
Research Article
A Multi-Granularity Backbone Network Extraction Method
Based on the Topology Potential

Hanning Yuan,1 Yanni Han ,2,3 Ning Cai,2,3 and Wei An2,3

1 International School of Software, Beijing Institute of Technology, Beijing 100081, China
2Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
3School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China

Correspondence should be addressed to Yanni Han; hanyanni@iie.ac.cn

Received 25 December 2017; Accepted 11 October 2018; Published 22 October 2018

Guest Editor: Xiuzhen Zhang

Copyright © 2018 Hanning Yuan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Inspiredby the theory of physics field, in this paper,we propose a novel backbonenetwork compression algorithmbasedon topology
potential. With consideration of the network connectivity and backbone compression precision, the method is flexible and efficient
according to various network characteristics.Meanwhile, we define a metric named compression ratio to evaluate the performance
of backbonenetworks, which provides an optimal extraction granularity based on the contributions of degree number and topology
connectivity. We apply our method to the public available Internet AS network and Hep-th network, which are the public datasets
in the field of complex network analysis. Furthermore,we compare the obtained results with themetrics of precision ratio and recall
ratio. All these results show that our algorithm is superior to the compared methods. Moreover, we investigate the characteristics
in terms of degree distribution and self-similarity of the extracted backbone. It is proven that the compressed backbone network
has a lot of similarity properties to the original network in terms of power-law exponent.

1. Introduction

Complex networks hide a variety of relationships among
members of complex systems. Recently the driving applica-
tion is motived by discovering knowledge and rules hidden
in complex systems using network mining method [1, 2]. It
has been found in complex network to reveal some unique
statistical characteristics and dynamics features, such as
agglomeration and network evolution. However, the increas-
ingly large network data and huge network scale pose an
urgent challenge to understand network characteristics from
the global perspective. Extracting backbones from large-
scale network will contribute to understanding the network
topology and identifying kernel members, which is a pressing
problem for various applications in practice.

Taking the field of sociology, for example, when we
study the collaborations among scientists, social network
can be described at different granularities shown in Fig-
ure 1. Smyth.net is a publication network centered with Dr.
Padhraic Smyth [3]. Figure 1(a) presents the co-authorship
network with famous computer scientist Padhraic Smyth as

the core. If they collaborate with other authors to write a
paper, then an edge exists between them. The Smyth publi-
cation network consists of 286 nodes and 554 edges. With the
increment of granularity, we can regard the scientific group as
a node and collaborations between scientific groups as edges.
Then the network topology consists of 71 nodes shown in Fig-
ure 1(b). Furthermore, if the granularity keeps increasing, the
universities or research institutions of scientists are defined
as nodes, and the collaborations between them are defined
as edges, the core network structure consists of 17 nodes
simplified in Figure 1(c). Therefore, motivated by the same
problem, different granularities determine different scale of
the network topology. In order to describe complex networks
in the real world, it is inevitable to observe the topology
properties from different perspectives, such as large nodes at
fine-grained or little nodes at coarse-grained. In particular,
the focus problemdepends on themining granularity and the
expected knowledge space.

Therefore, research on backbone extraction is to explore
the core element structures without loss of the topology
properties.Thebackbone extraction achieves data acquisition
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(a) Smyth.net-286 nodes (b) Smyth.net-71 nodes (c) Smyth.net-17 nodes

Figure 1: Multi-granularities of the Smyth publication network [3].

and process, data reduction, network compression, and other
steps. By obtaining backbone structures and analyzing the
extracted backbone network, it can help to discover the
evolution process, which provides valuable contributions for
the fields of biology, physics, and computer science.

In this paper, we introduce the topology potential model
to solve the backbone network extraction problem and
describe the nodes joint interaction. Based on the topology
potential model, an algorithm is proposed to extract back-
bone network from large-scale networks. To detect the opti-
mal backbone extracting granularity, an evaluation metric
based on topology connectivity is presented. We choose the
public Internet autonomy system network and the Hep-th
network as the experiment available datasets. Through the
evaluation with precision ratio and recall ratio, our proposed
backbone extraction algorithm is proved to be more effective
compared to the baselines.

