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This paper focuses on the finite-time synchronization analysis for complex-valued recurrent neural networks with time delays.
First, two kinds of common activation functions appearing in the existing references are combined together and more general
assumptions are given. To achieve our aim, a nonlinear delayed controller with two independent parameters different from the
existing ones is provided, which leads to great difficulty. To overcome it, a newly developed inequality is used. Then, via Lyapunov
function approach, some criteria are derived to guarantee the finite-time synchronization of the considered system, and the settling
time for synchronization is also estimated. Finally, two numerical simulations are given to support the effectiveness and advantages
of the obtained results.

1. Introduction

In recent years, neural networks have been always very
important to researchers in various fields, to name a few,
control theory and signal processing in electrical engineering,
parallel computation and pattern recognition in computer
science, and modeling optimization problems in applied
mathematics. Moreover, as everyone knows, most applica-
tions rely heavily on the dynamical behavior of recurrent
neural networks. This sets off a research upsurge for the
dynamics of neural networks. As a result, many researchers
have put their efforts into the analysis and synthesis problems
for the dynamics of neural networks for several decades; see
[1–8] and the references therein.

In most results considering the stability and the stabiliza-
tion of neural networks, the convergent mode is asymptoti-
cally stable and the time for system trajectories to reach an
equilibrium point is infinite. However, in practical problems,
the convergent time is often required to be faster or even
finite. Thus, so as to satisfy this requirement, the topic about
finite-time stability appeared. Recently, finite-time stability
and synthesis problems for various systems have been hot
issues and attracted many scholars’ interests [9–29]. Among

them, finite-time stability, stabilization, synchronization and
robust passive control for time-delay systems, stochastic
systems, chaotic systems, multiagent systems, and nonlinear
systems were studied in [10–20]. For various neural networks
models, finite-time stabilization, instabilizability, adaptive
control, 𝐻∞ control, and state estimation were discussed in
[22–26] and finite-time synchronization control problems
were addressed in [27–29].

On the other hand, a complex-valued recurrent neural
networks model has produced a research upsurge for the
past few years. The main feature is that it owns complex-
valued states, connection weights, and activation functions.
This decides that this kind of system can be applied to a wider
range involving electromagnetic waves, radar imaging, quan-
tum waves, and so on, but it also leads to more difficulties in
analyzing its dynamical behaviors in contrast to real-valued
systems. In a word, anyway, the occurrence of complex-
valued neural networks draws a great deal of attention from
all aspects. Accordingly, many fruitful achievements have
been reported for thismodel [30–52]. For example, global sta-
bility, global exponential stability, andHopf bifurcation prob-
lems for complex-valued neural networks systemswith delays
or without delays were investigated in [32–40]. Dissipativity,
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passivity, state estimation, exponential stability, and input-
to-state stability for memristor-based complex-valued neural
networks with or without delays were discussed and relative
criteria were established in [43–48]. However, for finite-time
stability analysis of delayed complex-valued neural networks
models, until now, few results have been developed. The
boundedness problem of these systems in finite-time interval
is considered in [49, 50]. The finite-time synchronization
problem for complex-valued neural networks (CVNNs) with
infinite-time distributed delays is discussed in [51] and the
finite-time stabilizability and instabilizability for complex-
valued memristive neural networks with time delays are
studied in [52]. Moreover, considering the rich background
of complex-valued neural networks models and the present
status of development for them, it is absolutely essential to
explore the dynamics of these models deeply. Thus, these
further inspire us to make deeper research.

In this article, in view of the unavoidability of time
delays [53–55], the finite-time synchronization problem for
complex-valued recurrent neural networks with time delays
is presented.Themain contributions of our work are embod-
ied in several points: (1) A nonlinear delayed controller
with independent parameters 𝜇1 and 𝜇2 different from the
most existing results is designed to achieve the finite-time
synchronization of the considered system. (2) Todeal with the
difficulty involved by the contribution (1), a new inequality
stated in Lemma 6 proposed and proved by us in [52] is used.
(3) For real-imaginary separate-type activation functions,
two kinds of common functions in the existing references
are combined together and more general conditions are
assumed in this paper. So the proposed results have broader
applications.

The rest of this article is organized as follows. Section 2
provides some preliminaries. Section 3 presents main criteria
about the finite-time synchronization for delayed complex-
valued recurrent neural networks and estimates the settling
time by a new controller. Section 4 gives two numerical sim-
ulations to show the validity of theoretical results. Section 5
concludes this paper.

Notation. Throughout this paper, 𝑖 = √−1 denotes the
imaginary unit. For a vector 𝜉 = [𝜉1, 𝜉2, . . . , 𝜉𝑛]𝑇 ∈ 𝑅𝑛, 𝜉 is
named a positive vector if 𝜉𝑙 > 0, 𝑙 = 1, 2, . . . , 𝑛.
2. Preliminaries

Consider a complex-valued recurrent neural networks model
as the drive system represented by

�̇�𝑝 (𝑡) = −𝑑𝑝𝑧𝑝 (𝑡) + 𝑛∑
𝑞=1

𝑎𝑝𝑞ℎ𝑞 (𝑧𝑞 (𝑡))

+ 𝑛∑
𝑞=1

𝑏𝑝𝑞𝑚𝑞 (𝑧𝑞 (𝑡 − 𝜏𝑞)) + 𝐽𝑝 (𝑡)
(1)

with the initial conditions

𝑧𝑝 (𝜃) = 𝜓𝑝 (𝜃) , 𝜃 ∈ [−𝜏, 0] , (2)

where 𝑝 = 1, 2, . . . , 𝑛, 𝑛 denotes the number of neurons; 𝑧𝑝(𝑡)
is the state variable; 𝑑𝑝 > 0 is a constant; 𝑎𝑝𝑞 and 𝑏𝑝𝑞 are
complex-valued connectionweights; 𝐽𝑝(𝑡) represents external
input vector; 𝜏𝑞 is the time delay; 𝜏 = max{𝜏1, 𝜏2, . . . , 𝜏𝑛};𝜓𝑝(𝜃) ∈ 𝐶([−𝜏, 0],C); ℎ𝑞(𝑧𝑞(𝑡)) and 𝑚𝑞(𝑧𝑞(𝑡 − 𝜏𝑞)) are
complex-valued activation functions.

Let ℎ𝑞(𝑧𝑞(𝑡)) = ℎ𝑅𝑞 (𝑥𝑞(𝑡), 𝑦𝑞(𝑡)) + 𝑖ℎ𝐼𝑞(𝑥𝑞(𝑡), 𝑦𝑞(𝑡)) and𝑚𝑞(𝑧𝑞(𝑡 − 𝜏𝑞)) = 𝑚𝑅𝑞 (𝑥𝑞(𝑡 − 𝜏𝑞), 𝑦𝑞(𝑡 − 𝜏𝑞)) + 𝑖𝑚𝐼𝑞(𝑥𝑞(𝑡 −𝜏𝑞), 𝑦𝑞(𝑡 − 𝜏𝑞)). For simplicity, set 𝑥𝑞 = 𝑥𝑞(𝑡), 𝑦𝑞 = 𝑦𝑞(𝑡),𝑥𝜏𝑞𝑞 = 𝑥𝑞(𝑡 − 𝜏𝑞), 𝑦𝜏𝑞𝑞 = 𝑦𝑞(𝑡 − 𝜏𝑞), 𝑥𝑞 = 𝑥𝑞(𝑡), 𝑦𝑞 = 𝑦𝑞(𝑡),𝑥𝜏𝑞𝑞 = 𝑥𝑞(𝑡 − 𝜏𝑞), and 𝑦𝜏𝑞𝑞 = 𝑦𝑞(𝑡 − 𝜏𝑞). The complex-valued
activation functions ℎ𝑞(𝑧𝑞(𝑡)) and𝑚𝑞(𝑧𝑞(𝑡 − 𝜏𝑞)) are assumed
to satisfy the following assumption.

