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Due to the excellent approximation ability, the neural networks based control method is used to achieve adaptive consensus of the
fractional-order uncertain nonlinear multiagent systems with external disturbance.The unknown nonlinear term and the external
disturbance term in the systems are compensated by using the radial basis function neural networks method, a corresponding
fractional-order adaption law is designed to approach the ideal neural networkweightmatrix of the unknown nonlinear terms, and
a control law is designed eventually. According to the designed Lyapunov candidate function and the fractional theory, the systems
stability is proved, and the adaptive consensus can be guaranteed by using the designed control law. Finally, two simulations are
shown to illustrate the validity of the obtained results.

1. Introduction

Consensus ofmultiagent systems (MASs) in distributed coor-
dination has been widely discussed in different fields, such as
biological formation flocking, consensus of intelligent robots,
distributed sensor networks, group decision making, and
multiple collaborativemanipulator [1]. Consensusmeans that
the states of agents reach a common state through local neigh-
bors information as time goes on. Consensus has become a
hot topic, which has been researched from different perspec-
tives based on the practical demands, for example, the con-
sensus problem under different communication topologies:
the fixed topology or switching topology [2, 3]; the consensus
problem under different dynamical structures, which include
single-integrator dynamics or higher-integrator dynamics [4,
5]; the consensus problem with time delay: input delay or
communication delay [6, 7]; the consensus problem with
unknown factors or external disturbance [8, 9]; the leaderless
consensus or leader-follower consensus [7, 10]; the group
consensus problem [11]; and the design of control laws based
on different control methods [12, 13].

The above results are based on the study of integer-order
MASs, as we know that the integer-order systems cannot

describe the complex materials or processes very well in
some applications, for example, the viscousmaterial, the food
seeking of microbes, the collective motion of bacteria, and
radial groundwater flow to or from a well [14]. In addition, it
is difficult to describe the systems by the integer-order MASs
when agents work in the complex environment, such as the
viscous environment with micro-organisms, sand, and grass
[15]. Fractional-order systems have great performance in the
memory and hereditary [16, 17] and can provide an excellent
tool to solve above problems. Therefore, it is meaningful
to study the consensus problems by using fractional-order
MASs.

In recent years, the consensus problemof fractional-order
multiagent systems has been investigated widely. Based on
different requirements, the researchers have mainly studied
the leaderless consensus problem and the leader-follower
consensus problem, where the single-integrator MASs and
double-integrator MASs [18, 19] have been considered from
various perspectives. For example, time delay can cause poor
robust and instability of MASs; the authors in [20, 21] have
studied the effectiveness of systems convergence when MASs
have input delay or communication delay, in which, the
systems stability and the maximal allowed time delay have
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been mainly discussed, and the fractional frequency domain
analysis method and the generalized Nyquist criterion have
been mainly used. In addition, various valid control laws are
designed to solve different problems based on different con-
trol methods, such as the adaptive control method [22], the
fractional-order PID control method [23], the sliding mode
control method [24], and the event triggering control method
[25]. Moreover, MASs have been studied from the linear
systems to the nonlinear systems [26–31], where researchers
have focused on studying the nonlinear fractional-order
MASs; they can cause systems degraded performance or
instability, and they are both inevitable in practical appli-
cations for the dynamic systems or the effectiveness of the
external disturbance; therefore, it is necessary to consider the
nonlinear MASs.

Until now, there are few results on the study of the
fractional-order nonlinear MASs with external disturbance,
and due to the complexity of the nonlinear fractional-order
systems and the deficiency of corresponding theory, the
researchers have usually assumed that the nonlinear term
or the external disturbance term is known in MASs; at the
same time, the former satisfies the Lipschitz condition, and
the latter is bounded. But as we know, the above assumptions
are restrictive. On the one hand, the nonlinear term and
the external disturbance term cannot usually be observed,
and it is not easy to design the corresponding control law
to compensate for their effectiveness for the MASs. On the
other hand, the assumptions about the Lipschitz condition
and boundedness are difficult to be satisfied for the practical
nonlinear MASs.Therefore, it is significant to design the valid
control laws, which is not necessary to know the specific
information on the nonlinear term and the external dis-
turbance term in MASs. Meanwhile, the limitations for the
nonlinear term and the external disturbance term can be
reduced. Up to now, some results [28, 32] have designed the
observer-type control law to avoid obtaining the unknown
information in fractional-order MASs, but most of them
discuss the linear MASs.