The reminder of this paper is organized as follows. In Sec-
tion 2 we briefly introduce the background and motivation.
Then the backbone extraction model is detailed in Section 3.
In Section 4 we present an algorithm to detect the backbone
network based on topology potential. Section 5 is devoted to
the analysis of the experiment results from different views.
Conclusion appears in Section 6.

2. Background

In this section, we conclude the backbone extraction problem
as two parts, application and algorithm.

From the point view of application, current research
works focus on the improvement of the previous graphics
or network simplification methods. By applying the research
results of complex networks in recent years, it will contribute
to the actual engineering compared with the superiority
of new methods and understanding them in more simpli-
fied forms. For example, based on edge betweenness and
edge information, Scellato devised a method to extract the
backbone of a city by deriving spanning trees [4]. Hutchins
detected the backbones in criminal networks in order to
target suspects exactly [5]. Also urban planners attempted

to examine the topologies of public transport systems by
analyzing their backbones [6].

In terms of backbone extraction algorithm, main
researches are aimed at the large-scale network. Most
work emphasizes the efficiency of compression algorithm,
the structure analysis of the backbone topology, and the
comparison between the extracted backbone and the actual
backbone of the network. Nan D proposed a method of
mining the backbone network in a social network [7].
In order to obtain the backbone network with minimum
spanning tree, it needs to find all the clusters in the
network. The algorithm complexity is mainly focused
on searching all clusters. Hence, the applicability of the
algorithm depends on the scale of clusters in the network.
In 2004, Gilbert C. proposed a novel network compression
algorithm [8] including two important parts, i.e., importance
compression and similarity compression. Because the
mining backbone is fixed, the experiment results show that
this method has a high precision, but the recall rate is very
low.

In short, the current researches have some shortcomings
about these algorithms. It is known that extracting the
backbone structure must be guided with a certain rule, such
as the numbers of clusters, or the importance of network
nodes, etc. Therefore, the structure of backbone network
is fixed and the recall rate is usually low. The filtering
technology based on the weight distribution of edges is able
to obtain backbone networks with different sizes. However,
the filter-based methods often suffer from the computational
inefficiency, which is quite expensive during the exhaustive
search of all nodes or edges [9–11].

3. Backbone Extraction Model

In this section, to solve the uncertainty of different granular-
ities backbones, we introduce the topology potential theory
to measure the backbone network topology. Furthermore,
to validate an optimal backbone with the most suitable
granularity, we define a metric named compression ratio and
discuss the extraction performance.
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3.1. Inspired by the Topology Potential. According to the field
theory in physics, the potential in a conservative field is
a function of position, which is inversely proportional to
the distance and is directly proportional to the magnitude
of particle’s mass or charge. Inspired by the above idea,
we introduce the theory of physical field into complex
networks to describe the topology structure among nodes
and reveal the general characteristic of underlying important
distribution [12].

Given the network G= (V, E), V is the set of nodes and
E is the set of edges. For ∀u, v∈V, let 𝜑v(u) be the potential
at any point v produced by u. Then 𝜑v(u) must meet all the
following rules:

(i) 𝜑v(u) is a continuous, smooth, and finite function;
(ii) 𝜑v(u) is isotropic in nature;
(iii) 𝜑v(u) monotonically decreased in the distance ‖v-u‖.

When ‖v-u‖=0, it reaches maximum, but does not go
infinity, and when ‖v-u‖ 󳨀→ ∞, 𝜑v(u) 󳨀→ 0.

So the topology potential can be defined as the differential
position of each node in the topology, that is to say, the
potential of node in its position. This index reflects the ability
of each node influenced by the other nodes in the network,
and vice versa. In essence the topological potential score of
each node can reflect nodes importance in the topology by
optimizing influence factor, which can reveal the ability of
interaction between nodes in the network.

