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A state-derivative feedback (SDF) is added into the designed control protocol in the existing paper to enhance the robustness of a
fractional-order multiagent system (FMS) against nonuniform time delays in this paper. By applying the graph theory and the
frequency-domain analysis theory, consensus conditions are derived to make the delayed FMS based on state-derivative
feedback reach consensus. Compared with the consensus control protocol designed in the existing paper, the proposed SDF
control protocol with nonuniform time delays can make the FMS with SDF and nonuniform time delays tolerate longer time
delays, which means that the convergence speed of states of the delayed FMS with SDF is accelerated indirectly. Finally, the
corresponding results of simulation are given to verify the feasibility of our theoretical results.

1. Introduction

It is well known that the distributed coordination control
of multiagent systems has received extensive research
attention in various fields including robotics and physics.
In the distributed coordination control, it is a critical
problem for us to design control laws with the informa-
tion of states of the agents and their neighbors to insure
that multiple agents can agree on certain quantities of
interest and this problem is often referred to as the consensus
problem [1]. With the development of technologies such as
computers, networks, and communications, consensus of
multiagent systems has gradually shown enormous potential
applications in the field of swarming [2], flocking [3], forma-
tion control [4], unmanned air vehicles [5], and distributed
sensor networks [6].

With the development of traditional integer-order
derivatives and integrals, the concept of fractional calculus
has long been proposed. The earliest concept of fractional
calculus could be probably traced back to the 17th century
[7]. Generally, different from the integer-order derivatives
and integrals, the essential characteristic or behavior of an

object could be better revealed by the orders of fractional
calculus [8]. With the development of fractional-order deriv-
atives and integrals, its applications have been considered by
many scholars. The authors in [9] studied the fractional-
order derivatives and integrals to establish the stress-strain
relationships of viscoelastic materials. The authors in [10]
simulated the fractional-order dynamical characteristics of
self-similar protein. In [11, 12], the proportional-integral dif-
ferential (PID) controllers whose dynamics were fractional-
order dynamics were proposed and the performance of the
fractional-order PID controllers was superior to that of the
classical integer-order ones. Moreover, it has been stated in
[13] that fractional derivatives were excellent tools for
representing the memories and hereditary effects of all
manner of materials and processes.

Although fractional-order derivatives and integrals have
been studied for a long time, their applications in multiagent
systems have just attracted the attention of researchers in
recent years. As far as we know, the consensus problem of
FMSs was first investigated in [8]. Since then, many research
results have been continuously springing up about consensus
problems of FMSs [13–17]. The consensus problem of FMSs
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with a reference state was studied in [13, 14]. The consensus
of FMSs about event-triggered control was investigated in
[15]. In particular, the authors in [16] studied consensus
control protocols for heterogeneous FMSs, which were
composed of two different kinds of agents. In [17], the
tracking of consensus for the FMSs based on the control
method of sliding mode was investigated. Because time
delays are ubiquitous in a FMS, some research results
begin to take the impact of delays into account. The
authors in [18] derived a consensus condition to guaran-
tee the consensus of FMSs whose input delays were
identical. In [19, 20], the authors successively studied
the FMS with communication delays, whose homogeneous
dynamics and heterogeneous dynamics were used to illus-
trate the agents of a system. In [21], the two types of
maximum tolerable delay were obtained to insure reaching
consensus for a FMS, whose nonuniform time delays
contained up to n n − 1 different values when the FMS
consisted of n agents. In [22, 23], a distributed consensus
protocol based on the delayed state-derivative feedback
(SDF) was designed to improve the robustness against
communication delays, which were identical. Hitherto, there
are few research works done on the improvement for
consensus performance of the FMSs with nonuniform time
delays and the consensus of FMSs with SDF and nonuniform
time delays.

Hence, we shall study the impact of time delays on the
consensus of FMSs based on SDF and how to enhance
robustness of the delayed FMSs to nonuniform time delays.
First of all, a control protocol based on delayed SDF is
designed and the closed-loop dynamics are built by applying
graph theory and matrix theory tools. Then, by employing
the Laplace transform of the Caputo derivative, the transfer
function matrix of the delayed FMS based on SDF is derived
and the consensus problems of the delayed FMS based on
SDF are transformed into the distribution problems of the
eigenvalues of the transfer function matrix in the complex
plane, that is, the stability problems of the delayed FMS based
on SDF. Finally, the two types of maximum tolerable delay
are obtained to guarantee consensus for the delayed FMS
based on SDF.

The main contributions of this article are as follows. First,
we consider the fractional-order dynamics. The fractional-
order dynamics can better reveal the essential characteristic
or behavior of an object in a complex environment. Second,
we consider the nonuniform time delays which contain
symmetric and asymmetric time delays, and obtain the two
types of maximum tolerable delay. Third, we can determine
the range of fractional-order α to improve the robustness of
the FMS with nonuniform time delays by using a graphical
method. Finally, we add a SDF into the designed control pro-
tocol to enhance the robustness of a FMS against nonuniform
time delays.

