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Hammerstein systems are formed by a static nonlinear block followed by a dynamic linear block. To solve the parameterizing
difficulty caused by parameter coupling between the nonlinear part and the linear part in a Hammerstein system, an
instrumental variable method is studied to parameterize the Hammerstein system. To achieve in simultaneously identifying
parameters and orders of the Hammerstein system and to promote the computational efficiency of the identification algorithm,
a sparsity-seeking orthogonal matching pursuit (OMP) optimization method of compressive sensing is extended to identify
parameters and orders of the Hammerstein system. The idea is, by the filtering technique and the instrumental variable method,
to transform the Hammerstein system into a simple form with a separated nonlinear expression and to parameterize the system
into an autoregressive model, then to perform an instrumental variable-based orthogonal matching pursuit (IV-OMP)
identification method for the Hammerstein system. Simulation results illustrate that the investigated method is effective and has
advantages of simplicity and efficiency.

1. Introduction

Nonlinear system modeling and identification are very
important in theory and application [1–6]; block-oriented
nonlinear systems, which combine nonlinear and linear
blocks in various styles, are the typical representation of
nonlinear systems. Hammerstein systems, a static nonlinear
block plus a dynamic linear block, are a type of commonly
used block-oriented nonlinear systems, and a lot of work
has contributed in identification methods for Hammerstein
systems. The traditional identification methods for Ham-
merstein systems mainly include the overparameterization
model-based methods [7–10] and the recursive/iterative
identification methods [11–14]. The highly efficient identi-
fication methods include the key-term separation principle-
based identification methods [15–17], the hierarchical
identification methods [18, 19], the filtering technique
based-identification methods [20–22], the maximum likeli-
hood estimation methods [23–25], and the evolution optimi-
zation methods [26–28]. Recently, Chen et al. investigated a

particle swarm optimization method [29], Krishnanathan
et al. discussed a continuous-time nonlinear systems using
approximate Bayesian computation [30], and Wang et al.
studied a model recovery for Hammerstein systems using
the auxiliary model-based orthogonal matching pursuit
method [31] and so on.

It is difficult to parameterize Hammerstein systems due
to existing parameter coupling between the nonlinear part
and the linear part of Hammerstein systems. In order to solve
this problem, an instrumental variable-based method is stud-
ied to parameterize the Hammerstein systems. Further, to
achieve in simultaneously identifying parameters and orders
and to promote the computational efficiency of the esti-
mated method, a sparsity-seeking orthogonal matching pur-
suit optimization method of compressive sensing is extended
to identify parameters and orders of the Hammerstein
systems. The idea is, by the filtering technique and the
instrumental variable method, to transform the Hammer-
stein system into a simple form with a separated nonlinear
expression, so as to easily parameterize the system into
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autoregressive form, and to perform the instrumental
variable-based orthogonal matching pursuit (IV-OMP)
identification method for the Hammerstein systems.

In the compressive sensing theory [32–34], there mainly
exist two sparse signal recovery methods: the orthogonal
matching pursuit algorithms and the basis pursuit algo-
rithms. The orthogonal matching pursuit (OMP) algorithm
is a kind of greedy parameter recovering method [35–37], it
selects the best fitting column of the measurement matrix
and the corresponding sparse signal in each selected step.
Due to the selection being orthogonal, the OMP algorithm
has a lower computational complexity compared with the
basis pursuit algorithms [38–40].

Recently, Mao et al. investigated parameter estimation
algorithms for Hammerstein time-delay systems based on
the OMP scheme to estimate the system parameters and
the time delay [41] by means of the compressed sensing
recovery theory and the auxiliary model identification idea.
In this paper, an instrumental variable-based orthogonal
matching pursuit (IV-OMP) algorithm is investigated to
simultaneously estimate the orders and parameters of a
Hammerstein system. The contributions lie in four aspects:

(i) To solve the parameterizing difficulty caused by the
coupling between the nonlinear part and the linear
part in Hammerstein systems, a filtering technique-
based instrumental variable method is studied to
parameterize the Hammerstein systems.