For the above unknown nonlinear MASs, the neural
networks (NNs) based control methods can provide a pow-
erful tool due to their universal approximation property and
learning ability. The existing results have proved that NNs
can approximate the nonlinear terms to any desired accuracy
when the number of neurons is large enough [33]. However,
for the most of above results, large adaptive parameters
need to be estimated in the learning process when NNs are
employed to approximate the unknown nonlinear terms, so
that the learning time is unacceptably large; this drawback
will increase the online computation burden greatly when
the control laws are implemented. Radial Basis Function
Neural Networks (RBFNNs) have been proposed with linear
property to solve above problem, which only need to adjust
a small number of parameters. In [34], by using RBFNNs,
the authors have considered the tracking problem of uncer-
tain nonlinear MASs, where small number parameters are
updated; it alleviates the systems computation burden, and
thus the running cost is reduced greatly. The existing results
[33, 34] about NNs based control method focus on the
study of integer-order MASs, and there are few results on

the fractional-order uncertain nonlinear MASs; the tracking
problem has been studied in [35], while the NNs based
method is applied to estimate the uncertain nonlinear terms.
Therefore, it is meaningful to solve consensus of fractional-
order nonlinear MASs by using the RBFNNs based control
methods.

Motivated by the above discussion, in this paper we will
apply the NNs based control method to solve the adaptive
consensus problem for the fractional-order uncertain non-
linear MASs with external disturbance. At the beginning,
to study consensus of fractional-order nonlinear MASs,
we firstly assume that the nonlinear terms in systems are
known and then design a valid control law based on the
known nonlinear terms information. Secondly, based on the
above study, the NNs based control law is designed to deal
with the consensus problem when the nonlinear terms are
unknown, the systems stability is proved based on matrix
theory and the fractional-order stability theory. At last, two
simulations are given to show the effectiveness of the obtained
results. Compared to the existing results on fractional-
order MASs, this paper mainly has the following differences.
Firstly, compared with the results about the fractional-order
nonlinear MASs [27–31], this paper discusses the general
fractional-order nonlinear MASs with external disturbance,
where the Lipschitz condition and boundedness condition
are not necessary for the nonlinear terms. Secondly, different
from the existing control methods [22–25], the paper designs
a developed RBFNNs based approximation control law to
overcome the unknown nonlinear terms in fractional-order
MASs. Finally, compared to the most of NNs based control
methods [33, 35, 36], the developed RBFNNs based control
law only needs to update a small number of parameters
for fractional-order MASs, which can reduce the systems
computation burden effectively.

The rest of this paper is arranged as follows. In Section 2,
the corresponding fractional calculus theory and graph
theory are given, and we focus on introducing the RBFNNs
method to approach the unknown nonlinear terms. In
Section 3, the adaptive consensus with the unknown non-
linear terms is discussed based on RBFNNs approximation
technique, a valid control law is designed and a fractional-
order adaption law is proposed to estimate the ideal RBFNNs
weight matrix. In Section 4, two simulations are drawn to
verify the obtained results. Finally, the paper summarization
is concluded in Section 5.

2. Preliminaries

2.1. Fractional Calculus. In the study of fractional-order
MASs, the definitions of fractional-order derivative play
important roles, and different definitions have different
advantages, where Caputo fractional-order derivative defini-
tion can describe the initial states ofmultiple agents very well;
therefore, Caputo fractional derivative definition as follows
will be applied throughout this paper [14]

𝐶
𝑎𝐷𝛼𝑡 𝑥 (𝑡) = 1Γ (𝑚 − 𝛼) ∫

𝑡

𝑎

𝑥(𝑚) (𝜏)
(𝑡 − 𝜏)𝛼−𝑚+1𝑑𝜏, (1)



Complexity 3

where 𝐶𝑎𝐷𝛼𝑡 represents the Caputo derivative, 𝛼 is an arbitrary
real number, which describes the systemorder,𝑚 is an integer
constant, and it satisfies 𝑚 − 1 < 𝛼 < 𝑚, and the Gamma
function is given as Γ(𝑝) = ∫+∞

0
𝑡𝑝−1𝑒−𝑡𝑑𝑡, which satisfies

Γ (𝑝 + 1) = 𝑝Γ (𝑝) , (2)

where 𝑝 is an arbitrary real number.
The Laplace transform of Caputo fractional derivative

plays a key role, and it has the following form:

𝐿 {𝑥(𝛼) (𝑡)} = 𝑠𝛼𝑋(𝑠) − 𝑚−1∑
𝑘=0

𝑠𝛼−𝑘−1𝑥(𝑘) (0) , (3)

𝑋(𝑠) = 𝐿{𝑥(𝑡)} = ∫+∞
0

𝑒−𝑠𝑡𝑥(𝑡)𝑑𝑡 is defined.
The order 𝛼 in any interval can be translated to consider

the interval 𝛼 ∈ (0, 1); therefore, we just discuss the interval𝛼 ∈ (0, 1), and then, the Laplace transform of Caputo
fractional derivative can be written as the following form.