Compared to the previous research work, the following
merits exist in this paper. Firstly, unlike the results in [21],
this paper will enhance the consensus performance of the
FMS with nonuniform time delays in [21] under the same
conditions. Secondly, compared with research on the consen-
sus of integer-order systems based on SDF in [1, 24], this

paper mainly studies the consensus of FMSs based on SDF.
Finally, although the consensus of delayed FMSs based on
SDF in [22, 23] was investigated, all the time delays in [22,
23] were uniform time-delays, which contain the same
value. However, this paper considers nonuniform time-
delays, which contain up to n n − 1 different values when
the FMS consists of n agents.

The main contents of this paper are as follows. Section
2 introduces some basic preliminaries about graph theory,
fractional operator, and its Laplace transform. A control
protocol based on delayed SDF is designed and the
closed-loop dynamics is built in Section 3. The conver-
gence analysis of consensus and the sufficient conditions
are obtained in Section 4. In Section 4, we also study the
effect of the designed protocol with delayed SDF on the
robustness of the FMS against nonuniform time delays.
In Section 5, to verify the theoretical results, some examples
are simulated. Finally, the conclusions are presented in
Section 6.

2. Preliminaries

2.1. Graph Theory. Let G V ,ℰ,A be an interacted graph
with the node set V = v1, v2, v3,… , vn , the edge set ℰ ⊆
V ×V , and a weighted adjacency matrix A = aik ∈ℝn×n.
The node indices belong to a finite index set ℐ = 1, 2,… ,
n . An edge eik = vk, vi depicts that node vi can receive
information from node vk, which means aik > 0, otherwise
aik = 0. Besides, we assume aii = 0 for i ∈ℐ . Define Ni = k
∈ℐ , k ≠ i as the subscript set of neighbours of node vi. If
a graph describes all the edges eik ∈ℰ to satisfy aik = aki ≥ 0,
then the graph is called an undirected graph; if there exists
any aik ≠ aki, then the graph is called a directed graph. A
directed path is a sequence of edges in a directed graph with
the form v1, v2 , v2, v3 , v3, v4 ,… , where vi ∈V , and if
there is a path from every node to every other node, the graph
is said to be strongly connected. A spanning tree exists in a
directed graph, which means there is a node such that every
other node has a directed path to this node. The out-degree
of node vi is defined as degout vi =∑M

k=1aik, and the Lapla-
cian matrix of the interaction graph is L = Δ −A ∈ℝn×n,
where Δ ≜ diag degout v1 , degout v2 ,… , degout vi ,… ,
degout vn . For some graphs such as G1, G2,… , GM , and
graph G composed of the same nodes, the L of graph G is
the sum of the other graphs’ Laplacian matrix if the edge
set of graph G is the sum of that of the other graphs G1, G2
,… , GM , that is, L =∑m

m=1Lm.

Lemma 1 (see [25]). If graph G is an undirected connected
graph, then its Laplacian matrix L has a zero eigenvalue and
the other eigenvalues are positive real numbers.

Lemma 2 (see [25]). If graph G is a directed graph and has a
spanning tree, then its Laplacian matrix L has a zero eigen-
value and the other eigenvalues have a positive real part.

2.2. Fractional Operator. There are several common frac-
tional operator definitions such as the Caputo operator
and Grunwald-Letnikov operator. This paper will use the
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Caputo operator to analyze the asymptotic consensus
properties because it is widely used in engineering and
its physical meaning is easy to understand. The derivative
of the Caputo operator of f t is defined as follows:

C
0D

α
t f t = 1

Γ u − α

t

0

f u η

t − η α−u+1 dη, 1

where α is the order of the derivative of Caputo operator,
u − 1 < α ≤ u, u ∈ Z+, and Γ ⋅ is given by

Γ σ =
∞

0
e−t tσ−1dt, 2

where σ is an arbitrary real number.

2.3. Laplace Transform. In order to facilitate the development
of the subsequent results, we let f α t replace C

0D
α
t f t , and

let F s =L f t = ∞
0− e

−st f t dt, then the Laplace trans-
form of the Caputo derivative is obtained:

L f α t =
sαF s − sα−1 f 0− , α ∈ 0, 1 ,
sαF s − sα−1 f 0− − sα−2 f ′ 0− , α ∈ 1, 2 ,

3

where f 0− = limt→0− f t and f ′ 0− = limt→0− f ′ t .

