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This paper considers the region-based formation control for a swarm of robots with unknown nonlinear dynamics and
disturbances. An adaptive neural network is designed to approximate the unknown nonlinear dynamics, and the desired
formation shape is achieved by designing appropriate potential functions. Moreover, the collision avoidance, velocity consensus,
and region tracking are all considered in the controller. The stability of the multirobot system has been demonstrated based on
the Lyapunov theorem. Finally, three numerical simulations show the effectiveness of the proposed formation control scheme to
deal with the narrow space, loss of robots, and formation merging problems.

1. Introduction

Formation control problem of a multiagent system has
long been the concern of many scholars, as it is one of the
important problems in the cooperative control and has broad
applications, such as in mobile robots, ships, submarines, and
flight vehicles [1-5]. There exist many formation control
strategies that are categorized as position-based, displace-
ment-based, and distance-based formation control schemes
according to the different requirements on the sensing capa-
bility and the interaction topology [6-10].

However, most of the existing works focus on the leader-
follower network and the graph theoretic method. In these
formation constructions, the geometric relationship between
robots is usually fixed with given position, angle, placement,
or distance [11-14]. With the increasing number of robots in
the formation, it is difficult to accurately locate each robot,
and the constraint relationship among the robots will
become more complicated. Therefore, it is challenging for
the existing formation control strategies to deal with the large
swarm of robots.

The region-based formation control is a complement to
the above formation control methods that can solve the
formation control problem for the large swarm of robots
[15, 16]. The swarm of robots are required to stay inside
the desired region or on the edge of the region. It focuses
more on the shape of the whole formation, rather than
on the inner sensing capability and interaction topology.
Unlike the traditional formation constructions, the geometric
relationship between robots in the region-based formation
control is not fixed and can change constantly during
the motion. Therefore, complicated formation shape can be
achieved by designing appropriate regional boundary condi-
tions, such as circular shape, ring shape, and crescent shape
[17]. Jung and Kim proposed a potential-function-based
shape formation control law, where a diamond-shaped for-
mation and a heart-shaped formation are achieved [18].
There is no special leader or follower in these region-based
formations where the rolls and identities of the robots are
the same. Haghighi and Cheah achieved a plane-shape for-
mation, but a leading group and some follower groups were
introduced in the formation control scheme with a global
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leader in the leading group and a local leader in each follower
group [19]. Hou and Cheah achieved a car-shape formation
and an airplane-shape formation for the swarm of robots
based on various basic shapes [20].

The region-based formation control also has the advan-
tage to deal with the obstacle avoidance problems, especially
passing the narrow spaces. Hou et al. introduced a scaling
matrix to change the size of the desired region and a rotation
matrix to rotate the desired region for passing through a tun-
nel [21]. Because the shape of the formation is flexible and
variable, there is a chance to settle the problem of passing a
narrow space by changing the shape of the desired region
directly. In addition, it is complicated to solve the formation
reconstruction and formation merging problems by the tra-
ditional distance-based formation control schemes [22-24].
The region-based formation control scheme provides a new
way to deal with these problems.

In this paper, we focus on the region-based formation con-
trol for a swarm of robots with unknown nonlinear dynamics
and disturbances. The proposed controller is formulated into
three parts: region-based shape realization, collision avoid-
ance, and velocity synchronization. The potential function of
robot is designed based on the shape objective functions for
region-based shape realization, and the artificial potential field
(APF) between each pair of neighboring robots is defined for
collision avoidance. Moreover, the local motion synchroniza-
tion error and region tracking error are both controlled for
velocity consensus. Considering the excellent estimation abil-
ity of a neural network [25-27], we approximate the unknown
nonlinear dynamics of the robots by an adaptive neural net-
work. The stability of the multirobot system has been demon-
strated based on the Lyapunov theorem, and three numerical
simulations are performed. A narrow space is passed by the
swarm of robots with the shape of the formation changed,
without the need of a scaling matrix or a rotation matrix.
When some robots failed due to some accidents, the remain-
ing robots reconstruct the formation adaptively. In addition,
two moving formations are merged together successfully.

