 (𝑧 − 𝑥)3
+ 𝜆2V212𝜇 (𝑧 − 𝑥)5] ,

𝑧̇ = 𝑤,
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Table 1: Types of SMA behavior.

Parameters Type of SMA behavior Lyapunov exponents
𝜃1 = 0.7, 𝜃2 = 3.5, 𝜃3 = 0.7 Periodic −0.128; −0.140; −0.257; −0.275
𝜃1 = 1.5, 𝜃2 = 3.5, 𝜃3 = 1.5 Quasiperiodic 0; −0.209; −0.265; −1.272
𝜃1 = 1.5, 𝜃2 = 0.5, 𝜃3 = 1.5 Chaotic 0.378; 0; −0.438; −0.786
𝜃1 = 1.5, 𝜃2 = 1.5, 𝜃3 = 1.5 Hyperchaotic 0.453; 0.233; −0.651; −0.835

𝑤̇ = [𝛼212𝛿2 sin (𝜔2𝑡) + 𝜀2V21𝑦 − (𝜀2𝛼21 + 𝜀3V21𝛼32) 𝑤
+ V21
2 (𝜃2 − 1) 𝑥

− [V212 (𝜃2 − 1) + V21
2V32
2 (𝜃3 − 1)] 𝑧

+ 𝜙2V212 (𝑧 − 𝑥)3 − 𝜆2V212 (𝑧 − 𝑥)5 + 𝜙3V212V322𝑧3
− 𝜆3V212V322𝑧5] ,

(1)

where 𝛿1, 𝛿2, 𝜔1, 𝜔2 are the excitation parameters,𝜀1, 𝜀2, 𝜀3 are the dissipation parameters, 𝜇 is the
mass relation parameter, and V21, V32, 𝛼21, 𝛼32, 𝜙1,𝜙2, 𝜙3, 𝜆1, 𝜆2, 𝜆3 are the SMA properties. The states 𝑥 and𝑧 are the dimensionless displacements, and 𝑦 and 𝑤 are the
dimensionless velocity components of the 2DOF SMA. For
the parameter values,

𝜔1 = 𝜔2 = 1,
𝜀1 = 𝜀2 = 𝜀3 = 0.2,
𝜙1 = 𝜙2 = 𝜙3 = 1.3𝑒 + 3,
𝜆1 = 𝜆2 = 𝜆3 = 4.7𝑒 + 5,
V21 = V32 = 1,
𝜇 = 1,
𝛿1 = 0.06,
𝛿2 = 0,
𝛼21 = 𝛼32 = 1,

(2)

and depending on the temperatures of the SMA given by
the parameters 𝜃1, 𝜃2, 𝜃3, the system changes the character
as periodic, quasiperiodic, chaotic, and hyperchaotic [11].
Table 1 shows the different types of behavior of the SMA with
various values of 𝜃1, 𝜃2, 𝜃3 with the respective finite time
Lyapunov exponents (LEs) calculated using Wolf algorithm
[22] for 20000s.

Figure 2 shows the 2D phase portraits of the SMA
system with initial conditions [0, 0, 0, 1] for various values of𝜃1, 𝜃2, 𝜃3 as given in Table 1. It can be observed from Figure 2
that the SMA system shows periodic, quasiperiodic, chaotic,
and hyperchaotic behaviors.

Bifurcation. Bifurcation analysis is helpful in investigating the
qualitative changes in the states of a system with respect to
the variation in a parameter [23]. Recent techniques have