3. Problem Formulation

Assume that a FMS is made up of n agents, each of which is
considered as a node in graph G . G V ,ℰ,A represents the
communication topology of the FMS. The dynamic model of
agent i is given as follows:

x α
i t = ui t , i ∈ℐ, 4

where the ith agent’s state is denoted by xi t ∈ℝ, the α order

Caputo derivative of xi t is denoted by x α
i t α ∈ 0, 1 ,

and the control input is denoted by ui t ∈ℝ.

Definition 1. The FMS in (4) can achieve consensus when the
states of all agents satisfy

lim
t→+∞

xi t − xk t = 0, 5

for ∀i, k ∈ℐ.

Authors in [21] studied the consensus problems of a FMS
with nonuniform time delays, and the distributed control
protocol is designed by

ui t = 〠
k∈Ni

aik xk t − τik − xi t − τik , i, k ∈ℐ, 6

where aik denotes the element of A , Ni denotes the subscript
set of neighbours of the agent i, and τik is the time delay it

takes agent i to receive the information of state of the
agent k. If τik = τki holds for all i, k ∈ℐ, the time delays
are said to be symmetric. Otherwise, the time delays are said
to be asymmetric.

In [21], it has been illustrated that the consensus of the
FMS in (4) with nonuniform time delays can be achieved
by the protocol in (6) when all the τik < τ, which is called
the maximum tolerable delay. Moreover, the FMS in (4) can-
not achieve consensus by the protocol in (6) when all the
τik > τ. Motivated by the method in [1, 24], we shall use the

information xk t − τik + γx α
k t − τik and xi t − τik + γx α

i
t − τik , respectively, instead of xk t − τik and xi t − τik to
reduce the impact of time delays on consensus, where γ
denotes the intensity of the delayed SDF. In addition, we also
assume that τm ∈ τik i, k ∈ℐ m = 1, 2,… ,M denote M
different time delays. Finally, the control protocol in (6) can
be rewritten to

ui t = 〠
k∈Ni

aik xk t − τm − xi t − τm

+ γ x α
k t − τm − x α

i t − τm

7

Define φ t = x1 t , x2 t ,… , xn t T . By the protocol in
(7), the closed-loop dynamics of the FMS in (4) with SDF and
nonuniform time delays can be written as

φ α t = − 〠
M

m=1
Lmφ t − τm − γ 〠

M

m=1
Lmφ

α t − τm , 8

where φ α t represents the Caputo derivative of φ t with α
order and Lm represents the Laplacian matrix of a subgraph,
which is associated with the time delay τm.

4. Consensus Convergence Analysis

4.1. Case 1: Symmetric Time Delays over Undirected Topology

4.1.1. Main Results of Case 1

Theorem 1. Consider a FMS with SDF and symmetric time-
delays over a connected and undirected graph G . By the
distributed control protocol in (7), the FMS in (8) with SDF
and symmetric time delays can asymptotically achieve consen-
sus if all τm < τ, and the FMS in (8) with SDF and symmetric
time delays cannot achieve consensus if all τm > τ.

τ = π 2 − α

2ω + 1
ω

arctan γωα sin πα/2
1 + γωα cos πα/2 , 9

where

ω =
γλ2n cos πα/2 + λn 1 + γ2 cos2 πα/2 λ2n − γ2λ2n

1 − γ2λ2n

1/α

, γ ∈ 0, 1
λn

,

10

and λn is the maximum eigenvalue of L.
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Proof 1. Here, the dynamic performance of the FMS in (8)
with SDF and symmetric time delays is studied, so it is not
necessary for us to consider the impact of the initial state.
Taking the Laplace transform to the FMS in (8) with SDF
and symmetric time delays, we have

sαInΨ s − sα−1Inφ 0− = − 〠
M

m=1
Lme

−sτm + γ 〠
M

m=1
Lms

αe−sτm Ψ s ,

11

where Ψ s is the Laplace transform of φ t , φ 0− is the
initial value of φ t , and In ∈ℝn×n is the unit matrix.

From (11), we have the characteristic equation of the
FMS in (8) with SDF and symmetric time delays:

det sαIn + γ 〠
M

m=1
Lms

αe−sτm + 〠
M

m=1
Lme

−sτm = 0 12

The roots of (12) are called the eigenvalues of the FMS in
(8) with SDF and symmetric time delays. First of all, we
assume that the FMS in (8) with SDF and symmetric time
delays is stable and can reach consensus when τm = 0. Then,
it is easy to obtain that as τm increases continuously from
zero, the eigenvalues of the FMS in (8) with SDF and

symmetric time delays in the complex plane will change
continuously from the LH (left half-plane) to the RH (right
half-plane). Once the trajectories of these eigenvalues reach
the RH through the imaginary axis, the FMS in (8) with
SDF and symmetric time delays will no longer be stable,
which results in the failure of the consensus condition. So,
it is essential for us to consider the time delay τ when the
nonzero eigenvalues of the FMS in (8) with SDF and sym-
metric time delays appear on the imaginary axis for the first
time, and the time delay τ, which is known as maximum tol-
erable delay, will become the critical point of stability of the
FMS in (8) with SDF and symmetric time delays. Now
set s = −jω and it is the imaginary eigenvalue of the FMS
in (8) with SDF and symmetric time delays, u ∈ℂn is
the corresponding eigenvector, u = 1, and let uH be the
conjugate transpose of u, then the following equation can
be obtained:

−jω αIn + γ 〠
M

m=1
Lm −jω αejωτm + 〠

M

m=1
Lme

jωτm u = 0

13

Since all the roots of (12) appear in the form of conju-
gate pairs, it is only necessary to study the case ω > 0. Let
the left side of (13) be multiplied by uH , then we have the
following series of equations:

Then, we define

uH −jω αIn + γ 〠
M

m=1
Lm −jω αejωτm + 〠

M

m=1
Lme

jωτm u = 0,

uHu −jω α + uH γ 〠
M

m=1
Lm −jω αejωτm + 〠

M

m=1
Lme

jωτm u = 0,

〠
M

m=1
uHLmue

jωτm γ −jω α + 1 = −uHu −jω α,

〠
M

m=1

uHLmu
uHu

ejωτm = − −jω α

γ −jω α + 1 = −ωα −j α

1 + γ −j αωα

= −ωα cos −π/2 + j sin −π/2 α

1 + e−j πα/2 γωα

= −ωαej −πα/2

1 + γωα cos πα/2 − jγωα sin πα/2

= ωαej π 2−α /2

1 + γωα cos πα/2 2 + γωα sin πα/2 2e−j arctan γωα sin πα/2 /1+γωα cos πα/2

14

F ω ≜ 〠
M

m=1
ame

jωτm = ωαej π 2−α /2

1 + γωα cos πα/2 2 + γωα sin πα/2 2e−j arctan γωα sin πα/2 /1+γωα cos πα/2
, 15
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where am = uHLmu/uHu.
According to (15) and Lemma 1, we can get

F ω = 〠
M

m=1
ame

jωτm ≤ 〠
M

m=1
am = uHLu

uHu
≤ λn 16

Since F ω = ωα/ 1 + γωα cos πα/2 2 + γωα sin πα/2 2,

we have ωα/ 1 + γωα cos πα/2 2 + γωα sin πα/2 2 ≤
λn, which leads to ω ≤ ω = γλ2n cos πα/2 + λn

1 + γ2 cos2 πα/2 λ2n − γ2λ2n/1 − γ2λ2n
1/α.

Next, we need to discuss the principal value of the
argument of F ω . Based on (15), we know that

arg F ω = π 2 − α

2 + arctan γωα sin πα/2
1 + γωα cos πα/2 ≜ θ ω ,

17

where θ ω ∈ π/2 + arctan γω, π .
If we suppose that δ = sin πα/2 and σ = cos πα/2 ,

then it is easy to arrive at δ2 + σ2 = 1 and we get

τ ω ≜
θ ω

ω
= π 2 − α

2ω
Γ1 ω

+ 1
ω

arctan γωα sin πα/2
1 + γωα cos πα/2

Γ2 ω

= π 2 − α

2ω
Γ1 ω

+ 1
ω

arctan γωαδ

1 + γωασ

Γ2 ω

18

According to (18), we can calculate the first derivative of
τ ω about ω:

Γ ω ≜
dτ ω

dω
= Γ1′ ω + Γ2′ ω , 19

where

Γ1′ ω = −
π 2 − α

2ω2 < 0, 20

and

Γ2′ ω = αγδωα−1 1 + γσωα − αγ2δσω2α−1

ω 1 + γσωα 2 + γ2δ2ω2α −
arctan γδωα/ 1 + γσωα

ω2

= αγδωα 1 + γσωα − αγ2δσω2α

ω2 1 + γσωα 2 + γ2δ2ω2α −
arctan γδωα/ 1 + γσωα

ω2

= αγδωα

ω2 1 + γσωα 2 + γ2δ2ω2α
−

arctan γδωα/ 1 + γωασ

ω2

= αγδωα/ 1 + γσωα 2 + γ2δ2ω2α − arctan γδωα/ 1 + γσωα

ω2

21

If we assume that there is a functionZ ω established by

Z ω = arctan γδωα

1 + γσωα
−

αγδωα

1 + γσωα 2 + γ2δ2ω2α
,

22

then the first derivative of Z ω is as follows:

Since Z′ ω > 0, Z ω is an increasing function. It
is very convenient to obtain that Z ω >Z 0 = 0 when
ω > 0. Since Z ω > 0, Γ2′ ω < 0, which means Γ ω =