The outline of this paper is listed as follows. Background
is introduced in Section 2. The procedure of formation con-
troller design is presented in Section 3. Numerical simula-
tions are shown in Section 4, and a conclusion is in Section 5.

2. Background

It is assumed that each robot R; can measure the relative posi-
tions of its neighboring robots via an onboard sensor within
its detection range. The state of the robot will be represented
with respect to a global coordinate system 93 in this paper.
The position and the velocity of robot R; at time ¢ are denoted
by p;(t) = [Pix’Piy]T and v;(t) = [v,, Viy]T
dynamics of the robot R; can be modeled as

pi(t) =vi (1), M
()= £,(0) + () + wi (1), @)

where u; is the control input of robot R;. w; represents the
disturbances from the environment satisfying |w;| <w,,,

, respectively. The
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where w), is a positive constant. f is the unknown nonlinear
dynamics. i=1,...,N, and N is the total number of the
swarm of robots.

3. Formation Controller Design

3.1. Region-Based Shape Realization. A moving region is
defined for the swarm of robots to stay inside, which can be
formed as various shapes by designing appropriate objective
functions. The global shape objective function of robot R; is
defined as follows:

9P p,) =91 Py)s -+ s Gy (01 )] <0, (3)

where M is the total number of the objective functions
that the robots should satisfy. p, denotes the position of
the reference point in the desired region and satisfies the
following condition:

(4)

where v, is the velocity of the reference point. a, is the
acceleration of the reference point satisfying |a,| < a,,,
where a,, is a positive constant. It is assumed that the posi-
tion and the velocity of the reference point in the desired
region are known by the robots. It should be noted that
each of the shape objective functions g,, <0 when the robot
stays inside the desired region, otherwise, g,, > 0. Thus, the
potential function of robot R; based on the shape objective
functions can be presented by

Mk

G, =

1

3 [max (0, 9,(py p,))) (5)

1

3
I

In (5), the term max (0, g,,(p,» p,)) will be zero if g,
<0, which means that the corresponding potential function
is zero if the shape objective function is satisfied. Then, we
can get the gradients of the potential function for the robot
R; as follows:

ViGi = Z max(O, gm(pi’pr))(vigm(pi’Pr))' (6)

m=1

Then, the controller of robot R; for region-based shape
realization can be represented as

u; =-k,V,G; (7)
where k, is a positive constant.

Remark 1. Various shapes can be formed by designing
appropriate objective functions. For example, the objective
functions for a ring shape can be designed as
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g1(Psp,) =71 = |lp; = p,II* <0,

(8)
9, p,) = P =0, =73 <0,

where 1, and r, are the parameters of the ring shape sat-
isfying r, <r,.

3.2. Collision Avoidance. The detection range of robot R,
denoted as d is larger than the allowable minimum distance
between the robots and can be adjusted according to different
target formation adaptively. Then, the neighboring set of
robot R; is defined as #;={je[L,N]||p;-p,| <d}. It
should be noted that the neighboring set ./ is variable dur-
ing the moving of the robots. In order to achieve the shape
control without collisions, a potential function between each
pair of robots is defined as follows.

P ] E =/Vi3
Vi = Hpi_pJ" )
03 je '/Vp
where ¢ is a positive constant. ||| denotes the Euclidean

norm. The potential for the robot R; is defined as the sum
of all APF associated with every one of its neighbors.

V= Z Yij: (10)
je,

Then, we can get the gradients of the APF for the robot R,
as follows:

V¥ = z Vi (11)
jes;

Thus, the controller of robot R; for collision avoidance
can be represented as follows:

u=—k,V,¥, (12)

where k, is a positive constant.