𝐿 {𝑥(𝛼) (𝑡)} = 𝑠𝛼𝑋 (𝑠) − 𝑠𝛼−1𝑥 (0) . 𝛼 ∈ (0, 1) (4)

To analyze the systems stability, we need to introduce the
following Mittag-Leffler function:

𝐸𝛼,𝛽 (𝑧) = ∞∑
𝑘=0

𝑧𝑘Γ (𝑘𝛼 + 𝛽) , (5)

and, specially, if 𝛽 = 1 and 𝛼 > 0, the Mittag-Leffler function
becomes

𝐸𝛼 (𝑧) = ∞∑
𝑘=0

𝑧𝑘Γ (𝑘𝛼 + 1) . (6)

Definition 1. It is Mittag-Leffler stable for the system stability
if

‖𝑥 (𝑡)‖ ≤ [𝑚 (𝑥 (𝑡0)) 𝐸𝛼 (−𝜆 (𝑡 − 𝑡0)𝑎)]𝑏 , (7)

where ‖ ⋅ ‖ defines arbitrary norm, 𝜆 > 0, 𝑏 > 0,𝑚(0) = 0, the
locally Lipschitz condition for𝑚(𝑥) ≥ 0 is satisfied on 𝑥 ∈ 𝑅𝑛,
and the Lipchitz constant is defined as𝑚0.

To analyze the system stability, we give the following
inequality by using the result in [24].

Lemma2. For any time instant 𝑡 ≥ 𝑡0, the following inequality
can be obtained if 𝑥(𝑡) ∈ 𝑅𝑛 is a continuous and derivable
function,

12 𝐶𝑡0𝐷𝑡
𝛼 (𝑥𝑇 (𝑡) 𝐿𝑥 (𝑡)) ≤ 𝑥𝑇 (𝑡) 𝐿𝐶𝑡0𝐷𝛼𝑡 𝑥 (𝑡) , (8)

where 𝐿 is a symmetric positive semidefinite matrix and 𝛼 ∈(0, 1).

2.2. GraphTheory. This paper considers the fixed undirected
communication topology graph 𝐺 = (𝑉, 𝐸, 𝐴), where 𝑉 ={V1, V2, . . . , V𝑛} is the set of nodes in the graph, V𝑖 represents
the 𝑖th follower, and 𝐸 ⊆ 𝑉 × 𝑉 is the set of edges in the
graph, and define 𝑒𝑖𝑗 = (V𝑖, V𝑗). If 𝑒𝑖𝑗 ∈ 𝐸, 𝑒𝑗𝑖 = (V𝑗, V𝑖) ∈ 𝐸.
The set of neighbors for the node V𝑖 in the graph is denoted
as 𝑁𝑖 = {V𝑗 | (V𝑗, V𝑖) ∈ 𝐸}. We call that an undirected path is
connected if every pair node has an undirected path, where a
path is represented as (V1, V2), (V2, V3), . . ., and V𝑖 ∈ 𝑉.

The weighted adjacency matrix 𝐴 and the Laplace matrix𝐿 can show the undirected graph 𝐺 very well, where 𝐴 =[𝑎𝑖𝑗] ∈ 𝑅𝑛×𝑛, and 𝑎𝑖𝑗 = 𝑎𝑗𝑖 > 0 if (V𝑗, V𝑖) ∈ 𝐸, else 𝑎𝑖𝑗 = 0.𝐿 = [𝑙𝑖𝑗] ∈ 𝑅𝑛×𝑛, and 𝑙𝑖𝑖 = ∑𝑗∈𝑁𝑖 𝑎𝑖𝑗, 𝑙𝑖𝑗 = −𝑎𝑖𝑗, 𝑖 ̸= 𝑗. The
Laplace matrix 𝐿 satisfies the following important property.

𝑙𝑖𝑗 ≤ 0, 𝑖 ̸= 𝑗,
𝑛∑
𝑗=1

𝑙𝑖𝑗 = 0. 𝑖 = 1, . . . , 𝑛 (9)

In this paper, we consider the undirected graph, then the
Laplace matrix 𝐿 is a symmetric positive semidefinite, and
the Laplace matrix has at least one zero eigenvalue, whose
corresponding eigenvector is 1 = (1, 1, . . . , 1)𝑇.

The following lemma [37] can be guaranteed.