Γ1′ ω + Γ2′ ω < 0. Since Γ ω < 0, τ ω is a decreasing
function of ω, and when ω ≤ ω, there is

τ = τ ω ≤ τ ω 24

Z′ ω = αγδωα−1 1 + γσωα − αγ2δσω2α−1

1 + γσωα 2 + γ2δ2ω2α −
α2γδωα−1 1 + γσωα 2 + γ2δ2ω2α − 2 1 + γσωα αγσωα−1 + 2αγ2δ2ω2α−1 αγδωα

1 + γσωα 2 + γ2δ2ω2α 2

= αγδωα−1 1 + γσωα 2 + γ2δ2ω2α − α2γδωα−1 1 + γσωα 2 + γ2δ2ω2α + 2 1 + γσωα αγσωα−1 + 2αγ2δ2ω2α−1 αγδωα

1 + γσωα 2 + γ2δ2ω2α 2

= α 1 − α γδωα−1 1 + 2γσωα + γ2ω2α + 2αγσωα−1 + 2αγ2ω2α−1 αγδωα

1 + γσωα 2 + γ2δ2ω2α 2

= αγδωα−1 1 − α + 2 1 − α γσωα + 1 − α γ2ω2α + 2αγσωα + 2αγ2ω2α

1 + γσωα 2 + γ2δ2ω2α 2

= αγδωα−1 1 − α + 2γσωα + 1 + α γ2ω2α

1 + γσωα 2 + γ2δ2ω2α 2 > 0

23
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On the other hand, when all τm < τ, the following
inequality can be obtained:

τ ω = θ ω

ω
=
arg ∑M

m=1ame
jωτm

ω
≤
max ωτm

ω
< ωτ

ω
= τ

25

The contradiction between the inequality in (25)
and the inequality in (24) is obvious. Accordingly,
when all τm are less than τ, we can avoid the eigen-
values of the FMS in (8) with SDF and symmetric time
delays crossing the imaginary axis to reach the unstable
RH, and the FMS in (8) with SDF and symmetric time
delays can reach consensus; when all τm are equal to τ,
s = −jω is an imaginary eigenvalue of the FMS in (8)
with SDF and symmetric time delays, whose corresponding
eigenvector u ω makes ∑M

m=1am = λn hold; when all τm
are more than τ, there must exist at least one eigenvalue
of the FMS in (8) with SDF and symmetric time delays
in the RH, and the states of the FMS in (8) with SDF
and symmetric time delays will no longer converge and the
FMS in (8) with SDF and symmetric time delays cannot
reach consensus.

Remark 1. From Theorem 1, we can get τ > 0 and ω > 0. γ
∈ 0, 1/λn is implied in (9). So it is necessary for achieving
consensus of the FMS in (8) with symmetric time delays that
γ ∈ 0, 1/λn .

Corollary 1. Consider a FMS with SDF and symmetric time
delays over a connected and undirected graph G . When α =
1, by the distributed control protocol in (7), the FMS in (8)
with SDF and symmetric time delays can asymptotically
achieve consensus if all τm < τ, and the FMS in (8) with
SDF and symmetric time delays cannot achieve consensus if
all τm > τ.

τ = π

2ω + 1
ω

arctan γω, 26

where ω = λn 1 − γ2λ2n/1 − γ2λ2n, γ ∈ 0, 1/λn , and λn is the

maximum eigenvalue of L.

4.1.2. Robustness Analysis for Case 1. According to Theorem
1, for the given FMS in (4), if applying the control protocol in
(6), that is, the control protocol in (7) with γ = 0, we obtain

τ γ=0 =
π 2 − α

2λ1/αn

≜ τup1 27

If applying the control protocol in (7), we obtain

τ 0<γ<1/λn =
π 2 − α

2ω + 1
ω

arctan γωα sin πα/2
1 + γωα cos πα/2 ≜ τup2,

28

where ω = γλ2n cos πα/2 + λn 1 + γ2 cos2 πα/2 λ2n − γ2λ2n/
1 − γ2λ2n

1/α

In order to show the effect of the protocol in (7) on the
robustness against symmetric time delays, we are supposed
to further determine the range of α to insure τup2 > τup1,
which means

τup ≜ τup2 − τup1 > 0 29

Obviously, the inequality in (29) contains multiple
parameters. However, for a fix undirected interconnection
topology, we can determine the range of α and find a proper
value of γ to improve the robustness of the FMS with sym-
metric time delays. Since it is very difficult for us to solve
the inequality in (29) by the analytic method, we shall analyze
it by the graphical method and let λn = 3 5229. Figure 1 is the
three-dimensional diagram of τup with respect to parameters
α and γ, and it is easy for us to find proper parameters α, γ to
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Figure 1: The three-dimensional diagram of τup with respect to
parameters α and γ in case 1.
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Figure 2: The relationship between τup and αwhen γ = 0 1 in case 1.
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ensure τup > 0 by the graphical method. According to
Figure 1, we can find that α ∈ α∗, 1 when γ changes from
0 to 1/λn and τup > 0, and α∗ which is decided by the
inequality in (29) is easy to obtain in Figure 1 when the
value of γ is determined.