3.3. Velocity Synchronization. The local motion synchroniza-
tion error of robot R; is defined as

e, = z (v,- - vj). (13)

jer;

The region tracking error of robot R; is defined as

Ciyr =Vi = Vpe (14)

Then, the controller of robot R; for velocity consensus
can be designed as follows:

ul =-k,(e;, + Pe;,,) = —k,e; (15)

1 wr vris?

where k, and f3 are positive constants. The error vector of the
swarm robots can be represented as follows:

e,= (L+fly)(v-10v,), (16)

sen” and v=1[v,,...,vy]". Iy denotes
an identity matrix of dimension N. 1=][1,...,1]" € RV,
and ® denotes the Kronecker product. Define a;; =1, if j €

N3 otherwise, a;; = 0. The Laplacian matrix L=D-A. D=
diag {d,, ..., dy}" with d, = Yjen @ and A = [aij]NXN.
Taking the time derivative of e, we have

where e, =[e,, ...

e,=(L+pIy)|[f+u+w-1®a,, (17)

where f = [fioos f) T = [ty oy uy) T w= w0y . wy] "
The unknown f,(t) can be approximated by a radial basis

function neural network (RBENN) as follows:

filt) =@l ¢(u;) +&» i=1,...,N, (18)
where ®] € R” represents a set of RBENN coefficients. y; =
[ei> €,,,] - € is the approximation error satisfying |e;| <&y,
where ¢, is a positive constant. ¢(y;) € R” is a valued func-
tion vector based on the Gaussian function ¢, (y;) chosen
as follows:

2
i~ 6
¢r(p;) = exp (_W> k=1,...,n, (19)

where g, € R? is a constant vector denoting the center of the
basis function. # is a constant denoting the width of the basis
function. Note that the basic function ¢, (y;) is bounded as
|6 (¢;)| < ¢)1» where @, is a positive constant.

3.4. Control Law. The final control law of robot R; is designed
as follows:

u;(t) = —k,e; - qA)iTﬁb(Vi) - kgviGi - kqvi\yi’ (20)

~T ~
where @, ¢(y;) is used to estimate f,(t). @; is a vector of
RBFNN weights with the adaptive updating law proposed as

(/Bi =Y [¢(”i)eis(di +p) - kFEI\)i > (21)

where y and kj are positive constants. Then, the error
dynamics in (17) become

= (L+ Bly) -0 () + e~ ke,

(22)
~k,VG -k, V¥ + w - 1®a,},

where e= e, .., ex]”, $() = [7 (1), .. ¢ ()] B =

diag {dA)lT, ,6;}, " = diag {@7, ..., 0L}, and =D -
O.¥Y=[¥,...,¥%]". G=[G,, ..., Gy]". The main result of
this paper is given by the following theorem.



Theorem 1. Consider a swarm of robots with dynamics in (1)
and (2). Select the control law in (20) and the adaptive law in
(21). Then, there exist positive constants k,, B, y, kg, k,, and

k> such that all the robots stay inside a moving region of spe-

cific shape, and the local motion synchronization errors con-
verge to a small neighborhood of the origin.

Proof. Then, we consider a Lyapunov function:

1 T
V=_ele + _tr{cDTr—lcb}, (23)
2 2

where I'=1I,, ® yI,,. I, denotes an identity matrix of dimen-
sion n. Taking the time derivative of V and substituting
(21) and (22) into it, we can get

V= (L+ Bly) [~ () + £~ ke,
~k,VG—k, VY +w-19a,]
+1r{ &1 1 (p(w)el (D + BIy) ~ ke ) |}
=el(L+ply)(e+w-1®a, - k,VG—k,V¥)
—elk,(L+ Bly)e, ~ el (L+ Bly)® $(u)
+tr{®" [g(u)el (D + Bly) - kP }
=e(L+ply)(e+w-1®a, -k ,VG -k V¥)
— ek (L+ Bly)e, + tr{® $(uel (D + BIy)
-0k ® ~ & g(u)el (L+Bly) |
=e(L+ply)(e+w-1®a, - k,VG-kVY¥)
—elk(Lr Bly)e,+ r{ @ ¢(uel A}~ kyir{ D .
(24)