Lemma 3. The Laplace matrix 𝐿 is a symmetric matrix for the
undirected connected graph 𝐺 = (𝑉, 𝐸, 𝐴), and its eigenvalues
have the following relationship:

0 = 𝜆1 < 𝜆2 ≤ ⋅ ⋅ ⋅ ≤ 𝜆𝑛, (10)

where 𝜆2 is the minimal positive eigenvalue of 𝐿, which can
analyze the rate of consensus convergence.

2.3. Radial Basis Function Neural Networks and Function
Approximation. In this paper, the fractional-order uncertain
nonlinear systems are mainly investigated; as a valid NNs
based control method, the radial basis function neural
networks (RBFNNs) based method will be applied to esti-
mate the nonlinear terms in MASs; RBFNNs based method
has excellent property in the function approximation and
learning ability [38]. Consider the smooth nonlinear term𝑓(𝑥): 𝑅𝑛 → 𝑅𝑚; it can be approximated by the following
RBFNNs:

𝑓 (𝑥) = 𝑊𝑇𝑆 (𝑥) , (11)

where 𝑊 ∈ 𝑅𝑞×𝑚 is the adjustable weight matrix and 𝑞
is the number of neurons. 𝑥 ∈ Ω𝑥, Ω𝑥 is a compact set.𝑆(𝑥) = [𝑠1(𝑥), 𝑠2(𝑥), . . . , 𝑠𝑞(𝑥)]𝑇 is a function vector, where
𝑠𝑗(𝑥) = exp[−(𝑥 − 𝜇𝑗)𝑇(𝑥 − 𝜇𝑗)/𝜑𝑗], 𝑗 = 1, 2, . . . , 𝑞, 𝜇𝑗 =
[𝜇𝑗1, 𝜇𝑗2, . . . , 𝜇𝑗𝑛]𝑇 represents the center of receptive field. 𝜑𝑗
is the width of the Gaussian function.

For any smooth function 𝑓(𝑥), by choosing the designed
parameters and making the neuron number 𝑞 large enough,
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RBFNNs based method can approximate the function to any
desired accuracy over a compact set Ω. There exists an ideal
weights matrix 𝑊∗ such that

𝑓 (𝑥) = 𝑊∗𝑆 (𝑥) + 𝜀 (𝑥) , (12)

where 𝜀(𝑥) ∈ 𝑅𝑚 is the approximation error, which satisfies‖𝜀(𝑥)‖ ≤ 𝑙, and 𝑙 is a positive constant. The approximation
error represents possible deviation between the unknown
nonlinear term 𝑓(𝑥) and the ideal approximation 𝑊∗𝑆(𝑥).
Large practical applications have proved that we can decrease
the approximation error 𝜀(𝑥) by choosing enough neural
network node 𝑞.

The ideal unknown weight matrix 𝑊∗ is an “artificial”
quantity for the purpose of analysis, it is defined as the
following form:

𝑊∗ = arg min
𝑊∈𝑅𝑞×𝑚

{ sup
𝑥∈Ω𝑥

𝑓 (𝑥) − 𝑊𝑇𝑆 (𝑥)} . (13)

3. Main Results

This section investigates adaptive consensus of the fractional-
order nonlinearMASswith external disturbance based on the
RBFNNs method, where we use the RBFNNs based method
to approximate the nonlinear terms in MASs, and a valid
control law is designed to achieve adaptive consensus. Firstly,
to discuss the MASs stability, a Lyapunov candidate function
is used, and the known nonlinear terms are assumed to
obtain the useful stability results based on fractional theory.
Secondly, adaptive consensus with the unknown nonlinear
terms is studied based on the above results, the nonlinear
terms are approximated by using the RBFNNs based method,
and an effective control law is designed to achieve adaptive
consensus of MASs.

3.1. Consensus with Known Nonlinear Terms. In the subsec-
tion, consensus ismainly discussedwhen the nonlinear terms
are known under the undirected connected graph 𝐺. A valid
control law is given, and some stability results are obtained.

Consider the fractional-order MASs with 𝑛 agents; their
systems are shown as the following form:

𝑥(𝛼)𝑖 (𝑡) = 𝑓𝑖 (𝑥𝑖 (𝑡)) + 𝑢𝑖 (𝑡) + 𝑑𝑖 (𝑥𝑖 (𝑡)) , 𝑖 ∈ 𝑁 (14)

where 𝑥(𝛼)𝑖 (𝑡) is a simple notation of the fractional derivative
𝐶
𝑎𝐷𝛼𝑡 𝑥𝑖(𝑡), 𝛼 ∈ (0, 1), and 𝑁 = (1, 2, . . . , 𝑛). 𝑓𝑖(𝑥𝑖(𝑡)): 𝑅𝑚 →𝑅𝑚 is the smooth nonlinear term with uncertainty; 𝑥𝑖(𝑡) ∈𝑅𝑚 and 𝑢𝑖(𝑡) ∈ 𝑅𝑚 represent the state vector and the control
input vector, respectively. 𝑑𝑖(𝑥𝑖(𝑡)) is the nonlinear external
disturbance.