Assumption 1. For any𝑥𝑞,𝑥𝑞,𝑦𝑞,𝑦𝑞 and𝑥𝜏𝑞𝑞 ,𝑥𝜏𝑞𝑞 ,𝑦𝜏𝑞𝑞 ,𝑦𝜏𝑞𝑞 , there
exist scalars 𝜅𝑅𝑅𝑞 , 𝜅𝑅𝐼𝑞 , 𝜅𝐼𝑅𝑞 , 𝜅𝐼𝐼𝑞 ≥ 0 and 𝜋𝑅𝑅𝑞 , 𝜋𝑅𝐼𝑞 , 𝜋𝐼𝑅𝑞 , 𝜋𝐼𝐼𝑞 ≥ 0
such that the following inequalities hold:ℎ𝑅𝑞 (𝑥𝑞, 𝑦𝑞) − ℎ𝑅𝑞 (𝑥𝑞, 𝑦𝑞)

≤ 𝜅𝑅𝑅𝑞 𝑥𝑞 − 𝑥𝑞 + 𝜅𝑅𝐼𝑞 𝑦𝑞 − 𝑦𝑞ℎ𝐼𝑞 (𝑥𝑞, 𝑦𝑞) − ℎ𝐼𝑞 (𝑥𝑞, 𝑦𝑞)
≤ 𝜅𝐼𝑅𝑞 𝑥𝑞 − 𝑥𝑞 + 𝜅𝐼𝐼𝑞 𝑦𝑞 − 𝑦𝑞𝑚𝑅𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ) − 𝑚𝑅𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 )
≤ 𝜋𝑅𝑅𝑞 𝑥𝜏𝑞𝑞 − 𝑥𝜏𝑞𝑞  + 𝜋𝑅𝐼𝑞 𝑦𝜏𝑞𝑞 − 𝑦𝜏𝑞𝑞 𝑚𝐼𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ) − 𝑚𝐼𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 )
≤ 𝜋𝐼𝑅𝑞 𝑥𝜏𝑞𝑞 − 𝑥𝜏𝑞𝑞  + 𝜋𝐼𝐼𝑞 𝑦𝜏𝑞𝑞 − 𝑦𝜏𝑞𝑞  .

(3)

Remark 2. For the dynamic analysis of complex-valued
recurrent neural networks models, the most results are based
on the existence, continuity, and boundedness of the partial
derivatives for real and imaginary parts [32, 33, 46, 49].
Then, by the mean value theorem, it can be proved that
they satisfy the inequalities similar to those in Assumption 1.
In fact, only the inequalities can be used in the process of
obtaining the main results. Thus, the existence, continuity,
and boundedness of the partial derivatives are unnecessary
and they also lead to limitations in choosing complex-valued
activation functions. Here, we remove these constraints and
provide a more suitable assumption, Assumption 1, made
on the activation functions, so that the current work can be
applied to solve more engineering problems. This advantage
can be seen from example 2.

Remark 3. It should be noticed that such an assumption is
made on the activation functions in the literature [44, 45];
i.e., ℎ𝑞(𝑧) = ℎ𝑅𝑞 (𝑅𝑒(𝑧)) + 𝑖ℎ𝐼𝑞(𝐼𝑚(𝑧)), 𝑚𝑞(𝑧) = 𝑚𝑅𝑞 (𝑅𝑒(𝑧)) +𝑖𝑚𝐼𝑞(𝐼𝑚(𝑧)) for the complex number 𝑧 and the following
inequalities hold:

𝜉𝑅−𝑞 ≤ ℎ𝑅𝑞 (𝑥1) − ℎ𝑅𝑞 (𝑥2)𝑥1 − 𝑥2 ≤ 𝜉𝑅+𝑞 ,
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𝜉𝐼−𝑞 ≤ ℎ𝐼𝑞 (𝑦1) − ℎ𝐼𝑞 (𝑦2)𝑦1 − 𝑦2 ≤ 𝜉𝐼+𝑞
𝜁𝑅−𝑞 ≤ 𝑚𝑅𝑞 (𝑥1) − 𝑚𝑅𝑞 (𝑥2)𝑥1 − 𝑥2 ≤ 𝜁𝑅+𝑞 ,

𝜁𝐼−𝑞 ≤ 𝑚𝐼𝑞 (𝑦1) − 𝑚𝐼𝑞 (𝑦2)𝑦1 − 𝑦2 ≤ 𝜁𝐼+𝑞
(4)

for all 𝑞 = 1, 2, . . . , 𝑛, where 𝑧1 = 𝑥1 + 𝑦1 and 𝑧2 = 𝑥2 + 𝑦2.
Obviously, this assumption is a special case of Assumption 1.
Therefore, in this paper, we will not discuss this case in detail,
but a numerical example for this case will be provided to show
the effectiveness.

In this article, the corresponding response system is
defined by

̇̃𝑧𝑝 (𝑡) = −𝑑𝑝�̃�𝑝 (𝑡) + 𝑛∑
𝑞=1

𝑎𝑝𝑞ℎ𝑞 (�̃�𝑞 (𝑡))

+ 𝑛∑
𝑞=1

𝑏𝑝𝑞𝑚𝑞 (�̃�𝑞 (𝑡 − 𝜏𝑞)) + 𝐽𝑝 (𝑡) + 𝑢𝑝 (𝑡)
(5)

with the initial conditions

�̃�𝑝 (𝜃) = �̃�𝑝 (𝜃) , 𝜃 ∈ [−𝜏, 0] , 𝑝 = 1, 2, . . . , 𝑛. (6)

Let 𝑧𝑝(𝑡) = 𝑥𝑝(𝑡) + 𝑖𝑦𝑝(𝑡), 𝐽𝑝(𝑡) = 𝐽𝑅𝑝 (𝑡) + 𝑖𝐽𝐼𝑝(𝑡), 𝜓𝑝(𝑠) =𝜓𝑅𝑝 (𝑠)+𝑖𝜓𝐼𝑝(𝑠), 𝑎𝑝𝑞 = 𝑎𝑅𝑝𝑞+𝑖𝑎𝐼𝑝𝑞, 𝑏𝑝𝑞 = 𝑏𝑅𝑝𝑞+𝑖𝑏𝐼𝑝𝑞, �̃�𝑝(𝑡) = 𝑥𝑝(𝑡)+𝑖𝑦𝑝(𝑡), �̃�𝑝(𝑠) = �̃�𝑅𝑝 (𝑠) + 𝑖�̃�𝐼𝑝(𝑠), ℎ𝑞(�̃�𝑞(𝑡)) = ℎ𝑅𝑞 (𝑥𝑞(𝑡), 𝑦𝑞(𝑡)) +𝑖ℎ𝐼𝑞(𝑥𝑞(𝑡), 𝑦𝑞(𝑡)),𝑚𝑞(�̃�𝑞(𝑡 − 𝜏𝑞)) = 𝑚𝑅𝑞 (𝑥𝑞(𝑡 − 𝜏𝑞), 𝑦𝑞(𝑡 − 𝜏𝑞)) +𝑖𝑚𝐼𝑞(𝑥𝑞(𝑡 − 𝜏𝑞), 𝑦𝑞(𝑡 − 𝜏𝑞)), and 𝑢𝑝(𝑡) = 𝑢𝑅𝑝(𝑡) + 𝑖𝑢𝐼𝑝(𝑡). Then,
by separating system (1) with (2) and system (5) with (6) into
the real and imaginary parts, respectively, we have