shown that bifurcation analysis can be donewith experiments
rather than only mathematical methods. Both continuous
and discrete models can be analyzed by bifurcations. To
analyze the 2DOF SMA using bifurcation plots, we fix all
the other parameters like in (2) and consider 𝜃2 as the
bifurcation parameter. The initial conditions for the first
iteration are taken as [0, 0, 0, 1] and are reinitialized to the
end values of state trajectories at each iteration. Figure 3(a)
shows the bifurcation diagram of system (1) with respect to
the parameter 𝜃2. The parameter values of the SMA system
are taken as in (2) with 𝜃1 = 1.5, 𝜃3 = 1.5, and initial
conditions for the first iteration are taken as [0, 0, 0, 1] and are
reinitialized to the end values of the state variables at the end
of each iteration. It can be clearly observed from Figure 2(a)
that the SMA shows periodic, quasiperiodic, chaotic, and
hyperchaotic oscillations. For 𝜃2 < 0.45 the SMA system
shows periodic limit cycles. For 2.9 ≤ 𝜃2 ≤ 3.75 the
SMA systems show quasiperiodic/torus attractor. Figure 3(b)
shows the bifurcation of 2DOF SMA for parameter 𝜃1 with𝜃2 = 1.5, 𝜃3 = 1.5 which shows periodicity, chaos,
hyperchaos, and quasiperiodicity. Period 2 limit cycles are
seen for 0 ≤ 𝜃1 ≤ 0.75, period 3 limit cycles are exhibited
for 2.2 < 𝜃1 ≤ 2.5 and 3 < 𝜃1 ≤ 3.25, and period 4 limit
cycles are seen for 4.3 ≤ 𝜃1 ≤ 4.5. Chaotic oscillations are
seen when 0.75 < 𝜃1 ≤ 1.25, 1.8 < 𝜃1 ≤ 2.2, 3.25 < 𝜃1 ≤ 3.5,
and 3.75 < 𝜃1 ≤ 4.3 and hyperchaos is seen for a small range
of 1.25 < 𝜃1 ≤ 1.8. Quasiperiodic oscillations are shown for3.5 < 𝜃1 ≤ 3.75. Figure 3(c) shows the bifurcation of the
2DOFSMA system with 𝛿1 and 𝜃1 = 1.5, 𝜃2 = 1.5, 𝜃3 =1.5. Chaotic and hyperchaotic regions are seen in the region0.048 < 𝛿1 ≤ 0.075 and chaotic region for 0.035 < 𝛿1 ≤ 0.045.
For 𝛿1 < 0.018 we could observe period 1 limit cycles and
quasiperiodic oscillations for 0.018 < 𝛿1 ≤ 0.03.
3. Fractional Order Two-Degree-of-
Freedom Shape Memory Alloy
(FO2DOFSMA) Oscillator

Fractional order calculus is as old as integer order as seen
from a letter written by Leibniz to L’Hopital [24]. A more
common form of general order is given by

𝐷𝑞 =
{{{{{{{{{{{{{

𝑑𝑞
𝑑𝑡𝑞 𝑞 < 0
1 𝑞 = 0
∫𝑡
𝑎
𝑑𝜏−𝑞 𝑞 > 0,

(3)

where 𝑞 is the order. The three ways for simulating fractional
order systems [25] are computational methods based on the
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Figure 2: 2D phase portraits of the 2DOF SMA system: (a) periodic; (b) quasiperiodic; (c) chaotic; (d) hyperchaotic.

mathematical equations, approximation through a rational
system in discrete time, and approximation of the fractional
system using rational function in continuous time. Most
researchers prefer approximation through a rational system
in discrete time in which the fractional order system is
replaced by its discrete equivalent and approximated again
by truncating the polynomial series, which reduces the
requirement of infinite memory.

Many different approaches for numerical simulations
of fractional order systems have been extensively investi-
gated [26–28]; however there is always a tradeoff between

computational efficiency, complexity, and the accuracy of the
approximations. Recent researchers have been working on
developing fast convolution quadrature algorithms relevant
to fractional differential equations because fractional calculus
operators work either in continuous or discrete convolution
of some form.

There are three commonly used definitions of the
fractional order differential operator: Grünwald-Letnikov,
Riemann–Liouville, and Caputo [23, 29, 30]. We used the
Grünwald-Letnikov (GL) definition to derive the fractional
ordermodel of 2DOFSMA.TheGrünwald–Letnikovmethod
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Figure 3: Bifurcation plots of 2DOF SMA with (a) 𝜃2, (b) 𝜃1, and (c) 𝛿1 with initial conditions [0, 0, 0, 1].

is proceeding iteratively but the sum in the scheme becomes
longer and longer, which reflects the memory effect. The
binomial coefficients are recursively defined and show very
smooth properties. The Grünwald–Letnikov derivative is
used in many numerical schemes for discretizing fractional
diffusion equations from a continuous Riemann–Liouville
approach [31–33] and involves a discrete convolution between
a “weight” or binomial coefficient function and the function
of interest for differentiation. The analytical model of the
binomial coefficients is well established in the literature [33].