Define the consensus error vector for the 𝑖th agent as
follows.

𝜉𝑖 (𝑡) = 𝑛∑
𝑗=1

𝑎𝑖𝑗 [𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)] . 𝑖, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗 (15)

To study the system stability, we define the following
Lyapunov candidate function:

𝑉 (𝑡) = 12𝑥𝑇 (𝑡) (𝐿 ⊗ 𝐼𝑚) 𝑥 (𝑡) , (16)

where 𝑥(𝑡) = (𝑥𝑇1 (𝑡), . . . , 𝑥𝑇𝑛 (𝑡))𝑇 ∈ 𝑅𝑛𝑚. According to
Lemma 3, we can get that 𝑉(𝑡) is a symmetric positive
semidefinite function.

Because 𝐿 is a symmetric positive semidefinite matrix,
there exist 𝑛 eigenvalues 𝜆1, . . . , 𝜆𝑛, and 𝑝11, . . . , 𝑝1𝑚,𝑝21, . . . , 𝑝2𝑚 ⋅ ⋅ ⋅ 𝑝𝑛1, . . . , 𝑝𝑛𝑚 can be chosen as the eigenvectors
of matrix 𝐿 ⊗ 𝐼𝑚 corresponding to eigenvalues 𝜆1, . . . , 𝜆𝑛.
Define 𝑃 = [𝑝11, . . . , 𝑝𝑛𝑚] ∈ 𝑅𝑛𝑚×𝑛𝑚; then, 𝑃𝑇𝑃 = 𝑃𝑃𝑇 = 𝐼𝑛𝑚
can be guaranteed.

Based on the above analysis, 𝑉(𝑡) can be rewritten as

𝑉 (𝑡) = 12𝑥𝑇 (𝑡) (𝐿 ⊗ 𝐼𝑚) 𝑥 (𝑡) = 12𝑥𝑇 (𝑡) 𝑃𝑇Λ𝑃𝑥 (𝑡)
= 12𝑥𝑇 (𝑡) 𝑃𝑇√Λ√Λ𝑃𝑥 (𝑡)
= 12𝑥𝑇 (𝑡) 𝑃𝑇√Λ√Λ̂√Λ̂−1√Λ̂−1√Λ̂√Λ𝑃𝑥 (𝑡)
= 12𝑥𝑇 (𝑡) 𝑃𝑇Λ𝑃𝑃𝑇Λ̂−1𝑃𝑃𝑇Λ𝑃𝑥 (𝑡)
= 12𝑥𝑇 (𝑡) (𝐿 ⊗ 𝐼𝑚)𝑇 𝑃𝑇Λ̂−1𝑃 (𝐿 ⊗ 𝐼𝑚) 𝑥 (𝑡)
= 12𝜉𝑇 (𝑇) 𝑃𝑇Λ̂−1𝑃𝜉 (𝑡) = 12𝜉𝑇 (𝑇) Δ𝜉 (𝑡) ,

(17)

where Λ = diag{0, 𝜆2𝐼𝑚, . . . , 𝜆𝑛𝐼𝑚}, Λ̂ = diag{𝜆2𝐼𝑚, 𝜆2𝐼𝑚, . . .,𝜆𝑛𝐼𝑚}, 𝜉(𝑡) = (𝜉𝑇1 (𝑡), . . . , 𝜉𝑇𝑛 (𝑡)), and Δ = 𝑃𝑇Λ̂−1𝑃. Then, the
following result can be given:

𝜆𝑚𝑖𝑛 (Δ)2
𝑛∑
𝑖=1

𝜉𝑖 (𝑡)2 ≤ 𝑉 (𝑡) ≤ 𝜆𝑚𝑎𝑥 (Δ)2
𝑛∑
𝑖=1

𝜉𝑖 (𝑡)2 , (18)

where 𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥 represent the smallest eigenvalue and
the largest eigenvalue of matrix Δ, respectively.