̇𝑥𝑝 = −𝑑𝑝𝑥𝑝 + 𝑛∑
𝑞=1

𝑎𝑅𝑝𝑞ℎ𝑅𝑞 (𝑥𝑞, 𝑦𝑞)

− 𝑛∑
𝑞=1

𝑎𝐼𝑝𝑞ℎ𝐼𝑞 (𝑥𝑞, 𝑦𝑞) + 𝑛∑
𝑞=1

𝑏𝑅𝑝𝑞𝑚𝑅𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 )

− 𝑛∑
𝑞=1

𝑏𝐼𝑝𝑞𝑚𝐼𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ) + 𝐽𝑅𝑝 (𝑡)

̇𝑦𝑝 = −𝑑𝑝𝑦𝑝 + 𝑛∑
𝑞=1

𝑎𝐼𝑝𝑞ℎ𝑅𝑞 (𝑥𝑞, 𝑦𝑞)

+ 𝑛∑
𝑞=1

𝑎𝑅𝑝𝑞ℎ𝐼𝑞 (𝑥𝑞, 𝑦𝑞) + 𝑛∑
𝑞=1

𝑏𝐼𝑝𝑞𝑚𝑅𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 )

+ 𝑛∑
𝑞=1

𝑏𝑅𝑝𝑞𝑚𝐼𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ) + 𝐽𝐼𝑝 (𝑡)

𝑥𝑝 (𝜃) = 𝜓𝑅𝑝 (𝜃) ,
𝑦𝑝 (𝜃) = 𝜓𝐼𝑝 (𝜃) ,

𝜃 ∈ [−𝜏, 0] , 𝑝 = 1, 2, . . . , 𝑛
(7)

and

̇̃𝑥𝑝 = −𝑑𝑝𝑥𝑝 + 𝑛∑
𝑞=1

𝑎𝑅𝑝𝑞ℎ𝑅𝑞 (𝑥𝑞, 𝑦𝑞)

− 𝑛∑
𝑞=1

𝑎𝐼𝑝𝑞ℎ𝐼𝑞 (𝑥𝑞, 𝑦𝑞) + 𝑛∑
𝑞=1

𝑏𝑅𝑝𝑞𝑚𝑅𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 )

− 𝑛∑
𝑞=1

𝑏𝐼𝑝𝑞𝑚𝐼𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ) + 𝐽𝑅𝑝 (𝑡) + 𝑢𝑅𝑝 (𝑡)
̇̃𝑦𝑝 = −𝑑𝑝𝑦𝑝 + 𝑛∑

𝑞=1

𝑎𝐼𝑝𝑞ℎ𝑅𝑞 (𝑥𝑞, 𝑦𝑞)

+ 𝑛∑
𝑞=1

𝑎𝑅𝑝𝑞ℎ𝐼𝑞 (𝑥𝑞, 𝑦𝑞) + 𝑛∑
𝑞=1

𝑏𝐼𝑝𝑞𝑚𝑅𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 )

+ 𝑛∑
𝑞=1

𝑏𝑅𝑝𝑞𝑚𝐼𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ) + 𝐽𝐼𝑝 (𝑡) + 𝑢𝐼𝑝 (𝑡)
𝑥𝑝 (𝜃) = 𝜑𝑅𝑝 (𝜃) ,
𝑦𝑝 (𝜃) = 𝜑𝐼𝑝 (𝜃) ,

𝜃 ∈ [−𝜏, 0] , 𝑝 = 1, 2, . . . , 𝑛.

(8)

Define the error vector between the drive system (1) and
the response system (5) as 𝑒𝑝(𝑡) = �̃�𝑝(𝑡) − 𝑧𝑝(𝑡) = 𝑒𝑅𝑝(𝑡) +𝑖𝑒𝐼𝑝(𝑡) = 𝑥𝑝(𝑡) − 𝑥𝑝(𝑡) + 𝑖(𝑦𝑝(𝑡) − 𝑦𝑝(𝑡)); it follows from (7)
and (8) that

̇𝑒𝑅𝑝 (𝑡) = −𝑑𝑝𝑒𝑅𝑝 (𝑡) + 𝑛∑
𝑞=1

𝑎𝑅𝑝𝑞 (ℎ𝑅𝑞 (𝑥𝑞, 𝑦𝑞) − ℎ𝑅𝑞 (𝑥𝑞, 𝑦𝑞))

− 𝑛∑
𝑞=1

𝑎𝐼𝑝𝑞 (ℎ𝐼𝑞 (𝑥𝑞, 𝑦𝑞) − ℎ𝐼𝑞 (𝑥𝑞, 𝑦𝑞))

+ 𝑛∑
𝑞=1

𝑏𝑅𝑝𝑞 (𝑚𝑅𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ) − 𝑚𝑅𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ))

− 𝑛∑
𝑞=1

𝑏𝐼𝑝𝑞 (𝑚𝐼𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ) − 𝑚𝐼𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ))
+ 𝑢𝑅𝑝 (𝑡)

̇𝑒𝐼𝑝 (𝑡) = −𝑑𝑝𝑒𝐼𝑝 (𝑡) + 𝑛∑
𝑞=1

𝑎𝐼𝑝𝑞 (ℎ𝑅𝑞 (𝑥𝑞, 𝑦𝑞) − ℎ𝑅𝑞 (𝑥𝑞, 𝑦𝑞))
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+ 𝑛∑
𝑞=1

𝑎𝑅𝑝𝑞 (ℎ𝐼𝑞 (𝑥𝑞, 𝑦𝑞) − ℎ𝐼𝑞 (𝑥𝑞, 𝑦𝑞))

+ 𝑛∑
𝑞=1

𝑏𝐼𝑝𝑞 (𝑚𝑅𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ) − 𝑚𝑅𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ))

+ 𝑛∑
𝑞=1

𝑏𝑅𝑝𝑞 (𝑚𝐼𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ) − 𝑚𝐼𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ))
+ 𝑢𝐼𝑝 (𝑡)

𝑒𝑅𝑝 (𝜃) = 𝜙𝑅𝑝 (𝜃) ,
𝑒𝐼𝑝 (𝜃) = 𝜙𝐼𝑝 (𝜃) ,

𝜃 ∈ [−𝜏, 0] , 𝑝 = 1, 2, . . . , 𝑛.
(9)

Let 𝜔𝑝(𝑡) = [ 𝑒𝑅𝑝(𝑡)𝑒𝐼𝑝(𝑡) ]; then equation (9) can be rewritten as

�̇�𝑝 (𝑡) = − [𝑑𝑝 0
0 𝑑𝑝]𝜔𝑝 (𝑡)

+ 𝑛∑
𝑞=1

[𝑎𝑅𝑝𝑞 −𝑎𝐼𝑝𝑞𝑎𝐼𝑝𝑞 𝑎𝑅𝑝𝑞 ][[
ℎ𝑅𝑞 (𝑥𝑞, 𝑦𝑞) − ℎ𝑅𝑞 (𝑥𝑞, 𝑦𝑞)
ℎ𝐼𝑞 (𝑥𝑞, 𝑦𝑞) − ℎ𝐼𝑞 (𝑥𝑞, 𝑦𝑞)]]

+ 𝑛∑
𝑞=1

[𝑏𝑅𝑝𝑞 −𝑏𝐼𝑝𝑞𝑏𝐼𝑝𝑞 𝑏𝑅𝑝𝑞 ][[
𝑚𝑅𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ) − 𝑚𝑅𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 )
𝑚𝐼𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ) − 𝑚𝐼𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 )]]

+ [𝑢𝑅𝑝 (𝑡)𝑢𝐼𝑝 (𝑡)]

𝜔𝑝 (𝜃) = 𝜙𝑝 (𝜃) = [𝜙
𝑅
𝑝 (𝜃)
𝜙𝐼𝑝 (𝜃)] , 𝜃 ∈ [−𝜏, 0]

(10)

for 𝑝 = 1, 2, . . . , 𝑛.
Before deriving the main results, the following definition

and lemmas are provided.