There aremany kinds of field functions in physics, such as
gravitational field, nuclear force field, thermal field, magnetic
field, etc. From the scope of field force, we can classify two
types, short-range fields and long-range fields. The range
of the former fields is limited and forces decrease sharply
as the distance increases, while the latter is just the other
way. As the characteristics of small-world and modularity
structure imply that interactions among nodes are within
the locals in real-world network, each node’s influence will
quickly decay as the distance increases in accordance with
the properties of short-range fields. Meanwhile, owing to the
limited scopes of short-range among nodes in the topology
structure, it is feasible to ignore the iterated calculation of
topology potential far away from the influence range. By
this way, we can reduce the cost and computing complexity
effectively. Hence, we define the topology potential in the
form of Gaussian function, which belongs to the nuclear
force field. The potential of node Vi∈V in the network can
be formalized as

𝜑 (vi) =
n∑
j=1

(mj × e−(dij/𝜎)
2) (1)

where dij is the distance between node Vi and Vj; the
parameter 𝜎 is used to control the influence region of each
node and called influence factor; and mi ≥ 0 is the mass
of node Vi (i=1. . .n), which meets a normalization condition∑n

i=1mi = 1.
In order to measure the uncertainty of topological space,

potential entropy has been presented to be similar to the
essence of information entropy. Intuitively, if each node’s

topology potential value is different, then the uncertainty
is the lowest accounting for the smallest entropy. So a
minimum-entropy method can be used for the optimal
choice of influence factor 𝜎. This way is more reasonable
and without any pre-defined knowledge. Given a topological
potential field produced by a network G=(V, E), let the
potential score of each node V1,. . .,Vn be 𝜑(V1),. . .,𝜑(Vn),
respectively; a potential entropy H can be introduced to
measure the uncertainty of the topological potential field,
namely,

𝐻 = − 𝑛∑
𝑖=1

𝜑 (V𝑖)𝑍 log(𝜑 (V𝑖)𝑍 ) (2)

where Z is a normalization factor. Clearly, for any𝜎 ∈(0, +∞), potential entropy H satisfies 0≤H≤log(n) and
H reaches the maximum value log(n) if and only if 𝜑(V1)
=𝜑(V2)=. . .=𝜑(Vn).

3.2. Definition of the Backbone Network. Backbone network
consists of hub nodes and important edges. The hub nodes
are nodes with great influence in the topology network,
which can be measured by the values of topology potential.
Generally, the edges connected by these hub nodes are also
important. In the process of extracting backbone network,
whether to add these edges to backbone network is deter-
mined by the network connectivity.

Definition 1 (hub nodes). For the given parameter 𝛼(0 ≤ 𝛼 ≤1), the nodes whose topology potential values are ranked in
Top 𝛼 are the hub nodes to be extracted. The extraction of
backbone networks is divided into two steps:(1) Find the hubnodes as the original backbonemembers,
denoted by source. As this step is completed, each isolated
node in source is an island subnet.(2) Find the bridge ties to connect those island subnets
and join the ties to the source. Loop the two operations until
source is connected. We define the distance between two
island subnets as follows:

𝑑𝑖𝑠𝑡 (𝑠𝑢𝑏𝑔1, 𝑠𝑢𝑏𝑔2)
= min

V1∈𝑠𝑢𝑏𝑔1,V2∈𝑠𝑢𝑏𝑔2

󵄨󵄨󵄨󵄨𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑝𝑎𝑡ℎ (V1, V2)󵄨󵄨󵄨󵄨 (3)

where v1 and v2 are arbitrary nodes of subnets subg1
and subg2, respectively. The connection is added by the
shortest distance between the two subnets when we extract
the connections of backbone. If the shortest distance is
1, the bridge tie is added directly to connect the subnet.
Otherwise, the connection is added between the subnet
and the corresponding neighbor node which has the largest
topology potential value in all the neighbor nodes. Intuitively
the distance between the two island subnets is very likely to
be reduced.