Most of the literatures have used the Caputo method
for numerical solutions of the fractional order systems. But
GL method has benefits over the other methods of solving
fractional orders due to the smoothness of the resultant
approximations [34]. Hence we use the GL method to derive
the fractional order 2DOF SMA. The GL derivative can be
defined as

𝑎𝐷𝑞𝑡𝑓 (𝑡) = lim
ℎ→0

{{{
1
ℎ𝑞
[(𝑡−𝑎)/ℎ]∑
𝑗=0

(−1)𝑗 (𝑞𝑗)𝑓 (𝑡 − 𝑗ℎ)}}}
= lim
ℎ→0

{ 1
ℎ𝛼Δ𝑞ℎ𝑓 (𝑡)} ,

(4)

where 𝑎 and 𝑡 are limits of the fractional order equation,Δ𝑞
ℎ
𝑓(𝑡) is generalized difference, ℎ is the step size, and 𝑞 is

the fractional order of the differential equation.

For numerical calculations the above equation is modi-
fied as

(𝑡−𝐿)𝐷𝑞𝑡𝑓 (𝑡) = lim
ℎ→0

{{{
ℎ−𝑞𝑁(𝑡)∑
𝑗=0

𝛽𝑗 (𝑓 (𝑡 − 𝑗ℎ))}}}
. (5)

We use the short memory principle to limit the required
memory for binomial coefficients using

𝑁 = min {[ 𝑡ℎ] , [
𝐿
ℎ]} . (6)

The binomial coefficients required for the numerical simula-
tion is calculated as

𝛽𝑗 = (1 − 𝑎 + 𝑞
𝑗 )𝛽𝑗−1. (7)

Let the general form of the 3D fractional order system be
defined as

𝐷𝑞𝑥 = 𝐴 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) ,
𝐷𝑞𝑦 = 𝐵 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) ,
𝐷𝑞𝑧 = 𝐶 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) ,
𝐷𝑞𝑤 = 𝐷 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) .

(8)
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In order to simulate system (8) using GL method we use the
discretization method discussed [34, 35],

𝑥 (𝑡𝑘) = 𝐴 (𝑥 (𝑡𝑘−1) , 𝑦 (𝑡𝑘−1) , 𝑧 (𝑡𝑘−1) , 𝑤 (𝑡𝑘−1)) ℎ𝑞𝑥
− 𝑁∑
𝑗=1

𝛽𝑞𝑥𝑗 𝑥 (𝑡𝑘−𝑗) ,
𝑦 (𝑡𝑘) = 𝐵 (𝑥 (𝑡𝑘−1) , 𝑦 (𝑡𝑘−1) , 𝑧 (𝑡𝑘−1) , 𝑤 (𝑡𝑘−1)) ℎ𝑞𝑦

− 𝑁∑
𝑗=1

𝛽𝑞𝑦𝑗 𝑦 (𝑡𝑘−𝑗) ,
𝑧 (𝑡𝑘) = 𝐶 (𝑥 (𝑡𝑘−1) , 𝑦 (𝑡𝑘−1) , 𝑧 (𝑡𝑘−1) , 𝑤 (𝑡𝑘−1)) ℎ𝑞𝑧

− 𝑁∑
𝑗=1

𝛽𝑞𝑧𝑗 𝑧 (𝑡𝑘−𝑗) ,
𝑤 (𝑡𝑘) = 𝐶 (𝑥 (𝑡𝑘−1) , 𝑦 (𝑡𝑘−1) , 𝑧 (𝑡𝑘−1) , 𝑤 (𝑡𝑘−1)) ℎ𝑞𝑤

− 𝑁∑
𝑗=1

𝛽𝑞𝑤𝑗 𝑤(𝑡𝑘−𝑗) ,

(9)

where 𝛽 is the binomial coefficients calculated using (11).The
value of𝑁 is taken as the truncation window size 𝐿 and as 𝑘
when all the available memory elements are used.