Definition 4 (see [27]). Consider the drive-response systems
(1) with (2) and (5) with (6). If for a suitable controller 𝑢𝑝(𝑡) =𝑢𝑅𝑝(𝑡) + 𝑖𝑢𝐼𝑝(𝑡), there exists a function 𝑇 = 𝑇(𝜙𝑝) > 0
depending on the initial value 𝜙𝑝, such that

lim
𝑡→𝑇

𝑒𝑅𝑝 (𝑡) = lim
𝑡→𝑇

𝑒𝐼𝑝 (𝑡) = 0 (11)

and |𝑒𝑅𝑝(𝑡)| = |𝑒𝐼𝑝(𝑡)| = 0 for 𝑡 > 𝑇, 𝑝 = 1, 2, . . . , 𝑛,
then the drive system (1) and the response system (5) achieve
synchronization in finite time.

Lemma 5 (see [24]). An open set 𝑈 ∈ 𝐶([−𝜏, 0],R2𝑛). 
e
classG denotes all the strictly increasing continuous functions𝑠 : R+ → R+ and 𝑠(0) = 0. If there exist 𝑠,  ∈ G and a
continuous function 𝑉 : [0, +∞) × 𝑈 → R+ for system (10)
such that

(1) 𝑉(𝑡, 0) = 0, 𝑠(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥), 𝑡 ∈ [0, +∞),
(2) 𝐷+𝑉(𝑡, 𝑥) ≤ −(𝑉(𝑡, 𝑥)) with ∫𝜖

0
(𝑑𝑧/(𝑧)) < +∞,

for all 𝜖 > 0, 𝑥 ∈ 𝑈, then, system (10) is finite-time stable and
the settling time 𝑇 ≤ ∫𝑉(0,𝜙)

0
(𝑑𝑧/(𝑧)). In particular, if (𝑉) =𝑘𝑉𝜇 (𝑘 > 0, 0 < 𝜇 < 1), then the settling time

𝑇 ≤ ∫𝑉(0,𝜙)
0

𝑑𝑧 (𝑧) =
𝑉1−𝜇 (0, 𝜙)
𝑘 (1 − 𝜇) . (12)

Lemma 6 (see [52]). If 𝑎 > 0, 𝑏 > 0, 0 < 𝛼1 < 1, 0 < 𝛼2 < 1,
then there must exist a scalar 0 < 𝛼 < 1 depending on 𝛼1 and𝛼2, such that

𝑎𝛼1 + 𝑏𝛼2 > (𝑎 + 𝑏)𝛼2𝛼 . (13)

Remark 7. In order to deal with the finite-time stabilization
problem for complex-valued neural networks system and
estimate the upper bound of Dini-derivative of Lyapunov
function, the inequality in Lemma 6 was proposed and
proved by us in Lemma 8 of [52]. Moreover, from the
proof of the inequality stated in [52], we can see that either𝛼 = 𝛼1 or 𝛼 = 𝛼2, which can be used to compute the
settling time. This point can be shown in examples 1 and
2.

Lemma 8 (see [24]). For real numbers 𝑐1, 𝑐2, . . . , 𝑐𝑛 and 0 <𝑘1 < 𝑘2, the following inequality holds:
[ 𝑛∑
𝑞=1

(𝑐𝑞)𝑘2]
1/𝑘2 ≤ [ 𝑛∑

𝑞=1

(𝑐𝑞)𝑘1]
1/𝑘1 . (14)

3. Main Result

In this section, new sufficient conditions will be derived to
ascertain the finite-time synchronization for system (1) and
(5). The new nonlinear controller 𝑢𝑝(𝑡) in response system
(5) is designed as the following form:

𝑢𝑝 (𝑡) = 𝑢𝑅𝑝 (𝑡) + 𝑖𝑢𝐼𝑝 (𝑡)
𝑢𝑅𝑝 (𝑡) = −𝛼1𝑝𝑒𝑅𝑝 (𝑡) − 𝛽1𝑝 𝑒𝑅𝑝 (𝑡)𝜇1 sgn (𝑒𝑅𝑝 (𝑡))

− 𝛾1𝑝 𝑛∑
𝑞=1

𝑒𝑅𝑞 (𝑡 − 𝜏𝑞) sgn (𝑒𝑅𝑝 (𝑡))
𝑢𝐼𝑝 (𝑡) = −𝛼2𝑝𝑒𝐼𝑝 (𝑡) − 𝛽2𝑝 𝑒𝐼𝑝 (𝑡)𝜇2 sgn (𝑒𝐼𝑝 (𝑡))

− 𝛾2𝑝 𝑛∑
𝑞=1

𝑒𝐼𝑞 (𝑡 − 𝜏𝑞) sgn (𝑒𝐼𝑝 (𝑡))

(15)

where 𝛼1𝑝, 𝛼2𝑝, 𝛽1𝑝 > 0, 𝛽2𝑝 > 0, 𝛾1𝑝, 𝛾2𝑝, 0 < 𝜇1 < 1, and0 < 𝜇2 < 1 are constants for 𝑝 = 1, 2, . . . , 𝑛.
Remark 9. In this paper, we design the controller (15) with
independent parameters 𝜇1 and 𝜇2, which are different from
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the most existing results based on 𝜇1 = 𝜇2, such as [17, 18, 22].
This is one of the main features for our work, which also
leads to difficulty in studying finite-time dynamic behavior
of the considered system. To solve this difficulty, we use
the inequality in Lemma 6 proposed and proved by us in
[52].

First, for convenience, we denote

𝜅𝑅𝑅 = diag {𝜅𝑅𝑅1 , 𝜅𝑅𝑅2 , . . . , 𝜅𝑅𝑅𝑛 } ,
𝜅𝑅𝐼 = diag {𝜅𝑅𝐼1 , 𝜅𝑅𝐼2 , . . . , 𝜅𝑅𝐼𝑛 } ,
𝐴𝑅 = (𝑎𝑅𝑝𝑞)𝑛×𝑛 ,
𝜅𝐼𝑅 = diag {𝜅𝐼𝑅1 , 𝜅𝐼𝑅2 , . . . , 𝜅𝐼𝑅𝑛 } ,
𝜅𝐼𝐼 = diag {𝜅𝐼𝐼1 , 𝜅𝐼𝐼2 , . . . , 𝜅𝐼𝐼𝑛 } ,
𝐴𝐼 = (𝑎𝐼𝑝𝑞)𝑛×𝑛 ,
𝜋𝑅𝑅 = diag {𝜋𝑅𝑅1 , 𝜋𝑅𝑅2 , . . . , 𝜋𝑅𝑅𝑛 } ,
𝜋𝑅𝐼 = diag {𝜋𝑅𝐼1 , 𝜋𝑅𝐼2 , . . . , 𝜋𝑅𝐼𝑛 } ,
𝐵𝑅 = (𝑏𝑅𝑝𝑞)𝑛×𝑛 ,
𝜋𝐼𝑅 = diag {𝜋𝐼𝑅1 , 𝜋𝐼𝑅2 , . . . , 𝜋𝐼𝑅𝑛 } ,
𝜋𝐼𝐼 = diag {𝜋𝐼𝐼1 , 𝜋𝐼𝐼2 , . . . , 𝜋𝐼𝐼𝑛 } ,
𝐵𝐼 = (𝑏𝐼𝑝𝑞)𝑛×𝑛 ,
Γ1 = diag {𝛾11, 𝛾12, . . . , 𝛾1𝑛} ,
Γ1 = tr (Γ1) 𝐸𝑛,
Γ2 = diag {𝛾21, 𝛾22, . . . , 𝛾2𝑛} ,
Γ2 = tr (Γ2) 𝐸𝑛,
𝐸𝑛 = diag {1, 1, . . . , 1} ,
𝐷1 = diag {𝑑1 + 𝛼11, 𝑑2 + 𝛼12, . . . , 𝑑𝑛 + 𝛼1𝑛} ,
𝐷2 = diag {𝑑1 + 𝛼21, 𝑑2 + 𝛼22, . . . , 𝑑𝑛 + 𝛼2𝑛} ,
𝐼𝑛 = [1, 1, . . . , 1]𝑇 ,
𝐼 = col {𝐼𝑛, 𝐼𝑛} ,
𝐷 = [𝐷1 0