(ii) To achieve in simultaneously identifying parame-
ters and orders and to promote the computational
efficiency of the system, an instrumental variable-
based orthogonal matching pursuit (IV-OMP) opti-
mization method of compressive sensing is extended
to identify parameters and orders of the systems.

(iii) The advantage of the proposed IV-OMP method
over the traditional methods is that it is not nec-
essary to collect a lot of data and invest a lot of
power into the parameter identification based on
the sparse principle.

(iv) Simulation results illustrate that the investigated
method is effective and has advantages of simplicity
and efficiency.

The rest of the paper is organized as follows. Section 2
demonstrates the identification problem of a Hammerstein
system. Section 3 studies the parameterizing method of the
Hammerstein system. Section 4 presents the IV-OMP
identification algorithm by using the instrumental variables.
Section 5 provides a numerical example for the proposed
method. Finally, the concluding remarks are involved in
Section 6.

2. The Problem Formulation

For the narrative convenience, we define some notation. “M
≕N” represents “M is defined as N”; z represents a unit for-
ward shift operator: zy t = y t + 1 and z−1y t = y t − 1 ;

x̂ t stand for the estimate of x at time t. The input nonlinear
and output linear functions of a Hammerstein CARMA sys-
tem in Figure 1 are expressed as

x t = f u t = 〠
nc

k=1
ck f k u t , 1

A z y t = B z x t +D z v t , 2

where u t and y t are the system input and output, x t is
an internal variable, and v t is stochastic white noise with
zero mean; the input nonlinearity f is modeled as a linear
combination of basis functions f k; nc is the number of the
basis functions; the linear block is a CARMA model; A z ,
B z , and D z are polynomials in the unit backward shift
operator z−1 z−1y t = y t − 1 and defined by

A z ≔ 1 + a1z
−1 + a2z

−2 +⋯ + anaz
−na ,

B z ≔ 1 + b1z
−1 + b2z

−2 +⋯ + bnbz
−nb ,

D z ≔ 1 + d1z
−1 + d2z

−2 +⋯ + dndz
−nd

3

If the order na is known and the orders nb, nc, and nd are
unknown, then we face two parameterizing problems for the
Hammerstein system:

(i) The coupling between the nonlinear part and the lin-
ear part in a Hammerstein system makes the param-
etrization of the Hammerstein system more difficult.

(ii) Simultaneous and efficient identification of system
parameters and orders is difficult to be achieved,
due to existing unknown orders.

3. The Parametrization of The Hammerstein
CARMA System

Divide both sides of (2) by the filtering function B z , we get

A z
B z

y t = x t +
D z
B z

v t 4

Define the instrumental variables z t and w t as

z t ≔
A z
B z

y t , 5

w t ≔
D z
B z

v t 6

Then, (4) can be written as

u(t) x(t)

D(z)

A(z)

y(t)

v(t)

B(z)

A(z)
f(u) +

Figure 1: A system described by the Hammerstein CARMAmodel.

2 Complexity



z t = x t +w t 7

Replacing the expressions of A z and B z and B z and
D z into (5) and (6), respectively, we can get

z t = −〠
nb

i=1
biz t − i + y t + 〠

na

i=1
aiy t − i , 8

w t = −〠
nb

i=1
biw t − i + v t + 〠

nd

i=1
div t − i 9

Substituting z t and w t in (8) and (9) and x t in (1)
into (7) gives

y t = −〠
na

i=1
aiy t − i + 〠

nc

i=1
ci f i u t

+ 〠
nb

i=1
bi z t − i −w t − i

+ 〠
nd

i=1
div t − i + v t

10

Since the orders nb, nc, and nd are unknown, we assume a
sufficient length of order L for nb, nc, and nd (L > nb, L > nc,
L > nd). Then, (10) can be rewritten as