Then, we can obtain

V< leIp(L+ Bly) @y + || D] jdarllell(A)
~kp(L+ BLy) e = ketr{ "D,

where p(-) and p(-) denote the maximum and minimum sin-
gular values of a matrix, respectively. ||-|| . denotes the Frobe-
nius norm. @,, =&, + wy, + a, VN + kySom + kgGun> with
Gom and Gy, representing the magnitude of the maximum
potential force of VG and V¥, respectively. Using Young’s
inequality, we obtain

oy kppag2 K
kptr{@' DL <-SE L+ SE 0l (26)
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Then, (25) can be represented as
V< le[p(L+ BLy)Op + || D . dpleslIP(A)
kpy~2 k
~kp(L+ Bl el - S B|f; + 5 o]
<~ [kp(L+ Bly) = P(L+ L)@y e, (27)
kpy~n2 1_
- 7F||CDHF+ Z,)(LJrﬁIN)(aM

= _ k
+ || @[ pPallecl[P(A) + 7F D% <—aV +C,
where

« =2 min {kvp(L+ BIy) —p(L+ BIy)Oy, _kF/Z})

p(r)

1_ ~ _ k
C= 1 P(L+ L)y + [ B]] e [5(4) + - [

(28)
The control parameters are designed to satisty
kyp(L+ Bly) =p(L+ Bly) Oy > 0. (29)
According to (27), we have
V() <V(0)e™ + ¢ (1-e) (30)
< " .

Thus, the errors e, and ) converge to compact sets Qes
and Qg, which are defined as

0, = {|eslﬁ\/2§}’
{002 x|

It can be seen from the above analysis that the errors e,
and @ are bounded. The system can achieve the stability
rather than the exponential stability, and the boundedness
can be adjusted by choosing proper control parameters. This
completes the proof.

4. Simulations

In this section, three simulations are presented to support our
theoretical analysis. Firstly, we will show that a formation in
circular shape is changed into elliptical shape during the
moving so as to pass a narrow space. The second simulation
will verify that the remaining robots can reconstruct the for-
mation when some robots fail or are lost due to some
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FIGURE 1: Change of the formation shape for passing the narrow space.

accidents. Finally, two moving formations will be merged
together by applying the proposed formation control law.
In the three simulations, 100 robots are considered with
the positions initialized randomly in an area of 40 m long
and 40 m wide and the velocities initialized randomly within
4m/s each direction. The basic control parameters are set as
k,=1.4, k,=1.3, =08, and k, =2. The parameters for
updating the RBFNN weights are y = 1 and kj = 0.5. The dis-
turbances are set as w;(t) = 7,[0.1 cos (5t) sin (6¢) + 0.2 sin
(91),0.1 cos (3t) sin (6t) +0.2(cos (8))*]", where 7, is a
random number between 0 and 1. The unknown nonlinear

dynamics are defined as f,(t) =[0.02v; +0.1v},0.01v,, +
T
0.03v;v3 ] .

4.1. Passing a Narrow Space. In this section, the desired for-
mation is a circular shape with the radius of 10m and the
velocity v, = [5,0] m/s. It is shown in Figure 1(b) that the
swarm of robots achieved the circular formation at t =10 s.

Then, the swarm of robots changed its formation into the
elliptical shape for passing a narrow space. The elliptical
shape is set with the long radius of 18 m and the short radius
of 5m. The elliptical formation in the narrow space is shown
in Figure 1(c) at t =20 s. After passing the narrow space, the
swarm of robots changed back to the circular formation as
illustrated in Figure 1(d) at t = 30 s. Further, the robots can
maintain the formation shape while moving.