0 𝐷2] ,

Γ = [Γ1 0
0 Γ2] ,

𝐴 = [𝐴𝑅 𝐴𝐼
𝐴𝐼 𝐴𝑅] ,

𝐵 = [𝐵𝑅 𝐵𝐼
𝐵𝐼 𝐵𝑅] ,

𝜅 = [𝜅𝑅𝑅 𝜅𝑅𝐼
𝜅𝐼𝑅 𝜅𝐼𝐼] ,

𝜋 = [𝜋𝑅𝑅 𝜋𝑅𝐼
𝜋𝐼𝑅 𝜋𝐼𝐼] ,

𝐺1 = 𝐷 − (𝐴𝜅)𝑇 ,
𝐺2 = Γ − (𝐵𝜋)𝑇 .

(16)

Based on the controller (15), the main result of our paper
can be obtained as follows.

Theorem 10. Under Assumption 1, if the vectors 𝐺1𝐼 > 0 and𝐺2𝐼 > 0, then via the controller (15), the drive system (1) and the
response system (5) are synchronized in finite time. Moreover,
the settling time satisfies 𝑇2 ≤ (2/𝛽(1 − 𝜇))𝑉1−𝜇(0), where 𝛽 =
min{𝛽1, 𝛽2}, 𝛽1 = min{𝛽1𝑝}, 𝛽2 = min{𝛽2𝑝}, 𝑝 = 1, 2, . . . , 𝑛,
and 0 < 𝜇 < 1 depending on 𝜇1 and 𝜇2.
Proof. If 𝐺1𝐼 > 0 holds, then for all 𝑝 = 1, 2, . . . , 𝑛, we have
𝑑𝑝 + 𝛼1𝑝

− 𝑛∑
𝑞=1

(𝑎𝑅𝑞𝑝 𝜅𝑅𝑅𝑝 + 𝑎𝐼𝑞𝑝 𝜅𝐼𝑅𝑝 + 𝑎𝐼𝑞𝑝 𝜅𝑅𝑅𝑝 + 𝑎𝑅𝑞𝑝 𝜅𝐼𝑅𝑝 )
> 0

𝑑𝑝 + 𝛼2𝑝
− 𝑛∑
𝑞=1

(𝑎𝐼𝑞𝑝 𝜅𝑅𝐼𝑝 + 𝑎𝑅𝑞𝑝 𝜅𝐼𝐼𝑝 + 𝑎𝑅𝑞𝑝 𝜅𝑅𝐼𝑝 + 𝑎𝐼𝑞𝑝 𝜅𝐼𝐼𝑝 )
> 0.

(17)

Similarly, if𝐺2𝐼 > 0 holds, then for all 𝑝 = 1, 2, . . . , 𝑛, we have
𝑛∑
𝑞=1

𝛾1𝑞
− 𝑛∑
𝑞=1

(𝑏𝑅𝑞𝑝 𝜋𝑅𝑅𝑝 + 𝑏𝐼𝑞𝑝 𝜋𝐼𝑅𝑝 + 𝑏𝐼𝑞𝑝 𝜋𝑅𝑅𝑝 + 𝑏𝑅𝑞𝑝 𝜋𝐼𝑅𝑝 )
> 0
𝑛∑
𝑞=1

𝛾2𝑞
− 𝑛∑
𝑞=1

(𝑏𝑅𝑞𝑝 𝜋𝑅𝐼𝑝 + 𝑏𝐼𝑞𝑝 𝜋𝐼𝐼𝑝 + 𝑏𝐼𝑞𝑝 𝜋𝑅𝐼𝑝 + 𝑏𝑅𝑞𝑝 𝜋𝐼𝐼𝑝 )
> 0.

(18)
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For the error system (9) or (10), choose the following
Lyapunov function:

𝑉 (𝑡) = 𝑛∑
𝑝=1

𝑒𝑅𝑝 (𝑡) +
𝑛∑
𝑝=1

𝑒𝐼𝑝 (𝑡) . (19)

Along the trajectories of system (9) or (10) and by (15), the
upper Dini-derivative of 𝑉(𝑡) can be computed as

𝐷+𝑉 (𝑡) = 𝑛∑
𝑝=1

sgn (𝑒𝑅𝑝 (𝑡)) ̇𝑒𝑅𝑝 (𝑡)

+ 𝑛∑
𝑝=1

sgn (𝑒𝐼𝑝 (𝑡)) ̇𝑒𝐼𝑝 (𝑡) = 𝑛∑
𝑝=1

sgn (𝑒𝑅𝑝 (𝑡))

⋅ [−𝑑𝑝𝑒𝑅𝑝 (𝑡) + 𝑛∑
𝑞=1

𝑎𝑅𝑝𝑞 (ℎ𝑅𝑞 (𝑥𝑞, 𝑦𝑞) − ℎ𝑅𝑞 (𝑥𝑞, 𝑦𝑞))

− 𝑛∑
𝑞=1

𝑎𝐼𝑝𝑞 (ℎ𝐼𝑞 (𝑥𝑞, 𝑦𝑞) − ℎ𝐼𝑞 (𝑥𝑞, 𝑦𝑞))

+ 𝑛∑
𝑞=1

𝑏𝑅𝑝𝑞 (𝑚𝑅𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ) − 𝑚𝑅𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ))

− 𝑛∑
𝑞=1

𝑏𝐼𝑝𝑞 (𝑚𝐼𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ) − 𝑚𝐼𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ))
− 𝛼1𝑝𝑒𝑅𝑝 (𝑡) − 𝛽1𝑝 𝑒𝑅𝑝 (𝑡)𝜇1 sgn (𝑒𝑅𝑝 (𝑡))
− 𝛾1𝑝 𝑛∑
𝑞=1

𝑒𝑅𝑞 (𝑡 − 𝜏𝑞) sgn (𝑒𝑅𝑝 (𝑡))]

+ 𝑛∑
𝑝=1

sgn (𝑒𝐼𝑝 (𝑡)) [−𝑑𝑝𝑒𝐼𝑝 (𝑡)

+ 𝑛∑
𝑞=1

𝑎𝐼𝑝𝑞 (ℎ𝑅𝑞 (𝑥𝑞, 𝑦𝑞) − ℎ𝑅𝑞 (𝑥𝑞, 𝑦𝑞))

+ 𝑛∑
𝑞=1

𝑎𝑅𝑝𝑞 (ℎ𝐼𝑞 (𝑥𝑞, 𝑦𝑞) − ℎ𝐼𝑞 (𝑥𝑞, 𝑦𝑞))

+ 𝑛∑
𝑞=1

𝑏𝐼𝑝𝑞 (𝑚𝑅𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ) − 𝑚𝑅𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ))

+ 𝑛∑
𝑞=1

𝑏𝑅𝑝𝑞 (𝑚𝐼𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ) − 𝑚𝐼𝑞 (𝑥𝜏𝑞𝑞 , 𝑦𝜏𝑞𝑞 ))
− 𝛼2𝑝𝑒𝐼𝑝 (𝑡) − 𝛽2𝑝 𝑒𝐼𝑝 (𝑡)𝜇2 sgn (𝑒𝐼𝑝 (𝑡))
− 𝛾2𝑝 𝑛∑
𝑞=1

𝑒𝐼𝑞 (𝑡 − 𝜏𝑞) sgn (𝑒𝐼𝑝 (𝑡))] .