y t = −〠
na

i=1
aiy t − i + 〠

L

i=1
ci f i u t

+ 〠
L

i=1
bi z t − i −w t − i

+ 〠
L

i=1
div t − i + v t

11

Define the information vectors φ t , φu t , and φv t as

φ t ≔
φu t

φv t
∈ℝN , N ≔ 3L + na,

φu t ≔ −y t − 1 , −y t − 2 ,… , − y t − na ,

f 1 u t , f 2 u t ,… , f L u t T ∈ℝL+na ,

φv t ≔ z t − 1 −w t − 1 , z t − 2 −w t − 2 ,… ,

z t − L −w t − L , v t − 1 , v t − 2 ,… ,

v t − L T ∈ℝ2L

12

and the parameter vectors Θ, θu and θv , as

Θ≔
θu
θv

∈ℝN ,

θu ≔ a1, a2,… , ana , c1, c2,… , cnc , 0, 0,… , 0
L−nc

T

∈ℝL+na ,

θv ≔ b1, b2,… , bnb , 0, 0,… , 0
L−nb

, d1, d2,… , dnd , 0, 0,… , 0
L−nd

T

∈ℝ2L

13

Then, (11) can be written as

y t = φT
u t θu + φT

v t θv + v t = φT t Θ + v t 14

Sampling m sets of data t = 1, 2,… ,m and substituting
them into (14) get

y 1 = φT 1 Θ + v 1 ,

y 2 = φT 2 Θ + v 2 ,

… ,

y m = φT m Θ + v m

15

Define the accumulated information vectors and the
matrix,

Y≔

y 1

y 2

⋮

y m

∈ℝm,

V≔

v 1

v 2

⋮

v m

∈ℝm,

Φ≔

φT 1

φT 2

⋮

φT m

∈ℝm×N ,

16

then (15) can be described as

Y =ΦΘ +V 17

If there are enough measurements, that is, m reaches
several thousands, we can get the least squares estimate of
Θ, as follows:

ΘLS = ΦTΦ −1ΦTY 18

But with an assumed big order length L (≥5) and N , the
above least squares algorithm leads a big computational bur-
den and is not suitable for solving system parameters and
orders on line. To avoid this problem and get an efficient

3Complexity



identification algorithm, we choose a more advantageous
method over the traditional least squares method; the
aim is to identify the parameter vector Θ with less obser-
vations (K <m < n) by using the OMP theory based on the
mentioned instrumental variable method.

According to the CS theory, we can regard the parameter
vector Θ as a sparse signal. Let Θ 0 = K be the number of
the nonzero entries in Θ, that is, the sparsity level of Θ, then
the identification problem can be described as an orthogonal
matching pursuit (OMP) method:

Θ = arg min Θ 0,

s t   y − φT t Θ 2 < ε,
19

where Θ is the estimate of Θ and ε ε > 0 is the error
tolerance.

4. The IV-OMP Identification Algorithm

For the sparse parameter vectorΘ, if K = Θ 0 K <N , there
will be K nonzero scalar components in Θ. What we should
do in this identification method is to pick out and recover
valid data in Θ from Φ by using the OMP theory.

Define ϕi as the ith column vector ofΦ (a ϕi is also called
an atom), and θi as the ith element of Θ i = 1, 2,… ,N ,
that is,

Φ = ϕ1, ϕ2,… , ϕN ,

Θ = θ1, θ2,… , θN
T

20

Then, the vector Y in (17) can be written as

Y = 〠
N

i=1
ϕiθi +V 21

Obviously, the output vector Y contains a linear combi-
nation of all atoms ϕi i = 1, 2,… ,N . The main idea is to
find the K nonzero items and corresponding valid atoms at
the right-hand side of (21).