3.3. Metrics of the Reduction Effectiveness. According to the
specific attributes of nodes, we can calculate the topology
properties of all nodes in the original network and sort them
in descending order. For the arbitrary node V of generated
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Test-bed: simulate complex networks
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Figure 2:The changing trend for different size of the isolated subnet.

network with different scales, rank(v) denotes its sorting
value in the backbone network and Rank(v) denotes its
sorting value in the original network. The measurement
coverage(v) is defined in

𝑐𝑜𝑛V𝑒𝑟𝑎𝑔𝑒 (V) = 𝑟𝑎𝑛𝑘 (V)
𝑅𝑎𝑛𝑘 (V) (4)

where coverage(v) denotes the coverage that backbone
network nodes cover the important nodes of the whole
network. The larger the coverage(v) value, the higher the
accuracy and the better the quality of the extracted back-
bone network. The overall quality of the backbone network
depends on the distribution of coverage(v) values for all
nodes. The expected coverage(v) of all nodes is used to
evaluate the overall performance of the backbone network.
Compress ratio is defined in

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 = ∑V∈𝑉(𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒) cov𝑒𝑟𝑎𝑔𝑒 (V)
|𝑉 (𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒)| (5)

The most important metric of backbone networks is
the available compression ratio, which is related to the
network scale. If the size of the isolated subnet in G’ is small
enough, then the probability of the backbone member is
small and the network G’ has collapsed after removing the
backbone fromG. Based on the model of BA and the Eppstein
Power law simulated by computer, we build the experimental
networks at different scales to study the effective compression
ratio. It is observed that the compression ratio changes of
lar subgs size(G’) are shown in Figure 2. When the com-
pression ratio compress ratio is large enough, then the size
of maximum isolated subnet lar subgs size(G’) changes very
little.

4. The Backbone Network Detect Algorithm

The traditional backbone compression scheme is divided
into the importance based on node and the shortest path.
The former considers that the larger the degree, the more

important the node. The weight of a node is defined as (6).
Considering the definition focuses on global elements and the
density is too large, the node weight is defined as shown in
formula (7).

𝑤deg (V) ≡
󵄨󵄨󵄨󵄨{𝑢 ∈ 𝑉 : deg (𝑢) ≤ deg (V)}󵄨󵄨󵄨󵄨|𝑉| (6)

𝑤𝑏𝑒𝑡𝑎 (V) ≡
󵄨󵄨󵄨󵄨{𝑢 ∈ 𝑁 (V) : deg (𝑢) ≤ 𝛽 ⋅ deg (V)}󵄨󵄨󵄨󵄨|𝑁 (V)| (7)

where 𝛽 is a parameter and N(v) is the set of nodes
connected to v.

The definition of node importance based on the shortest
path considers that the greater the number of nodes, the
greater the importance of nodes. The definition of weight is
shown in

𝑤𝑝𝑎𝑡ℎ (V) ≡ ∑
𝑥,𝑦∈𝑉

󵄨󵄨󵄨󵄨{𝜋 ∈ Π (𝑥, 𝑦) : V ∈ 𝜋}󵄨󵄨󵄨󵄨|𝑉|2 󵄨󵄨󵄨󵄨Π (𝑥, 𝑦)󵄨󵄨󵄨󵄨 (8)

where Π(x, y) is the shortest path between node x and
node y.

4.1. Extraction Process. In this paper, we propose an algo-
rithm to extract backbone network with specific granularities
according to user’s requirement, which is independent of
network topology structure.The practical procedure includes
two steps. In the first step, the initial hub node set H1 accord-
ing to the topology potential of nodes is found. Secondly, the
path is added based on the shortest path till the network is
connective, and finally the backbone network is generated.

A detailed description of these algorithm is given in
Algorithm 1.