Taking time fractional derivative of𝑉(𝑡), based on equal-
ity (15) and Lemma 2, we can obtain

𝑉(𝛼) (𝑡) ≤ 𝑥𝑇 (𝑡) (𝐿 ⊗ 𝐼𝑚) 𝑥(𝛼) (𝑡) = 𝑛∑
𝑖=1

𝜉𝑇𝑖 (𝑡) 𝑥(𝛼)𝑖 (𝑡)

= 𝑛∑
𝑖=1

𝜉𝑇𝑖 (𝑡) [𝑓𝑖 (𝑥𝑖 (𝑡)) + 𝑢𝑖 (𝑡) + 𝑑𝑖 (𝑥𝑖 (𝑡))]

≤ 𝑛∑
𝑖=1

[𝜉𝑇𝑖 (𝑡) 𝑓𝑖 (𝑥𝑖 (𝑡)) + 𝜉𝑇𝑖 (𝑡) 𝑢𝑖 (𝑡)
+ 𝜉𝑇𝑖 (𝑡) 𝑑𝑖 (𝑥𝑖 (𝑡))] .

(19)
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Because 𝑎𝑏 ≤ 𝑎2/2 + 𝑏2/2, we have the following inequality:

𝜉𝑇𝑖 (𝑡) 𝑑𝑖 (𝑥𝑖 (𝑡)) ≤ 𝛽2𝑖2 + 𝜉𝑖 (𝑡)2 ⋅ 𝑑𝑖 (𝑥𝑖 (𝑡))22𝛽2𝑖 . (20)

The inequality (19) can be rewritten as the following form:

𝑉(𝛼) (𝑡) ≤ 𝑛∑
𝑖=1

[𝜉𝑇𝑖 (𝑡) 𝑓𝑖 (𝑥𝑖 (𝑡)) + 𝜉𝑇𝑖 (𝑡) 𝑢𝑖 (𝑡)

+ 12𝛽2𝑖 𝜉
𝑇
𝑖 (𝑡) 𝜉𝑖 (𝑡) 𝑑𝑖 (𝑥𝑖 (𝑡))2] + 12

𝑛∑
𝑖=1

𝛽2𝑖
= 𝑛∑
𝑖=1

[𝜉𝑇𝑖 (𝑡) 𝑄𝑖 (𝑥𝑖 (𝑡)) + 𝜉𝑇𝑖 (𝑡) 𝑢𝑖 (𝑡)] + 12
𝑛∑
𝑖=1

𝛽2𝑖 ,

(21)

where𝑄𝑖(𝑥𝑖) = 𝑓𝑖(𝑥𝑖(𝑡))+(1/2𝛽2𝑖 )𝜉𝑖(𝑡)‖𝑑𝑖(𝑥𝑖(𝑡))‖2, where𝑥𝑖 ={𝑥𝑖(𝑡), 𝜉𝑖(𝑡)} ∈ Ω𝑥𝑖 , Ω𝑥𝑖 is a compact set.
The nonlinear terms in MASs (14) include 𝑓𝑖(𝑥𝑖(𝑡)) and

external disturbance 𝑑𝑖(𝑥𝑖(𝑡)); if the nonlinear terms are
known, we can design the following control law to achieve
adaptive consensus:

𝑢𝑖 (𝑡) = {{{
−𝑘𝑖𝜉𝑖 (𝑡) − 𝑄𝑖 (𝑥𝑖 (𝑡)) , 𝜉𝑖 (𝑡) ∈ Ω0]𝑖
0, 𝜉𝑖 (𝑡) ∈ Ω]𝑖

(22)

where 𝑘𝑖 ∈ 𝑅+,Ω]𝑖 ⊂ Ω𝑥𝑖 ,
Ω]𝑖 = {𝜉𝑖 (𝑡) | 𝜉𝑖 (𝑡) < ]𝑖} ,
Ω0]𝑖 = Ω𝑥𝑖 − Ω]𝑖 , 𝑖 ∈ 𝑁 (23)

where ]𝑖 is an arbitrary small constant and Ω0]𝑖 is also a
compact set [38].

If 𝜉𝑖(𝑡) ∈ Ω0]𝑖 , the following inequality can be given based
on inequality (21) and control law (22):

𝑉(𝛼) (𝑡) ≤ 𝑛∑
𝑖=1

[𝜉𝑇𝑖 (𝑡) 𝑄𝑖 (𝑥𝑖 (𝑡)) + 𝜉𝑇𝑖 (𝑡) 𝑢𝑖 (𝑡)]

+ 12
𝑛∑
𝑖=1

𝛽2𝑖 = − 𝑛∑
𝑖=1

𝑘𝑖𝜉𝑇𝑖 (𝑡) 𝜉𝑖 (𝑡) + 12
𝑛∑
𝑖=1

𝛽2𝑖
= − 𝑛∑
𝑖=1

𝑘𝑖 𝜉𝑖 (𝑡)2 + 12
𝑛∑
𝑖=1

𝛽2𝑖 .