4.2. Loss of Robots. In this section, the swarm of robots are
supposed to achieve the circular formation as the same as
that in Section 4.1. It is assumed that 2/3 of the robots failed
or are lost due to some accidents at t =20 s, as shown in
Figure 2(c). Then, the remaining 1/3 of the robots should
continue to complete the task of region-based formation. It
is shown in Figure 2(d) that the remaining robots reconstruct
the circular formation again by adjusting the detection range
of the robots adaptively.
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FIGURE 2: Formation reconstruction with the remaining robots.

4.3. Merging of Formations. The 80 robots are initialized ran-
domly and shown as red dots, while the other 20 robots are
initialized randomly and shown as blue dots in Figure 3(a).
The red robots achieved the desired circular formation with
the radius of 10m and the velocity v, =[5,-0.1] m/s. On
the other hand, the blue robots achieved the circular forma-
tion with the radius of 5m and the velocity v, = [5,0.13] m/
s, as shown in Figure 3(b). The two formations were getting
closer to each other, and they started to merge at about t =
21.7 s, as shown in Figure 3(c). Finally, the blue formation
and the red formation merged together into one formation
with the radius of 5v/5 m and the velocity v, =[5, 0] m/s. It
can be seen from Figure 3(d) that the density of the merged
formation is the same as that of the original formations.

5. Conclusion

In this paper, we investigate a decentralized region-based
formation control law for a swarm of robots. The unknown

nonlinear dynamics of the robots are approximated by
an adaptive neural network, and the desired formation shape
is achieved by designing appropriate potential functions.
The collision avoidance, velocity consensus, and region
tracking are all considered in the controller. With the pro-
posed formation control law, the formation can pass a
narrow space by changing the shape of the formation.
When some robots failed due to some accidents, the for-
mation can be reconstructed adaptively with the remaining
robots. In addition, the proposed region-based formation
control scheme is effective in dealing with the formation
merging problem.

In the future, we will design more flexible formation
structure and more intelligent controllers based on the learn-
ing control method [28, 29]. The adaptive observer and
parameter estimation may be applied in the shape control
[30, 31]. In addition, the limited maneuverability and the
sensor failure of the robot will be considered in our future
work [32-34].



Complexity 7
40 1 -
3047 .
2 N ._'- Yoo ™ L
204 0 ot
kg fo st Sl
10 A '.' .
[ AL S ; ; ; ; . . .
0 20 40 60 80 100 120 140 160 180
X-axis
() Initial positions
40
30 A
% 20
>
10
0 T T T T T T T T T
0 20 40 60 80 100 120 140 160 180
X-axis
(b) Two separate formations
40
30 A
% 20
S
10
0 T T T T T T T T T
0 20 40 60 80 100 120 140 160 180
X-axis
(c) The two formations are close to each other
40
30 A
% 20
S
10 4
0 T T T T T T T T T
0 20 40 60 80 100 120 140 160 180
X-axis

(d) Merge into one formation

FIGURE 3: Merging of the two formations.

Data Availability

The data used to support the findings of this study are
included within the article, such as the basic control param-
eters, the parameter for updating the RBFNN weights, and
the size and velocity of the desired region. Moreover, all data
used in this study are available from the corresponding
author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grant nos. 61473124, 61803111,
61876047, and 11832009).

References

(1]

(2]

(5]

L. Bayindir, “A review of swarm robotics tasks,” Neurocomput-
ing, vol. 172, pp. 292-321, 2016.

H. Rezaee and F. Abdollahi, “A decentralized cooperative
control scheme with obstacle avoidance for a team of mobile
robots,” IEEE Transactions on Industrial Electronics, vol. 61,
no. 1, pp. 347-354, 2014.

Y.-Y. Chen and Y.-P. Tian, “Formation tracking and attitude
synchronization control of underactuated ships along closed
orbits,” International Journal of Robust and Nonlinear Control,
vol. 25, no. 16, pp. 3023-3044, 2015.