To describe the IV-OMP recovery algorithm, we need to
give some notations. Let k = 1, 2,… be the iterative number
and λk be the index of the solution support ϕλk in Φ at the
kth iteration; Λk is a set composed of λi, i = 1, 2,… , k; ΦΛk
is the submeasurement matrix composed by the k columns
of Φ indexed by Λk; rk denotes the residual at the kth itera-
tion; and Θk is the parameter estimation at the kth iteration.
The algorithm is initialized as r0 = Y,Λ0 =∅ and ΘΛ0

= 0.
Define a cost function at the kth iteration

J θi = rk−1 − ϕiθi 2, i = 1, 2,… ,N 22

Remark 1.Minimizing J θi with respect to θi means that the
derivation of J θi with respect to θi is equal to 0, that is,

∂J θi
∂θi

= −2ϕTi rk−1 − ϕiθi = 0, 23

and we get

θi =
ϕTi rk−1
ϕi

2 24

Substitute the above θi into (22) to get a minimized
J θi as

J θi min = ϕi
ϕTi rk−1
ϕi

2 − rk−1

2

=
ϕiϕ

T
i rk−1
ϕi

2 − rk−1

T
ϕiϕ

T
i rk−1
ϕi

2 − rk−1

=
rTk−1ϕiϕ

T
i

ϕi
2 − rTk−1

ϕiϕ
T
i rk−1
ϕi

2 − rk−1

=
rTk−1ϕiϕ

T
i ϕiϕ

T
i rk−1

ϕi
2 ϕi

2 −
rTk−1ϕiϕ

T
i rk−1

ϕi
2

−
rTk−1ϕiϕ

T
i rk−1

ϕi
2 + rTk−1rk−1

= rk−1
2 −

ϕTi rk−1
2

ϕi
2

25

Remark 2. The result J θi min = rk−1
2 − ϕTi rk−1

2/ ϕi
2

says that minimizing J θi is equivalent to the quest for
the largest inner product between the residual rk−1 and the
normalized column vector ϕi of Φ.

The next step is to find the index i and the column ϕi cor-
responding to the largest inner product between the residual
rk−1 and the normalized column vectors ϕi and assign them
into λk and ϕλk at the kth step:

λk = arg max
i=1,2,…,N

rk−1,
ϕi
ϕi

26

Remark 3. Minimizing the least squares cost function
J ΘΛk

= Y −ΦΛk
ΘΛk

2 is equal to taking the derivation of
J ΘΛk

with respect to ΘΛk
,

∂J ΘΛk

∂ΘΛk

=ΦT
Λk

Y −ΦΛk
ΘΛk

=ΦT
Λk
rk = 0 27

It means that the residual rk is orthogonal to the subinforma-
tion matrix ΦΛk

. Therefore, the index corresponding to the
largest inner product between the residual rk−1 and the nor-
malized column vector ϕi is computed by

λk = arg max
i∈S\Λk−1

rk−1,
ϕi
ϕi

, S = 1, 2,… ,N 28

Update the support setΛk and the subinformation matrix
ΦΛk

by

Λk = Λk−1, λk ,

ΦΛk
= ΦΛk−1

, ϕλk
29
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With the obtained index set Λk and the corresponding
subinformation matrix ΦΛk

, the least squares estimation for
the nonzero parameters at the kth iteration can be achieved.
Define a cost function:

J ΘΛk
= Y −ΦΛk

ΘΛk

2 30

Minimizing J ΘΛk
should get the least squares estimates

of the nonzero parameters. But there exist the unknown
instrumental variables z t − i and w t − i and the unmea-
surable noise term v t − i in the information vector φ t
of Φ; the parameter vector ΘΛk

cannot be estimated by using
the standard OMP methods in the CS theory. The method is
to use their estimates ẑ t − i , ŵ t − i , and v̂ t − i to replace
them; the computation of the estimates ẑ t − i , ŵ t − i , and
v̂ t − i is as follows:

(i) Expand the orders nb, nc, and nd in (1), (2), (8),
and (9).

(ii) ẑ t − i is computed by replacing ai and bi with their
estimates âi,k

andb̂i,k in (8).