Let us define the FO2DOFSMA oscillator as

𝐷𝑞𝑥𝑥 = 𝑦,
𝐷𝑞𝑦𝑦 = [𝛿1 sin (𝜔1𝑡) − (𝜀1 + 𝜀2V21𝜇) 𝑦 + 𝜀2V21𝜇𝑧

− [(𝜃1 − 1) + V21
2𝜇 (𝜃2 − 1)] 𝑥 + V21

2𝜇 (𝜃2 − 1) 𝑧
+ 𝜙1𝑥3 − 𝜆1𝑥5 − 𝜙2V212𝜇 (𝑧 − 𝑥)3
+ 𝜆2V212𝜇 (𝑧 − 𝑥)5] ,

𝐷𝑞𝑧𝑧 = 𝑤,
𝐷𝑞𝑤𝑤 = [𝛼212𝛿2 sin (𝜔2𝑡) + 𝜀2V21𝑦

− (𝜀2𝛼21 + 𝜀3V21𝛼32) 𝑤 + V21
2 (𝜃2 − 1) 𝑥

− [V212 (𝜃2 − 1) + V21
2V32
2 (𝜃3 − 1)] 𝑧

+ 𝜙2V212 (𝑧 − 𝑥)3 − 𝜆2V212 (𝑧 − 𝑥)5 + 𝜙3V212V322𝑧3
− 𝜆3V212V322𝑧5] .

(10)

Using (9) in (10), the discrete form of the FO2DOFSMA is
given by

𝑥 (𝑡𝑘) = (𝑦 (𝑡𝑘−1)) ℎ𝑞𝑥 −
𝑁∑
𝑗=1

𝛽𝑞𝑥𝑗 𝑥 (𝑡𝑘−𝑗) ,

𝑦 (𝑡𝑘) = (𝛿1 sin (𝜔1𝑡) − (𝜀1 + 𝜀2V21𝜇) 𝑦 (𝑡𝑘−1)
+ 𝜀2V21𝜇𝑧 (𝑡𝑘−1)

− [(𝜃1 − 1) + V21
2𝜇 (𝜃2 − 1)] 𝑥 (𝑡𝑘−1)

+ V21
2𝜇 (𝜃2 − 1) 𝑧 (𝑡𝑘−1) + 𝜙1𝑥 (𝑡𝑘−1)3

− 𝜆1𝑥 (𝑡𝑘−1)5 − 𝜙2V212𝜇 (𝑧 (𝑡𝑘−1) − 𝑥 (𝑡𝑘−1))3
+ 𝜆2V212𝜇 (𝑧 (𝑡𝑘−1) − 𝑥 (𝑡𝑘−1))5) ℎ𝑞𝑦

− 𝑁∑
𝑗=1

𝛽𝑞𝑦𝑗 𝑦 (𝑡𝑘−𝑗) ,

𝑧 (𝑡𝑘) = (𝑤 (𝑡𝑘−1)) ℎ𝑞𝑧 −
𝑁∑
𝑗=1

𝛽𝑞𝑧𝑗 𝑧 (𝑡𝑘−𝑗) ,

𝑤 (𝑡𝑘) = (𝛼212𝛿2 sin (𝜔2𝑡) + 𝜀2V21𝑦 (𝑡𝑘−1)
− (𝜀2𝛼21 + 𝜀3V21𝛼32) 𝑤 (𝑡𝑘−1)
+ V21
2 (𝜃2 − 1) 𝑥 (𝑡𝑘−1)

− [V212 (𝜃2 − 1) + V21
2V32
2 (𝜃3 − 1)] 𝑧 (𝑡𝑘−1)

+ 𝜙2V212 (𝑧 (𝑡𝑘−1) − 𝑥 (𝑡𝑘−1))3
− 𝜆2V212 (𝑧 (𝑡𝑘−1) − 𝑥 (𝑡𝑘−1))5
+ 𝜙3V212V322𝑧 (𝑡𝑘−1)3 − 𝜆3V212V322𝑧 (𝑡𝑘−1)5) ℎ𝑞𝑤

− 𝑁∑
𝑗=1

𝛽𝑞𝑤𝑗 𝑤(𝑡𝑘−𝑗) .
(11)

The value of𝑁 is taken as the truncation window size 𝐿 and
as 𝑘 when all the available memory elements are used.