X.J. Lan, L. Liu, and Y. J. Wang, “Online trajectory planning
and guidance for reusable launch vehicles in the terminal
area,” Acta Astronautica, vol. 118, pp. 237-245, 2016.

X. J. Lan, Y. J. Wang, and L. Liu, “Dynamic decoupling
tracking control for the polytopic LPV model of hypersonic
vehicle,” Science China Information Sciences, vol. 58, no. 9,
pp. 1-14, 2015.



(6]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

[22]

M. Deghat, B. D. O. Anderson, and Z. Lin, “Combined flocking
and distance-based shape control of multi-agent formations,”
IEEE Transactions on Automatic Control, vol. 61, no. 7,
pp. 1824-1837, 2016.

H. Huang, C. Yu, and Q. Wu, “Autonomous scale control of
multiagent formations with only shape constraints,” Interna-
tional Journal of Robust and Nonlinear Control, vol. 23,
no. 7, pp. 765-791, 2013.

S. Li, J. Zhang, X. Li, F. Wang, X. Luo, and X. Guan, “Forma-
tion control of heterogeneous discrete-time nonlinear multi-
agent systems with uncertainties,” IEEE Transactions on
Industrial Electronics, vol. 64, no. 6, pp. 4730-4740, 2017.

M. Aranda, G. Lopez-Nicolas, C. Sagues, and M. M. Zavlanos,
“Distributed formation stabilization using relative position
measurements in local coordinates,” IEEE Transactions on
Automatic Control, vol. 61, no. 12, pp. 3925-3935, 2016.

Q. Liu, Z. Wang, X. He, and D. Zhou, “Event-based distributed
filtering over Markovian switching topologies,” IEEE Transac-
tions on Automatic Control, 2018.

X. Dong, J. Xi, G. Lu, and Y. Zhong, “Formation control for
high-order linear time-invariant multiagent systems with time
delays,” IEEE Transactions on Control of Network Systems,
vol. 1, no. 3, pp. 232-240, 2014.

M. C. Park, K. Jeong, and H. S. Ahn, “Formation stabilization
and resizing based on the control of inter-agent distances,”
International Journal of Robust and Nonlinear Control,
vol. 25, no. 14, pp. 2532-2546, 2015.

K. K. Oh and H. S. Ahn, “Leader-follower type distance-based
formation control of a group of autonomous agents,” Interna-
tional Journal of Control, Automation and Systems, vol. 15,
no. 4, pp. 1738-1745, 2017.

M. Aranda, G. Lépez-Nicolas, C. Sagiiés, and M. M. Zavlanos,
“Coordinate-free formation stabilization based on relative
position measurements,” Automatica, vol. 57, pp. 11-20, 2015.
H. Oh, A. Ramezan Shirazi, C. Sun, and Y. Jin, “Bio-inspired
self-organising multi-robot pattern formation: a review,”
Robotics and Autonomous Systems, vol. 91, pp. 83-100, 2017.

S. Sam Ge, J. Zhang, X. Cao, and X. Sun, “Region tracking con-
trol for high-order multi-agent systems in restricted space,”
IET Control Theory & Applications, vol. 10, no. 4, pp. 396—
406, 2016.

C. C. Cheah, S. P. Hou, and J. J. E. Slotine, “Region-based
shape control for a swarm of robots,” Automatica, vol. 45,
no. 10, pp. 2406-2411, 2009.

H. Jung and D. H. Kim, “Potential-function-based shape
formation in swarm simulation,” International Journal of Con-
trol, Automation and Systems, vol. 12, no. 2, pp. 442-449, 2014.
R. Haghighi and C. C. Cheah, “Multi-group coordination
control for robot swarms,” Automatica, vol. 48, no. 10,
Pp. 2526-2534, 2012.

S. P. Hou and C. C. Cheah, “Dynamic compound shape con-
trol of robot swarm,” IET Control Theory & Applications,
vol. 6, no. 3, pp. 454-460, 2012.