In particular, if we assume γ = 0 1, then the relationship
between τup and α can be shown in Figure 2. According to
Figure 2, it is obvious that α ∈ 0 854,1 α∗ ≜ 0 854 when
τup > 0 and γ = 0 1.

4.2. Case 2: Asymmetric Time Delays over Directed Topology

4.2.1. Main Results of Case 2

Theorem 2. Consider a FMS with SDF and asymmetric time
delays over a directed interconnection graph G that has a
spanning tree. By the distributed control protocol in (7), the
FMS in (8) with SDF and asymmetric time delays can asymp-
totically achieve consensus if all τm < τ, and the FMS in (8)

with SDF and asymmetric time delays cannot achieve consen-
sus if all τm > τ.

τ = min
λi ≠0

π 2 − α /2 + arctan γωi
α sin πα/2 /1 + γωi

α cos πα/2 − arg λi
ωi

,

30

where ωi = γ λi
2 cos πα/2 + λi 1 + γ2 cos2 πα/2 λi

2 − γ2 λi
2

/1 − γ2 λi
2 1/α, γ ∈ 0, γ∗ γ∗ =min λi ≠0 1/ λi , λi is the

λi which makes τminimized, and λi is the ith eigenvalue of L.

Proof 2. Let one apply the above frequency-domain proof
method, which has been used in proving Theorem 1. Suppose
that s = −jω ≠ 0 is the eigenvalue of the FMS in (8) with SDF
and asymmetric time delays on the imaginary axis, u ∈ℂn is
the corresponding eigenvector, and u = 1. According to
Lemma 2, one can get

Taking the modulus of both sides of (31) and regarding ω
as the function of Ba , we can get

ω Ba =
γ Ba

2 cos πα/2 + Ba 1 + γ2 cos2 πα/2 Ba
2 − γ2 Ba

2

1 − γ2 Ba
2

1/α

,

32

where ω Ba is an increasing function of Ba .
Calculating the principal value of the argument of (31)

on both sides separately, and we have

arg Ba = π 2 − α

2 + arctan γωα sin πα/2
1 + γωα cos πα/2 33

According to the definition of Ba in (31), we have

arg Ba ≤ arg 〠
M

m=1
am +max ωτm , 34

and it yields that

max ωτm ≥
π 2 − α

2 + arctan γωα sin πα/2
1 + γωα cos πα/2 − arg 〠M

m=1am

ε

35

Since ∑M
m=1am = uHLu/uHu, the possible values of ∑M

m=1
am must be nonzero eigenvalues of L, that is, ∑M

m=1am =
λi λi ≠ 0 . So when γ <min λi ≠0 1/ λi and Ba ≤ λi ,

we have ω Ba ≤ ω λi = ωi = γ λi
2 cos πα/2 + λi

1 + γ2 cos2 πα/2 λi
2 − γ2 λi

2/1 − γ2 λi
2 1/α. If we let

all τm < τ, we can obtain

Ba ≜ 〠
M

m=1
ame

jωτm = − −jω α

γ −jω α + 1

= ωα

1 + γωα cos πα/2 2 + γωα sin πα/2 2
ej π 2−α /2+arctan γωα sin πα/2 /1+γωα cos πα/2

31

max ωτm < ωiτ = min
λi ≠0

π 2 − α /2 + arctan γωi
α sin πα/2 /1 + γωi

α cos πα/2 − arg λi
ωi

ωi

≤ ε = π 2 − α

2 + arctan γωα sin πα/2
1 + γωα cos πα/2 − arg 〠

M

m=1
am

36
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The contradiction between the inequality in (36) and the
inequality in (35) is obvious. Accordingly, when all τm < τ,
the eigenvalues of the FMS in (8) with SDF and asymmetric
time delays cannot reach or cross the imaginary axis, then
the FMS in (8) with SDF and asymmetric time delays will
remain stable and the FMS in (8) with SDF and asymmetric
time delays can reach consensus. On the other hand, when
all τm > τ, there must exist at least one eigenvalue of the
FMS in (8) with SDF and asymmetric time delays in the
RH, then the states of the FMS in (8) with SDF and
asymmetric time delays will no longer converge and the
FMS in (8) with SDF and asymmetric time delays cannot
reach consensus.