(iii) v̂ t − i is computed by replacing ai, bi, ci, and di
with their estimates âi,k, b̂i,k, ĉi,k, and d̂i,k in (2) with
(1) being inserted.

(iv) ŵ t − i is computed by replacing bi and di with
their estimates b̂i,k and d̂i,k in (9). The results are

ẑk t = −〠
L

i=1
b̂i,kẑk t − i + 〠

na

i=1
âi,ky t − 1 + y t ,

v̂k t = 〠
na

i=o
âi,ky t − i − 〠

L

i=0
b̂i,k 〠

L

i=1
ĉi,k f k u t − i

− 〠
L

i=1
d̂i,kv̂ t − i , b̂i,0 = 1

ŵk t = −〠
L

i=1
b̂i,kŵk t − i + 〠

L

i=1
d̂i,kv̂ t − i + v t ,

31

and the estimates of φv t , φ t , and Φ at iteration k
can be written as

φv,k t ≔ ẑ t − 1 − ŵ t − 1 , ẑ t − 2 − ŵ t − 2 ,… ,

ẑ t − L − ŵ t − L , v̂ t − 1 , v̂ t − 2 ,… ,

v̂ t − L
T ∈ℝ2L,

φk t ≔
φu t

φv,k t
≕ −y t − 1 , −y t − 2 ,… ,

− y t − na , f1 u t , f2 u t ,… ,
f L u t , ẑk t − 1 − ŵk t − 1 , ẑk t − 2
− ŵk t − 2 ,… , ẑk t − L − ŵk t − L ,
v t − 1 , v t − 2 ,… , v t − L T ,

Φk ≔

φT
k 1

φT
k 2

⋮

φT
k m

≕ ϕ1,k, ϕ2,k,… , ϕN ,k

32
With replacing the above unknown variables with their

estimates, the least squares estimate ΘΛk
for the parameter

vector ΘΛk
at the k step is given:

ΘΛk
= ΦT

Λk
ΦΛk

−1
ΦT

Λk
Y 33

Remark 4. At the beginning, the IV-OMP algorithm with the
estimates ẑ t − 1 , ŵ t − i , and v̂ t − i in the subinforma-
tion matrix ΦΛk

causes an inaccurate support atom selecting.
With the iteration k increasing, these estimated variables
become more accurate, the misselected support atoms
certainly unmeet the threshold requirement, and the cor-
responding element in the estimated parameter support set
will be a small nonzero value. Thus, we set an appropriate
small threshold ε to filter the parameter estimate ΘΛk

. If

θh,k < ε (where θh,k is the hth element of ΘΛK
), eliminate

θh,k from ΘΛK
and the corresponding ϕh,k from ΦΛk

,

ΘΛkε
=

ΘΛkε

θh,k
∉ΘΛkε

,

ΦΛkε
=

ΦΛk

ϕh,k
∉ΦΛk

34

Because θh,k is the hth element in ΘΛk
and ϕh,k is the hth

column in ΦΛk
, the expressions of eliminating θh,k from

ΘΛk
and ϕh,k from ΦΛk

in MATLAB are

ΘΛkε
ΘΛk

h = ,

ΦΛkε
ΦΛk

h =
35

Then we have

rk = Y −ΦΛkε
ΘΛkε

36

Briefly, the proposed IV-OMP algorithm can be imple-
mented as in Algorithm 1.