(24)

Let

𝑘𝑖 = 𝑟𝑖𝜆𝑚𝑎𝑥 (Δ)2 , (25)

where 𝑟𝑖 is positive constant; then
𝑉(𝛼) (𝑡) ≤ − 𝑛∑

𝑖=1

𝑟𝑖𝜆𝑚𝑎𝑥 (Δ)2 𝜉𝑖 (𝑡)2 + 12
𝑛∑
𝑖=1

𝛽2𝑖
≤ −𝑟2𝜆𝑚𝑎𝑥 (Δ)

𝑛∑
𝑖=1

𝜉𝑖 (𝑡)2 + 𝜂
(26)

≤ −𝑟𝑉 (𝑡) + 𝜂, (27)

where 𝑟 = min{𝑟1, 𝑟2, . . . , 𝑟𝑛}, 𝜂 = (1/2)∑𝑛𝑖=1 𝛽2𝑖 .
Let𝑚(𝑡) = 𝑉(𝑡) − 𝜂/𝑟; inequality (26) changes into

𝐶
𝑎𝐷𝛼𝑡𝑚(𝑡) ≤ −𝑟𝑚 (𝑡) , (28)

and, then, we can find a nonnegative function 𝑛(𝑡) and get the
following equality

𝐶
𝑎𝐷𝛼𝑡𝑚 (𝑡) + 𝑛 (𝑡) = −𝑟𝑚 (𝑡) . (29)

Denote 𝑀(𝑠) = 𝐿(𝑚(𝑡)), 𝑁(𝑠) = 𝐿(𝑛(𝑡)) and study (29) and
its Laplace transform; then

𝑠𝛼𝑀(𝑠) − 𝑚 (0) 𝑠𝛼−1 + 𝑁 (𝑠) = −𝑟𝑀 (𝑠) . (30)

And

𝑀(𝑠) = 𝑚 (0) 𝑠𝛼−1 − 𝑁 (𝑠)𝑠𝛼 + 𝑟𝑀 (𝑠) . (31)

we can obtain the unique solution of (29). Based on the
inverse Laplace transform, 𝑚(𝑡) can be obtained as

𝑚 (𝑡) = 𝑚 (0) 𝐸𝛼 (−𝑟𝑡𝛼) − 𝑛 (𝑡) ∗ [𝑡𝛼−1𝐸𝛼,𝛼 (−𝑟𝑡𝛼)] . (32)

𝑡𝛼−1 and 𝐸𝛼,𝛼(−𝑟𝑡𝛼) are nonnegative; then, we can get the
following relationship based on the above result:

𝑉 (𝑡) − 𝜂𝑟 = 𝑚 (𝑡) ≤ 𝑚 (0) 𝐸𝛼 (−𝑟𝑡𝛼) → 0. (33)

Because 𝑉(𝑡) ≥ (𝜆𝑚𝑖𝑛(Δ)/2)∑𝑛𝑖=1 ‖𝜉𝑖(𝑡)‖2,
lim
𝑡→∞

𝑛∑
𝑖=1

𝜉𝑖 (𝑡)2 ≤ 2𝜂𝑟𝜆𝑚𝑖𝑛 (Δ) . (34)

Based on the definition of 𝜉𝑖(𝑡), there exists a constant 𝜍 and𝑇 > 0; if 𝑡 > 𝑇, then,
lim
𝑡→∞

𝜉𝑖 (𝑡) ≤ 𝜍, 𝑖 ∈ 𝑁. (35)

Here 𝜍 is a constant, which depends on the external distur-
bance.We can conclude that𝑥1 , 𝑥2, . . . , 𝑥𝑛 converge to a small
constant region, and the consensus can be achieved when𝜉𝑖 ∈ Ω0]𝑖 .
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3.2. Adaptive Consensus with Unknown Nonlinear Terms. We
can see that control law (22) cannot be used directly; because
functions 𝑓𝑖(𝑥𝑖(𝑡)) and 𝑑𝑖(𝑥𝑖(𝑡)) are unknown, so function𝑄𝑖(𝑥𝑖(𝑡)) is unknown. To solve the above problem, the
RBFNNs based method is applied to estimate the unknown𝑄𝑖(𝑥𝑖(𝑡)) as follows:

𝑄𝑖 (𝑥𝑖 (𝑡)) = 𝑊∗𝑖 𝑆𝑖 (𝑥𝑖 (𝑡)) + 𝜀𝑖 (𝑥𝑖 (𝑡)) , (36)

where 𝑊∗𝑖 ∈ 𝑅𝑚×𝑞𝑖 denotes the ideal NNs weight matrix, 𝑞𝑖
represents the number of neurons, 𝑆𝑖(𝑥𝑖) ∈ 𝑅𝑞𝑖 is defined
as basis function, and 𝜀𝑖 ∈ 𝑅𝑚 describes approximation
error, which satisfies ‖𝜀𝑖‖ ≤ 𝜌𝑖, where 𝜌𝑖 is a positive con-
stant.