Remark 2. From Theorem 2, let one get τ > 0 and ωi > 0.
γ ∈ 0, γ∗ γ∗ =min λi ≠0 1/ λi is implied in (30). So it
is necessary for achieving consensus of the FMS in (8) with
SDF and asymmetric time delays that γ ∈ 0, γ∗ γ∗ =
min λi ≠0 1/ λi .

Corollary 2. Consider a FMS with SDF and asymmetric time
delays over a directed interconnection graph G with a span-
ning tree. When α = 1, by the distributed control protocol in
(7), the FMS in (8) with SDF and asymmetric time delays
can asymptotically achieve consensus if all τm < τ, and the
FMS in (8) with SDF and asymmetric time delays cannot
achieve consensus if all τm > τ.

τ = min
λi ≠0

π/2 + arctan γωi − arg λi
ωi

, 37

where ωi = λi 1 − γ2 λi
2/1 − γ2 λi

2
, γ ∈ 0, γ∗ γ∗ = min

λi ≠0

1/ λi , λi is the λi which makes τ minimized, and λi is
the ith eigenvalue of L.

4.2.2. Robustness Analysis for Case 2. According to Theorem
2, for the given FMS in (4), if applying the control protocol in
(6), that is, the control protocol in (7) with γ = 0, we obtain

τ γ=0 = min
λi ≠0

π 2 − α /2 − arg λi
λi

1/α ≜ τup1 38

When we apply the control protocol in (7), we obtain

where ωi = γ λi
2 cos πα/2 + λi 1 + γ2 cos2 πα/2 λi

2 − γ2 λi
2/

1 − γ2 λi
2 1/α, and γ∗ =min∣λi∣≠0 1/ λi .

In order to show the effect of the protocol in (7) on the
robustness against asymmetric time delays, we are supposed
to further determine the range of α to insure τup2 > τup1,
which means

τup ≜ τup2 − τup1 > 0 40

Obviously, the inequality in (40) contains multiple
parameters. However, for a fix directed interconnection
graph G that has a spanning tree, we can determine the range
of α and find a proper value of γ to improve the robust-
ness of the FMS with asymmetric time delays. Since it is
very difficult for us to solve the inequality in (40) by the
analytic method, we shall analyze it by the graphical method

and let γ∗ = 0 6967. Figure 3 is the three-dimensional dia-
gram of τup with respect to parameters α and γ, it is easy
for us to find proper parameters α, γ to ensure τup > 0 by
the graphical method. According to Figure 3, we can find that
α ∈ α∗, 1 when γ changes from 0 to γ∗ and τup > 0, and α∗

which is decided by the inequality in (40) is easy to obtain
in Figure 3 when the value of γ is determined.

In particular, if we assume γ = 0 1, then the relationship
between τup and α can be shown in Figure 4. According to
Figure 4, it is obvious that α ∈ 0 7503,1 α∗ ≜ 0 7503 when
τup > 0 and γ = 0 1.

5. Simulation Results

It is necessary for us to compare the conclusions of this paper
with those of [21], so the simulation conditions of this paper
must be consistent with those of [21].
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Figure 3: The three-dimensional diagram of τup with respect to
parameters α and γ in case 2.

τ 0<γ<γ∗ = min
λi ≠0

π 2 − α /2 + arctan γωi
α sin πα/2 /1 + γωi

α cos πα/2 − arg λi
ωi

≜ τup2, 39
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5.1. Example 1: Simulations for Case 1. Consider a FMS
described by (4) with four agents, whose communication
topology is given in Figure 5. The L which is associated with
this topology graph is

L =

2 6 −0 7 −0 9 −1
−0 7 1 5 0 −0 8
−0 9 0 0 9 0
−1 −0 8 0 1 8

, 41

and its four eigenvalues are 0, 0.8771, 2.4000, and 3.5229,
respectively. From the four eigenvalues of L, we can get
λn = 3 5229, which leads to γ < 1/λn = 0 2838.

According robustness analysis for case 1, α ∈ 0 854,1
α∗ ≜ 0 854 when τup = τup2 − τup1 > 0 and γ = 0 1. Accord-
ing to Theorem 1 and Remark 1, it is easy to obtain that the
maximum tolerable delay of the FMS in (4) by the protocol
in (6), that is, the protocol in (7) with γ = 0 is τup1 = τ =
0 4264 s and the maximum tolerable delay of the FMS in
(4) by the protocol in (7) with γ = 0 1 is τup2 = τ = 0 4474 s
when α = 0 9. Now let us suppose that the initial states of

the FMS (4) are taken as x1 t = 0 = −6 4, x2 t = 0 = −3 2,
x3 t = 0 = 3 2, and x4 t = 0 = 6 4. Here, a set of symmetric
time delays is used to simulate τ12 = τ21 = 0 430 s, τ13 =
τ31 = 0 435 s, τ14 = τ41 = 0 440 s, and τ24 = τ42 = 0 445 s.