(20)

By means of Assumption 1, 𝐷+𝑉(𝑡) can be bounded as

𝐷+𝑉 (𝑡) ≤ 𝑛∑
𝑝=1

[− (𝑑𝑝 + 𝛼1𝑝) 𝑒𝑅𝑝 (𝑡)
+ 𝑛∑
𝑞=1

𝑎𝑅𝑝𝑞 (𝜅𝑅𝑅𝑞 𝑒𝑅𝑞 (𝑡) + 𝜅𝑅𝐼𝑞 𝑒𝐼𝑞 (𝑡))

+ 𝑛∑
𝑞=1

𝑎𝐼𝑝𝑞 (𝜅𝐼𝑅𝑞 𝑒𝑅𝑞 (𝑡) + 𝜅𝐼𝐼𝑞 𝑒𝐼𝑞 (𝑡))

+ 𝑛∑
𝑞=1

𝑏𝑅𝑝𝑞 (𝜋𝑅𝑅𝑞 𝑒𝑅𝑞 (𝑡 − 𝜏𝑞) + 𝜋𝑅𝐼𝑞 𝑒𝐼𝑞 (𝑡 − 𝜏𝑞))

+ 𝑛∑
𝑞=1

𝑏𝐼𝑝𝑞 (𝜋𝐼𝑅𝑞 𝑒𝑅𝑞 (𝑡 − 𝜏𝑞) + 𝜋𝐼𝐼𝑞 𝑒𝐼𝑞 (𝑡 − 𝜏𝑞))

− 𝛽1𝑝 𝑒𝑅𝑝 (𝑡)𝜇1 − 𝛾1𝑝
𝑛∑
𝑞=1

𝑒𝑅𝑞 (𝑡 − 𝜏𝑞)]

+ 𝑛∑
𝑝=1

[− (𝑑𝑝 + 𝛼2𝑝) 𝑒𝐼𝑝 (𝑡)
+ 𝑛∑
𝑞=1

𝑎𝐼𝑝𝑞 (𝜅𝑅𝑅𝑞 𝑒𝑅𝑞 (𝑡) + 𝜅𝑅𝐼𝑞 𝑒𝐼𝑞 (𝑡))

+ 𝑛∑
𝑞=1

𝑎𝑅𝑝𝑞 (𝜅𝐼𝑅𝑞 𝑒𝑅𝑞 (𝑡) + 𝜅𝐼𝐼𝑞 𝑒𝐼𝑞 (𝑡))

+ 𝑛∑
𝑞=1

𝑏𝐼𝑝𝑞 (𝜋𝑅𝑅𝑞 𝑒𝑅𝑞 (𝑡 − 𝜏𝑞) + 𝜋𝑅𝐼𝑞 𝑒𝐼𝑞 (𝑡 − 𝜏𝑞))

+ 𝑛∑
𝑞=1

𝑏𝑅𝑝𝑞 (𝜋𝐼𝑅𝑞 𝑒𝑅𝑞 (𝑡 − 𝜏𝑞) + 𝜋𝐼𝐼𝑞 𝑒𝐼𝑞 (𝑡 − 𝜏𝑞))

− 𝛽2𝑝 𝑒𝐼𝑝 (𝑡)𝜇2 − 𝛾2𝑝
𝑛∑
𝑞=1

𝑒𝐼𝑞 (𝑡 − 𝜏𝑞)] .

(21)

By uniting like terms, we have

𝐷+𝑉 (𝑡) ≤ 𝑛∑
𝑝=1

[− (𝑑𝑝 + 𝛼1𝑝) 𝑒𝑅𝑝 (𝑡)
+ 𝑛∑
𝑞=1

(𝑎𝑅𝑝𝑞 𝜅𝑅𝑅𝑞 + 𝑎𝐼𝑝𝑞 𝜅𝐼𝑅𝑞 ) 𝑒𝑅𝑞 (𝑡)
+ 𝑛∑
𝑞=1

(𝑎𝑅𝑝𝑞 𝜅𝑅𝐼𝑞 + 𝑎𝐼𝑝𝑞 𝜅𝐼𝐼𝑞 ) 𝑒𝐼𝑞 (𝑡)
+ 𝑛∑
𝑞=1

(𝑏𝑅𝑝𝑞 𝜋𝑅𝑅𝑞 + 𝑏𝐼𝑝𝑞 𝜋𝐼𝑅𝑞 − 𝛾1𝑝) 𝑒𝑅𝑞 (𝑡 − 𝜏𝑞)
+ 𝑛∑
𝑞=1

(𝑏𝑅𝑝𝑞 𝜋𝑅𝐼𝑞 + 𝑏𝐼𝑝𝑞 𝜋𝐼𝐼𝑞 ) 𝑒𝐼𝑞 (𝑡 − 𝜏𝑞)
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− 𝛽1𝑝 𝑒𝑅𝑝 (𝑡)𝜇1] +
𝑛∑
𝑝=1

[− (𝑑𝑝 + 𝛼2𝑝) 𝑒𝐼𝑝 (𝑡)
+ 𝑛∑
𝑞=1

(𝑎𝐼𝑝𝑞 𝜅𝑅𝑅𝑞 + 𝑎𝑅𝑝𝑞 𝜅𝐼𝑅𝑞 ) 𝑒𝑅𝑞 (𝑡)
+ 𝑛∑
𝑞=1

(𝑎𝐼𝑝𝑞 𝜅𝑅𝐼𝑞 + 𝑎𝑅𝑝𝑞 𝜅𝐼𝐼𝑞 ) 𝑒𝐼𝑞 (𝑡)
+ 𝑛∑
𝑞=1

(𝑏𝐼𝑝𝑞 𝜋𝑅𝐼𝑞 + 𝑏𝑅𝑝𝑞 𝜋𝐼𝐼𝑞 − 𝛾2𝑝) 𝑒𝐼𝑞 (𝑡 − 𝜏𝑞)]

+ 𝑛∑
𝑞=1

(𝑏𝐼𝑝𝑞 𝜋𝑅𝑅𝑞 + 𝑏𝑅𝑝𝑞 𝜋𝐼𝑅𝑞 ) 𝑒𝑅𝑞 (𝑡 − 𝜏𝑞)
− 𝛽2𝑝 𝑒𝐼𝑝 (𝑡)𝜇2 .