5Complexity



5. Examples

Consider the following Hammerstein CARMA system

A z y t = B z x t +D z v t ,

x t = −1 70u t + 0 80u2 t ,

A z = 1 + 1 20z−1 + 0 60z−2,

B z = 1 + 0 12z−1 − 0 06z−2,

D z = 1 + 0 11z−1 − 0 10z−2,

Θ = 1 20, 0 60
na=2

, −1 70, 0 80, 0, 0, 0
L=5

, 0 12, −0 06, 0, 0, 0
L

, 0 11, −0 10, 0, 0, 0
L

T

37

IV-OMP for CS Recovery
Measurement matrix: Φ = ϕ1, ϕ2,… , ϕN ,.
output vector: Y , sparsity level: K,
parameter vector Θ = θ1, θ2,… , θN

T

Initialization: k = 0, r0 = Y ,Λ0 =∅,ΘΛ0
= 0,Θk = 0 repeat

k = k + 1 ;
Form φk t by Equation (32);

Φk =

φT
k 1

φT
k 2

⋮

φT
k m

= ϕ1,k, ϕ2,k,… , ϕN ,k ;

λk = index of the highest amplitude component of ϕ
T
i,krk−1 ;

Λk = Λk−1, λk ;

ΘΛk
= ΦT

Λk
ΦΛk

−1
ΦT

Λk
Y ;

If θh,k < ε, let ΘΛk
h = to get ΘΛkε

,.
and let ΦΛk

h = to get ΦΛkε
;

rk = Y −ΦΛkε
ΘΛkε

;
let Θk Λkε =ΘΛkε

to get Θk ;
â:,k =Θk 1 na , ĉ:,k =Θk na + 1 na + L ,
b̂:,k =Θk na + L + 1 na + 2L ,
d̂:,k =Θk na + 2L + 1 na + 3L ;

ẑk t = −〠
L

i=1
b̂i,kẑk t − i + 〠

na

i=1
âi,ky t − i + y t ,

v̂k t = 〠
na

i=0
âi,ky t − i − 〠

L

i=0
b̂i,k 〠

L

i=1
ĉi,k f k u t − i

−〠
L

i=1
d̂i,kv̂ t − i ,

ŵk t = −〠
L

i=1
b̂i,kŵk t − i + 〠

L

i=1
d̂i,kv̂ t − i + v t ;

until k= a fixed positive integer k > K , s,.t. rk < ε ; .
Estimated parameter vector: ΘΛkε

and Θk with ΘΛkε
= 0

Algorithm 1: (IV-OMP algorithm).
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In the simulation, the input u t is taken as an uncor-
related persistently excited signal vector sequence with zero
mean and unit variance, and v t is taken as a white noise
sequence with zero mean and variance σ2 = 0 102. Applying
the proposed IV-OMP algorithm to estimate the parameters
and the orders of this system, the parameter estimates and
their errors are shown in Table 1 and Figures 2 and 3. The
relative error of the parameters is

δ≔
Θk −Θ

Θ × 100% 38

From Table 1 and Figures 2–3, we can get the following:

(1) The parameter estimation errors become (generally)
smaller and smaller with the iteration k increasing.

(2) There exist 3 wrongly selected atoms corresponding
to parameters ĉ4,k, ĉ5,k, and d̂3,k (black-colored lines
in Figure 3). With the iteration k increasing, the
wrongly chosen atoms are deleted, and the parameter
estimation errors become smaller.

6. Conclusions

This paper is aimed at exploring the identification of both the
parameters and orders of the Hammerstein CARMA system
with limited sampling data. To solve the parameterizing dif-
ficulty caused by parameter coupling between the nonlinear
part and the linear part in a Hammerstein system, firstly,
by filtering the equation of the linear block with the coeffi-
cient function of the controlled term, we separate the param-
eter coupling between the linear block and the nonlinear
block. Moreover, by using two instrumental variables, the
Hammerstein system is parameterized into an autoregres-
sive form. To achieve in simultaneously identifying param-
eters and orders and to promote the computational efficiency
of the identification algorithm, an instrumental variable-
based orthogonal matching pursuit (IV-OMP) optimiza-
tion method of compressive sensing is extended to identify
parameters and orders of the Hammerstein system. Simula-
tion results illustrate that the investigated method is effective
and has advantages of simplicity and efficiency. The pro-
posed IV-OMP optimization method can be extended to
the colored noise systems, the networked dynamic systems
[42–46], and so on.
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