For the parameters values given by (2) and Table 2,
the FO2DOFSMA oscillator shows different behaviors as
like the integer order SMA. For initial conditions [0, 0, 0, 1],
commensurate order 𝑞 = 0.99, and step size ℎ = 0.001, the
different behaviors of the FO2DOFSMAare given in Figure 4.

We study the bifurcation of the FO2DOFSMA with
fractional order 𝑞 and parameter 𝜃2. The bifurcation of the
FO2DOFSMA oscillator with the fractional order 𝑞 is shown
in Figure 5(a). The initial conditions are taken as [0, 0, 0, 1]
and are reinitialized in end of each iteration to the final
values of the state variables.The FO2DOFSMA shows chaotic
oscillations for 𝑞 ≥ 0.968. Figure 5(b) shows the bifurcation
of the oscillator with 𝜃2 and shows chaotic oscillations for0.47 < 𝜃2 ≤ 0.8, 1.1 < 𝜃2 ≤ 1.6. Hyperchaotic
oscillations are seen for 0.8 < 𝜃2 ≤ 1.1, quasiperiodic
oscillations for 1.6 < 𝜃2 ≤ 2.2, and period 4 oscillations
for 2.2 < 𝜃2 ≤ 4. For Figure 5(b), we used initial conditions
without reinitialization. Figure 6 shows the bifurcation plots
of the oscillator with reinitialization of the initial conditions.
Figure 6(b) shows zoomed in portion of Figure 6(a) to shows
the period doubling route to chaos.
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Table 2: Types of fractional order 2DOF SMA behavior.

Parameters Type of SMA behavior Lyapunov exponents
𝜃1 = 1.5, 𝜃2 = 3.5, 𝜃3 = 1.5 Periodic −0.128; −0.140; −0.257; −0.275
𝜃1 = 1.5, 𝜃2 = 2, 𝜃3 = 1.5 Quasiperiodic 0; −0.209; −0.265; −1.272
𝜃1 = 1.5, 𝜃2 = 1.5, 𝜃3 = 1.5 Chaotic 0.378; 0; −0.438; −0.786
𝜃1 = 1.5, 𝜃2 = 1, 𝜃3 = 1.5 Hyperchaotic 0.453; 0.233; −0.651; −0.835
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Figure 4: 2D phase portraits of the FO2DOFSMA oscillator: (a) periodic; (b) quasiperiodic; (c) chaotic; (d) hyperchaotic.
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Figure 5: Bifurcation plots of 2DOFSMA oscillator with (a) commensurate fractional order 𝑞 and (b) parameter 𝜃2 with 𝑞 = 0.99 and𝜃1 = 𝜃2 = 1.5. The initial conditions for plot (a) are taken as [0, 0, 0, 1] and are reinitialized in end of each iteration to the final values of the
state variables and for plot (b) the initial value is fixed at [0, 0, 0, 1].
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Figure 6: (a) Bifurcation of the FO2DOFSMA oscillator with
parameter 𝜃2 with 𝑞 = 0.99 and 𝜃1 = 𝜃2 = 1.5. The initial
conditions for are taken as [0, 0, 0, 1] and are reinitialized in end of
each iteration to the final values of the state variables. (b) shows the
zoomed in view of (a) between 4 ≤ 𝜃2 ≤ 6.

4. Conclusion

A two-degree-of-freedom polynomial constitutive shape
memory alloy oscillator is investigated and it is shown that
periodic, quasiperiodic, chaotic, and hyperchaotic behaviors
are shown by the oscillator for various values of the excitation
parameters and temperatures. Bifurcation plots are derived
to show the existence of chaotic and periodic oscillations.
The Grünwald–Letnikov derivative is used to derive the

fractional order model of the oscillator and bifurcation plots
for fractional order and parameter are derived to study
the dynamical behavior of the oscillator. Compared to the
integer order model, the fractional order model shows more
complex chaotic behavior and the quasiperiodic region is
extended as chaotic regions and the oscillator shows more
extended regions of chaos with parameters. This proves that
the fractional ordermodel showsmore complex behavior and
hence designing controllers to suppress chaos in fractional
orders is quiet complicated.
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