(22)

Then, by taking the common factors, one has

𝐷+𝑉 (𝑡) ≤ 𝑛∑
𝑝=1

𝑒𝑅𝑝 (𝑡) [− (𝑑𝑝 + 𝛼1𝑝)

+ 𝑛∑
𝑞=1

(𝑎𝑅𝑞𝑝 𝜅𝑅𝑅𝑝 + 𝑎𝐼𝑞𝑝 𝜅𝐼𝑅𝑝 + 𝑎𝐼𝑞𝑝 𝜅𝑅𝑅𝑝 + 𝑎𝑅𝑞𝑝 𝜅𝐼𝑅𝑝 )]

+ 𝑛∑
𝑝=1

𝑒𝐼𝑝 (𝑡) [− (𝑑𝑝 + 𝛼2𝑝)

+ 𝑛∑
𝑞=1

(𝑎𝐼𝑞𝑝 𝜅𝑅𝐼𝑝 + 𝑎𝑅𝑞𝑝 𝜅𝐼𝐼𝑝 + 𝑎𝑅𝑞𝑝 𝜅𝑅𝐼𝑝 + 𝑎𝐼𝑞𝑝 𝜅𝐼𝐼𝑝 )]

+ 𝑛∑
𝑝=1

𝑛∑
𝑞=1

(𝑏𝑅𝑞𝑝 𝜋𝑅𝑅𝑝 + 𝑏𝐼𝑞𝑝 𝜋𝐼𝑅𝑝 − 𝛾1𝑞 + 𝑏𝐼𝑞𝑝 𝜋𝑅𝑅𝑝
+ 𝑏𝑅𝑞𝑝 𝜋𝐼𝑅𝑝 ) 𝑒𝑅𝑝 (𝑡 − 𝜏𝑝) +

𝑛∑
𝑝=1

𝑛∑
𝑞=1

(𝑏𝑅𝑞𝑝 𝜋𝑅𝐼𝑝
+ 𝑏𝐼𝑞𝑝 𝜋𝐼𝐼𝑝 + 𝑏𝐼𝑞𝑝 𝜋𝑅𝐼𝑝 + 𝑏𝑅𝑞𝑝 𝜋𝐼𝐼𝑝 − 𝛾2𝑞) 𝑒𝐼𝑝 (𝑡 − 𝜏𝑝)
− 𝑛∑
𝑝=1

𝛽1𝑝 𝑒𝑅𝑝 (𝑡)𝜇1 −
𝑛∑
𝑝=1

𝛽2𝑝 𝑒𝐼𝑝 (𝑡)𝜇2 .

(23)

Then, by (17) and (18), one can obtain

𝐷+𝑉 (𝑡) ≤ − 𝑛∑
p=1
𝛽1𝑝 𝑒𝑅𝑝 (𝑡)𝜇1 −

𝑛∑
𝑝=1

𝛽2𝑝 𝑒𝐼𝑝 (𝑡)𝜇2

≤ −𝛽1 𝑛∑
𝑝=1

𝑒𝑅𝑝 (𝑡)𝜇1 − 𝛽2
𝑛∑
𝑝=1

𝑒𝐼𝑝 (𝑡)𝜇2

≤ −𝛽( 𝑛∑
𝑝=1

𝑒𝑅𝑝 (𝑡)𝜇1 +
𝑛∑
𝑝=1

𝑒𝐼𝑝 (𝑡)𝜇2)

(24)

where 𝛽 = min{𝛽1, 𝛽2}, 𝛽1 = min{𝛽1𝑝}, 𝛽2 = min{𝛽2𝑝}, 𝑝 =1, 2, . . . , 𝑛. In addition, by Lemma 8, for 0 < 𝜇1 < 1, 0 < 𝜇2 <1, the following inequalities hold:

− 𝑛∑
𝑝=1

𝑒𝑅𝑝 (𝑡)𝜇1 ≤ −[
𝑛∑
𝑝=1

𝑒𝑅𝑝 (𝑡)]
𝜇1 ,

− 𝑛∑
𝑝=1

𝑒𝐼𝑝 (𝑡)𝜇2 ≤ −[
𝑛∑
𝑝=1

𝑒𝐼𝑝 (𝑡)]
𝜇2 .

(25)

Then, substituting (25) into (24), one has

𝐷+𝑉(𝑡) ≤ −𝛽([ 𝑛∑
𝑝=1

𝑒𝑅𝑝 (𝑡)]
𝜇1 + [ 𝑛∑

𝑝=1

𝑒𝐼𝑝 (𝑡)]
𝜇2) . (26)

By Lemma 6, there exists a 0 < 𝜇 < 1 depending on 𝜇1 and𝜇2, such that

𝐷+𝑉 (𝑡) ≤ − 𝛽2𝜇 (
𝑛∑
𝑝=1

𝑒𝑅𝑝 (𝑡) +
𝑛∑
𝑝=1

𝑒𝐼𝑝 (𝑡))
𝜇

≤ −𝛽2𝑉𝜇 (𝑡) .
(27)

Moreover, ∫𝜀
0
(2/𝛽𝑧𝜇)𝑑𝑧 = 2𝜀1−𝜇/𝛽(1−𝜇) < +∞, for all 𝜀 > 0.

Thus, from Lemma 5, we know that the error system (9) or
(10) is finite-time stable.That is to say, the drive system (1) and
the response system (5) can be synchronized in finite time via
the controller (15). This completes the proof.

Remark 11. Recently, the finite-time stabilization and syn-
chronization problems of real-valued neural networks have
been investigated and the time for system trajectories tend-
ing to an equilibrium point is finite [22–29]. However,
for finite-time stability analysis of complex-valued neural
networks models, until now, few results have been developed.
For instance, the finite-time synchronization problem for
complex-valued neural networks (CVNNs) with infinite-
time distributed delays is discussed in [51] and the finite-
time stabilizability and instabilizability for complex-valued
memristive neural networks with time delays are studied in
[52]. Here, Theorem 10 further provides sufficient conditions
for the finite-time synchronization of the considered system
and their effectiveness can be illustrated in numerical exam-
ples. From the point of theory development, our result is
significant in dynamical behavior analysis of complex-valued
models and it can be regarded as the extension of the previous
work.

4. Numerical Examples

This section will provide two examples to show the effective-
ness of the given conditions of Theorem 10.
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Figure 1: Time responses of the variables 𝑧1, 𝑧2, �̃�1, and �̃�2 in 3D and
2D spaces without controller for example 1.

Example 12. Consider complex-valued neural networks as
the drive system given by

�̇�𝑝 (𝑡) = −𝑑𝑝𝑧𝑝 (𝑡) + 2∑
𝑞=1

𝑎𝑝𝑞ℎ𝑞 (𝑧𝑞 (𝑡))

+ 2∑
𝑞=1

𝑏𝑝𝑞𝑚𝑞 (𝑧𝑞 (𝑡 − 𝜏𝑞)) + 𝐽𝑝 (𝑡) , 𝑝 = 1, 2
(28)

where𝑑1 = 1.5, 𝑑2 = 1, 𝑎11 = 1+2𝑖, 𝑎12 = −2−𝑖, 𝑎21 = −2.5−𝑖,𝑎22 = −1−0.5𝑖, 𝑏11 = 2−𝑖, 𝑏12 = −1+𝑖, 𝑏21 = −1+2𝑖, 𝑏22 = 2+𝑖,𝜏1 = 0.1, 𝜏2 = 0.2, 𝐽1(𝑡) = 6 sin(𝑡 + 1) − 4 cos(𝑡 − 1)𝑖, and𝐽2(𝑡) = 5 cos(𝑡 + 1) − 6 sin(𝑡 − 1)𝑖. Moreover, the activation
functions are taken as

ℎ𝑞 (𝑧𝑞) = 1 − 𝑒−𝑥𝑞1 + 𝑒−𝑥𝑞 + 𝑖 11 + 𝑒−𝑦𝑞 ,
𝑚𝑞 (𝑧𝑞) = 1 − 𝑒−𝑦𝑞1 + 𝑒−𝑦𝑞 + 𝑖 11 + 𝑒−𝑥𝑞 ,

(𝑞 = 1, 2) .
(29)

Then, from Assumption 1, it can be computed that 𝜅𝑅𝑅𝑞 = 0.5,
𝜅𝐼𝐼𝑞 = 0.25, 𝜅𝑅𝐼𝑞 = 𝜅𝐼𝑅𝑞 = 0, 𝜋𝑅𝐼𝑞 = 0.5, 𝜋𝐼𝑅𝑞 = 0.25, and 𝜋𝑅R𝑞 =
𝜋𝐼𝐼𝑞 = 0 for 𝑞 = 1, 2.