S. P. Hou, C. C. Cheah, and J. J. E. Slotine, “Dynamic region
following formation control for a swarm of robots,” in 2009
IEEE International Conference on Robotics and Automation,
pp- 1528-1533, Kobe, Japan, 2009.

J. M. Hendrickx, C. Yu, B. Fidan, and B. D. O. Anderson,
“Rigidity and persistence for ensuring shape maintenance of
multi-agent meta-formations,” Asian Journal of Control,
vol. 10, no. 2, pp. 131-143, 2008.

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

Complexity

C. Yu, B. Fidan, and B. D. O. Anderson, “Principles to control
autonomous formation merging,” in 2006 American Control
Conference, p. 7, Minneapolis, MN, USA, 2006, IEEE.

T. Han, Z. Lin, and M. Fu, “Three-dimensional formation
merging control under directed and switching topologies,”
Automatica, vol. 58, pp. 99-105, 2015.

Z. Zhao, X. Wang, C. Zhang, Z. Liu, and J. Yang, “Neural
network based boundary control of a vibrating string system
with input deadzone,” Neurocomputing, vol. 275, pp. 1021-
1027, 2018.

Z. Zhao, J. Shi, X. Lan, X. Wang, and J. Yang, “Adaptive
neural network control of a flexible string system with non-
symmetric dead-zone and output constraint,” Neurocomput-
ing, vol. 283, pp. 1-8, 2018.

C. Yang, X. Wang, Z. Li, Y. Li, and C. Y. Su, “Teleoperation
control based on combination of wave variable and neural net-
works,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 47, no. 8, pp. 2125-2136, 2017.

B. Xu and F. Sun, “Composite intelligent learning control of
strict-feedback systems with disturbance,” IEEE Transactions
on Cybernetics, vol. 48, no. 2, pp. 730-741, 2018.

S. L. Dai, M. Wang, and C. Wang, “Neural learning control
of marine surface vessels with guaranteed transient tracking
performance,” IEEE Transactions on Industrial Electronics,
vol. 63, no. 3, pp. 1717-1727, 2016.

C. Yang, Y. Jiang, W. He, J. Na, Z. Li, and B. Xu, “Adaptive
parameter estimation and control design for robot manipula-
tors with finite-time convergence,” IEEE Transactions on
Industrial Electronics, vol. 65, no. 10, pp. 8112-8123, 2018.

C. Yang, K. Huang, H. Cheng, Y. Li, and C. Y. Su, “Haptic
identification by ELM-controlled uncertain manipulator,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 47, no. 8, pp- 2398-2409, 2017.

Q. Liu, Z. Wang, X. He, and D. H. Zhou, “Event-triggered
resilient filtering with measurement quantization and random
sensor failures: monotonicity and convergence,” Automatica,
vol. 94, pp. 458-464, 2018.

J. Huang, Y. Wang, and T. Fukuda, “Set-membership-based
fault detection and isolation for robotic assembly of electrical
connectors,” IEEE Transactions on Automation Science and
Engineering, vol. 15, no. 1, pp. 160-171, 2018.

Q. Liu, Z. Wang, X. He, and D. H. Zhou, “On Kalman-
consensus filtering with random link failures over sensor net-
works,” IEEE Transactions on Automatic Control, vol. 63,
no. 8, pp. 2701-2708, 2018.



Advances in Advances in . Journal of The Scientific Journal of
Operations Research Decision Sciences  Applied Mathematics World Journal Probability and Statistics

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Journal of

Optimization

Hindawi

Submit your manuscripts at
www.hindawi.com

International Journal of
Engineering
Mathematics

International Journal of

Analysis

Journal of : Advances in ] Mathematical Problems International Journal of Discrete Dynamics in
Complex Analysis Numerical Analysis in Engineering Differential Equations Nature and Society

International Journa!

of
Stochastic Analysis Mathematics Function Spaces Applied Analysis Mathematical Physics

Journal of Journal of Abstract and ; Advances in



https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