4.2. Discussion of the Algorithm Complexity. The shortest
paths between all nodes in the network are calculated by
using the breadth first search method. The time complexity
is O(|𝑉||𝐸|) for undirected networks. The time complex-
ity of calculating the topology potential of each node is
O(|𝑉||𝐸|). Search backbone connections until the network
is connective. The average shortest path length of the net-
work is avg(Sp). The original subnet number of source is𝛼|𝑉|. To make the original subnets connected, the back-
bone network is a tree structure, which means we need
at least search O(𝛼|𝑉| ∗ |𝑉|avg(Sp)) links to make the
network connective. So the complexity of the algorithm is O
(max{𝛼|𝑉|2𝑎V𝑔(𝑆𝑝), |𝑉||𝐸|}).
5. Evaluation

To assess the efficiency of our backbone extraction
approaches, we choose the public available datasets as
the experiment dataset. We introduce the datasets briefly.

Internet autonomy system networks (AS) are a collec-
tion of routers and links mapped from all ten ISPs with
the biggest networks: AT&T, Sprint, and Verio, etc. These
real networks are publicly available from [14]. All the data
networks have nodes with scale from 600 to 900 and edges
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Input: network G, 𝛼(0 ≤ 𝛼 ≤ 1)
Output: backbone B(𝛼)
Matrix Sp: compute the shortest path length of all pairs of nodes; var i: = 1;
Evaluate hops: = avg(Sp); evaluate factor: =√2/3∗avg(Sp);
Begin:
repeat:
i: = i + 1;
for each node v ∈G, compute 𝜑𝑖(V):topology potential within i hops;
sort(𝜑𝑖(V), V ∈ 𝐺); source: =0;
for each node v ∈G,
if 𝜑𝑖(V), V ∈ 𝐺 rank Top 𝛼, source:= source ∪{V};
repeat:
for each pair of island subnets subg1,subg2∈source,
if distance between subg1 and subg2 is the shortest,
if distance(subg1, subg2) = 1
merge(subg1, subg2);
else
find neig1 ∈ subg1, 𝜑𝑖(neig1) = max{𝜑𝑖(v ∈ subg1)}, tie1 link neig1 and subg1

neig2 ∈ subg2, 𝜑𝑖(neig2) = max{𝜑𝑖(v ∈ subg2)}, tie2 link neig2 and subg2
source:= source ∪ {𝑛𝑒𝑖𝑔1, 𝑛𝑒𝑖𝑔2, 𝑡𝑖𝑒1, 𝑡𝑖𝑒2};

end if
end if

until network generated from source is connected
B(𝛼) fl B(𝛼) ∪ source;
until i ≥ hops
End

Algorithm 1: Detecting the backbone network based on topology potential.

with scale from 4000 to 10000. Each of them has about 400
backbone routers.

High-energy physics theory citation network (hep-th)
is collected from the e-print arXiv and covers all the citations
within a dataset of 27,770 papers with 352,807 edges [15]. If
paper i cites paper j, a directed edge is connected from i to j.
If a paper cites or is cited by a paper outside the dataset, then
the graph does not contain any information about this.

5.1. Compression Ratio. In this paper we take the networks
named as3356, as4755, as2914, and as7018 randomly and the
numbers of nodes are 1786, 226, 11745, and 6253, respectively.
In order to obtain the relevant parameters of backbone
networks at different granularity, the number of isolated
subnets cut subgs(G’) obtained by the backbone network
under different selection ratios is evenly calculated. For
instance, the scale control parameter starts from 0.01 to 1
and the step is set to 0.01. After the backbone network is
generated, the compression ratio with the corresponding
granularity can be obtained. Figure 3 shows the number of
isolated subnets generated by each network with different
compression ratios. Each pair of compression ratio and
cut subgs(G’) corresponds to a point on the coordinate
system, and the curves are fitted to these points.

It is depicted that fitted curve ismonotonically decreasing
after increasing at the beginning, as illustrated in Figure 3.
When the compression ratio increases to a certain value, the
number of generated isolated subnets no longer changes.That
is to say, it is no longer effective to compress the network
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continuously to reduce the connectivity of the network. The
solid line in the fitting curve denotes effective compression,
and the dashed part denotes invalid compression. Measuring
the performance of backbones networks needs to exclude
the situation of invalid compression ratio. In the Internet
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Table 1: Comparison with the precision ratio and recall ratio [13].