The response system is provided by

̇̃𝑧𝑝 (𝑡) = −𝑑𝑝�̃�𝑝 (𝑡) + 2∑
𝑞=1

𝑎𝑝𝑞ℎ𝑞 (�̃�𝑞 (𝑡))

+ 2∑
𝑞=1

𝑏𝑝𝑞𝑚𝑞 (�̃�𝑞 (𝑡 − 𝜏𝑞)) + 𝐽𝑝 (𝑡) + 𝑢𝑝 (𝑡) .
(30)

Under the initial conditions 𝑧1(𝜃) = −2 + 2.4𝑖, 𝑧2(𝜃) =−1 − 1.4𝑖, �̃�1(𝜃) = −2.3 − 1.8𝑖, and �̃�2(𝜃) = 1.2 − 𝑖 for𝜃 ∈ [−0.2, 0], Figures 1 and 2 depict the trajectories of systems
(28) and (30) without controller, which show that the drive
system (28) does not synchronize with the response system
(30).

By choosing the parameters of the controller (15) as 𝛼11 =2.3, 𝛼12 = 1.6, 𝛼21 = 1.1, 𝛼22 = 0.8, 𝛽11 = 𝛽12 = 𝛽21 =𝛽22 = 1, 𝛾11 = 1, 𝛾12 = 0.6, 𝛾21 = 1.5, 𝛾22 = 1.6, 𝜇1 =0.5, and 𝜇2 = 0.6, it is easy to check that the conditions
of Theorem 10 are satisfied. Then, under the corresponding
controller, the drive system (28) can be synchronized with
the response system (30) in finite time. In addition, according
to Theorem 10 and Remark 7, it can be computed that 𝑇1 ≤
max{10.88, 10.95} = 10.95 seconds. The synchronization
curves between the drive system (28) and the response system
(30) are displayed in Figure 3. The time responses of the
synchronization errors between them are shown in Figure 4.
From Figures 3 and 4, it can be seen that system (28) can syn-
chronize with system (30) in finite time via the corresponding
controller under the given initial values. These also further
show that the obtained result is effective and our work is
meaningful.

Next, one examplewith special activation functions stated
as in Remarks 2 and 3 is given to illustrate the validity of our
result.

Example 13. Consider a drive system as follows:

�̇�𝑝 (𝑡) = −𝑑𝑝𝑧𝑝 (𝑡) + 2∑
𝑞=1

𝑎𝑝𝑞ℎ𝑞 (𝑧𝑞 (𝑡))

+ 2∑
𝑞=1

𝑏𝑝𝑞𝑚𝑞 (𝑧𝑞 (𝑡 − 𝜏𝑞)) + 𝐽𝑝 (𝑡) , 𝑝 = 1, 2
(31)

where 𝑑1 = 1, 𝑑2 = 0.5, 𝑎11 = −0.5 + 𝑖, 𝑎12 = 2 − 𝑖, 𝑎21 =1.5 − 1.8𝑖, 𝑎22 = −1 + 2𝑖, 𝑏11 = −0.8 − 0.5𝑖, 𝑏12 = −1 + 1.5𝑖,𝑏21 = 2 + 1.5𝑖, 𝑏22 = −1 + 2𝑖, 𝜏1 = 0.1, 𝜏2 = 0.2, 𝐽1(𝑡) = 3 − 𝑖,
and 𝐽2(𝑡) = −2 + 5𝑖. The activation functions are chosen as

ℎ𝑞 (𝑧𝑞) = 𝑚𝑞 (𝑧𝑞)
=
𝑥𝑞 + 1 − 𝑥𝑞 − 12 + 𝑖

𝑦𝑞 + 1 − 𝑦𝑞 − 12 ,
(𝑞 = 1, 2) .

(32)

Obviously, (𝜕/𝜕𝑥𝑞)((|𝑥𝑞 + 1| − |𝑥𝑞 − 1|)/2)|𝑥𝑞=±1 and (𝜕/𝜕𝑦𝑞)((|𝑦𝑞 + 1| − |𝑦𝑞 − 1|)/2)|𝑦𝑞=±1 do not exist. Hence, the
obtained results in many references, such as [32, 33, 46, 49],
cannot be applied in these functions. This leads to limitations
for their results in applications whereas our work has just
filled the gap. Moreover, from Assumption 1, it is easy to
obtain that 𝜅𝑅𝑅𝑞 = 𝜅𝐼𝐼𝑞 = 𝜋𝑅𝑅𝑞 = 𝜋𝐼𝐼𝑞 = 1, 𝜅𝑅𝐼𝑞 = 𝜅𝐼𝑅𝑞 = 𝜋𝑅𝐼𝑞 =
𝜋𝐼𝑅𝑞 = 0 for 𝑞 = 1, 2.
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Figure 2: Time responses of real and imaginary parts of the variables 𝑧1, 𝑧2, �̃�1, and �̃�2 without controller for example 1.

The response system is given by

̇̃𝑧𝑝 (𝑡) = −𝑑𝑝�̃�𝑝 (𝑡) + 2∑
𝑞=1

𝑎𝑝𝑞ℎ𝑞 (�̃�𝑞 (𝑡))

+ 2∑
𝑞=1

𝑏𝑝𝑞𝑚𝑞 (�̃�𝑞 (𝑡 − 𝜏𝑞)) + 𝐽𝑝 (𝑡) + 𝑢𝑝 (𝑡) .
(33)

Under the initial conditions 𝑧1(𝜃) = 0.8 − 0.9𝑖, 𝑧2(𝜃) =1.1− 𝑖, �̃�1(𝜃) = −1+ 𝑖, and �̃�2(𝜃) = −0.6+1.1𝑖 for 𝜃 ∈ [−0.2, 0],
Figures 5 and 6 depict the trajectories of systems (31) and (33)
without controller, which shows that the drive system (31)
does not synchronize with the response system (33).

By choosing the parameters of the controller (15) as 𝛼11 =4.2, 𝛼12 = 6.5, 𝛼21 = 4.4, 𝛼22 = 5.9, 𝛽11 = 𝛽12 = 𝛽21 = 𝛽22 = 1,𝛾11 = 2.5, 𝛾12 = 3.1, 𝛾21 = 2, 𝛾22 = 3.6, 𝜇1 = 0.5, 𝜇2 =0.6, it is easy to check that the conditions of Theorem 10 are
satisfied. Thus, under the corresponding controller, the drive
system (31) can be synchronized with the response system
(33) in finite time. Moreover, according to Theorem 10 and
Remark 7, we get 𝑇2 ≤ max{10.95, 11.19} = 11.19 seconds
by simple calculation. The synchronization curves between
the drive system (31) and the response system (33) are shown
in Figure 7. The time responses of the synchronization errors
between them are depicted in Figure 8. From Figures 7
and 8, it can be seen that system (31) can synchronize with
system (33) in finite time via the corresponding controller

under the given initial values. This example also further
illustrates the effectiveness and superiority of our proposed
result.

5. Conclusion

In this paper, the finite-time synchronization problem of
complex-valued recurrent neural networks with time delays
has been studied. Based on the more general assumptions for
activation functions, a nonlinear controller with independent
parameters, and a new inequality proposed and proved by
us in [52], some sufficient conditions have been established
and the settling time for synchronization has been estimated.
The obtained results have been shown to be effective and
superior by two examples. Moreover, it is well known that the
systems with stochastic terms are more extensive in practical
applications [56–60], such as the noises, and we will discuss
the addressed models with noises deeply in the future.
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Figure 3: Synchronization curves of real and imaginary parts of 𝑧1, 𝑧2, �̃�1, and �̃�2 under controller for example 1.
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