It is obvious that all symmetric time delays τm are greater
than τup1 and less than τup2.

Figures 6 and 7 show the trajectories of xi t with the
symmetric time delays by applying the different control
protocols when τup1 < all τm < τup2. From these simulation
results, it is obvious that the given FMS in (4) by the control
protocol in (6) diverges and cannot reach consensus, whereas
the FMS in (4) applying the SDF control protocol in (7)
converges to the same states and can reach consensus. Hence,

1 2

3 4

Figure 5: The communication topology in example 1.
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Figure 6: The trajectories of xi t applying the protocol in (6) under
symmetric time delays when all τm > τup1.
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symmetric time delays when all τm < τup2.
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the introduced SDF control protocol can enhance the
robustness of the FMS in (4) to symmetric time delays.

On the other hand, under the same conditions, we
suppose that τ12 = τ21 = 0 45 s, τ13 = τ31 = 0 46 s, τ14 = τ41 =
0 47 s, and τ24 = τ42 = 0 48 s. Figure 8 shows the trajectories
of xi t applying the protocol in (7) under symmetric time
delays when all τm > τup2. It is clear that the FMS in (4)
cannot reach consensus.

5.2. Example 2: Simulations for Case 2. Consider a FMS
described by (4) with four agents, whose communication
topology with a spanning tree is given in Figure 9. The L
which is associated with this topology graph is

L =

1 0 0 −1
−0 7 0 7 0 0
−0 9 0 0 9 0
0 −0 8 0 0 8

, 42

and its four eigenvalues are 0, 0.9000, 1.2500+ 0.7053i, and
1.2500− 0.7053i, respectively. From the four eigenvalues of
L, we can get γ∗ =min λi ≠0 1/ λi = 0 6967, which leads to
γ < γ∗ = 0 6967.

According robustness analysis for case 2, α ∈ 0 7503,1
α∗ ≜ 0 7503 when τup = τup2 − τup1 > 0 and γ = 0 1.
According to Theorem 2 and Remark 2, it is also easy to
obtain the maximum tolerable delay of the FMS in (4) by
the protocol in (6), that is, the protocol in (7) with γ = 0 is
τup1 = τ = 0 8126 s and the maximum delay of the FMS in
(4) by the protocol in (7) with γ = 0 1 is τup2 = τ = 0 8751 s
when α = 0 9. Now let us suppose that the initial states
of the FMS in (4) are taken as x1 t = 0 = −6 4, x2 t = 0 =
− 3 2, x3 t = 0 = 3 2, and x4 t = 0 = 6 4. Here, a set of

asymmetric time delays is used to simulate τ14 = 0 83 s,
τ21 = 0 84 s, τ31 = 0 85 s, and τ42 = 0 86 s.

It is obvious that all asymmetric time delays τm are
greater than τup1 and less than τup2.

Figures 10 and 11 show the trajectories of xi t with the
asymmetric time delays by applying the different control pro-
tocols when τup1 < all τm < τup2. From these simulation
results, it is obvious that the given FMS in (4) by the control
protocol in (6) diverges and cannot reach consensus, whereas
the FMS in (4) applying the SDF control protocol in (7)
converges to the same states and can reach consensus.
Hence, the introduced SDF control protocol can enhance
the robustness of the FMS in (4) to asymmetric time delays.

On the other hand, under the same conditions, we
suppose that τ14 = 0 88 s, τ21 = 0 89 s, τ31 = 0 90 s, and τ42 =
0 91 s. Figure 12 shows the trajectories of xi t applying
the protocol in (7) under asymmetric time delays when
all τm > τup2. It is clear that the FMS in (4) cannot
reach consensus.

Time (s)

−80

−60

−40

−20

0

20

40

60

80

x
i(
t)

0 10 20 30 40 50 60

x3(t)
x4(t)

x1(t)
x2(t)

Figure 8: The trajectories of xi t applying the protocol in (7) under
symmetric time delays when all τm > τup2.
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6. Conclusion

In order to enhance the robustness of a FMS against nonuni-
form time delays, a control protocol based on SDF and
nonuniform time delays is introduced in this paper. First of
all, the consensus problem is investigated for the FMS with
SDF and symmetric time delays over undirected topology.
Then, the consensus problem is investigated for the FMS
with SDF and asymmetric time delays over directed topology.
By the robustness analysis, it is obvious that the control
protocol-based on SDF with the appropriate intensity can
enhance the robustness for the FMS to nonuniform time
delays. Finally, the validity of the theoretical analysis is
verified by the corresponding simulation results. In addition,

inspired by [26, 27], the consensus problems or formation
control problems of delayed double-integrator FMSs based
on round-robin protocols or attacks will be one of the most
interesting topics of our future research work.
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