CM as1239 as2914 as3356 as7018
PR RR PR RR PR RR PR RR

Deg/All 0.91 0.27 0.97 0.19 0.93 0.18 0.91 0.21
Beta/All 0.94 0.35 0.89 0.27 0.97 0.22 0.91 0.24
Path/all 0.95 0.17 1.00 0.14 0.97 0.16 0.96 0.11
TP method 0.77 0.47 0.76 0.28 0.86 0.73 0.61 0.58
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Figure 4: The optimal compression ratios of different networks.
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Figure 5:The optimal parameters of the extracted Internetmapping
network.

mapping results, the optimal compression ratios of the
networks as3356, as4755, as2914, and as7018 are about 0.23,
0.16, 0.08, and 0.035, respectively, as illustrated in Figure 4.

5.2. Precision Ratio and Recall Ratio. Measuring the perfor-
mance of backbone network is to explore the optimal high-
performance network metrics. For a large-scale network, it
is impossible to calculate the backbone at the whole granu-
larities, as the time complexity will be quite high. Using the
binary optimization strategy, when the dichotomous range
is small enough, we can determine the maximum effective

compression ratio. For example, if the range is set to 0.01, the
search time is log1/2 (0.01) ∼ 7.

After discovering the maximum effective compression
ratio, we search the optimal compression ratio and the corre-
sponding optimal backbone network. The Internet mapping
network has real backbone node data; thus we can compare
the extracted backbone network to verify the extraction
results on the real backbone network.Theoptimal parameters
to evaluate the extracted backbone are shown in Figure 5.

Compared with the traditional methods adopted in [7], it
is found that these methods can obtain high precision ratios
about the value of 0.9, while the recall ratios of the traditional
methods are lower than 0.2. On the other hand, the precision
ratio of the topology potential extraction method (named TP
method) is approximately 0.8 and the recall ratio increased
to about 0.5. Since an excellent extraction method requires
a higher recall ratio, our method is superior to the tradi-
tional methods from this aspect. Other related extraction
algorithms do not have real instance verification, and the
extraction quality is unknown and lacks verification. Part of
the experimental results is listed in Table 1. The abbreviation
of compressing method is CM, precision ratio is PR, and the
recall ratio is RR.

5.3. Coverage of Backbone with Various Hops. Taking the
Hep-th network as experimental data, we analyze the cover-
age performance of backbone networks with different hops.
In this paper, the range of hops is adopted from 2 to 7. Firstly,
we take the traditional centrality measurement, degree,
betweenness, and closeness to analyze, as shown in Figure 6.
We compute the node important properties of the generated
backbone network with various hops. The coordinate point
indicates the nodes proportions of the backbone network
sorted the top i to the nodes of the original network sorted
the top ranki, defined as coverage(i).The important attributes
are node degree (the upper left), node betweenness (the upper
right), node closeness (the lower left), and edge betweenness
(the lower right).

The results show that using different centrality metrics
to measure the extraction results with various hops has
different advantages. For example, when the metric is degree,
using 2 hops can get the best extraction effect. When the
metric is closeness, using 7 hops can get the best extraction
effect. Therefore, in this paper, we use the topology potential
to extract backbone networks with specific granularities
according to user’s requirement, which is independent of
network topology structure. We can get the comprehensive
results of extracted backbone network.
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Figure 6: The coverage of backbone in various hops.

6. Conclusion

In this paper, we introduced the topology potential to solve
the problem of backbone network extraction. Based on
the novel topology measurement, an algorithm is proposed
to extract backbone networks at different granularities. In
order to detect the optimal backbone extraction granularity,
an evaluation metric that considers the tradeoff between
network connectivity and network properties is presented.
By experiments on the public available datasets of Internet
AS network and the Hep-th Network, it is proven that
the precision ratio and recall ratio to extract the back-
bone network are superior to current methods. In the
future, we will investigate the performance of backbone
network at different scale and the dynamic evolution prop-
erties.
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