By using above RBFNNs approximation form, we design
the following control law for the nonlinear MASs (14):

𝑢𝑖 (𝑡)
= {{{

−𝑘𝑖𝜉𝑖 (𝑡) − 𝜃𝑖𝑤𝑖 (𝑡) 𝑆𝑖 (𝑥𝑖)2 𝜉𝑖 (𝑡) , 𝜉𝑖 (𝑡) ∈ Ω0]𝑖
0, 𝜉𝑖 (𝑡) ∈ Ω]𝑖

(37)

where 𝑤𝑖(𝑡) is used to estimate the unknown constant 𝑤∗𝑖 ,𝑤∗𝑖 = ‖𝑊∗𝑖 ‖2𝐹.
The following equality designs the fractional-order adap-

tion law:

𝑤(𝛼)𝑖 (𝑡) = 𝛿𝑖 (𝜃𝑖 𝑆𝑖 (𝑥𝑖)2 𝜉𝑖 (𝑡)2 − 𝜎𝑖𝑤𝑖) , (38)

where 𝛿𝑖, 𝜃𝑖, 𝜎𝑖 are the designed positive constants.

Remark 4. Compared to the tracking problem based on the
NNs weight estimation matrix in [35], the designed adaption
law uses the information of matrix norm, which will decrease
the systems computational burden greatly.

Theorem5. For the fractional-order nonlinearMASs (14) with
external disturbance, if the undirected communication graph
is connected, control law (37) solves the adaptive consensus
problem with the consensus error among agents remaining in
a small neighborhood of the origin, and

𝑘𝑖 = 𝑟𝑖 (𝜆𝑚𝑎𝑥 (Δ)2 + 1𝑟𝑖) , (39)

where 𝑟𝑖 is positive constant and Δ is defined as equality (17).

Proof. Consider Lyapunov function as follows:

𝑉 (𝑡) = 12𝑥𝑇 (𝑡) (𝐿 ⊗ 𝐼𝑚) 𝑥 (𝑡) + 12
𝑛∑
𝑖=1

𝛿−1𝑖 𝑤2𝑖 (𝑡) , (40)

where𝑤𝑖(𝑡) = 𝑤𝑖(𝑡)−𝑤∗𝑖 (𝑡); we can be obtained the following
inequality

𝑉(𝛼) (𝑡) ≤ 𝑛∑
𝑖=1

[𝜉𝑇𝑖 (𝑡) 𝑢𝑖 (𝑡) + 𝜉𝑇𝑖 (𝑡) 𝑄𝑖 (𝑥𝑖)]

+ 𝑛∑
𝑖=1

𝛿−1𝑖 𝑤𝑖 (𝑡) 𝑤(𝛼)𝑖 (𝑡) + 12
𝑛∑
𝑖=1

𝛽2𝑖 ,
(41)

and, then, subsisting equality (36) into (41), we have

𝑉(𝛼) (𝑡)
≤ 𝑛∑
𝑖=1

[𝜉𝑇𝑖 (𝑡) 𝑢𝑖 (𝑡) + 𝜉𝑇𝑖 (𝑡) (𝑊∗𝑖 𝑆𝑖 (𝑧𝑖) + 𝜀𝑖 (𝑧𝑖))]

+ 𝑛∑
𝑖=1

𝛿−1𝑖 𝑤𝑖 (𝑡) 𝑤(𝛼)𝑖 (𝑡) + 12
𝑛∑
𝑖=1

𝛽2𝑖 ,
(42)

due to

𝜉𝑇𝑖 (𝑡)𝑊∗𝑖 𝑆𝑖 (𝑧𝑖) ≤ 𝜃𝑖 𝜉𝑖 (𝑡)2 𝑊∗𝑖 𝑆𝑖 (𝑧𝑖)2 + 14𝜃𝑖
≤ 𝜃𝑖𝑤∗𝑖 𝜉𝑖 (𝑡)2 𝑆𝑖 (𝑧𝑖)2 + 14𝜃𝑖

(43)

𝜉𝑇𝑖 (𝑡) 𝜀 (𝑧𝑖) ≤ 𝜉𝑖 (𝑡)2 +
𝜀 (𝑧𝑖)24

≤ 𝜉𝑖 (𝑡)2 +
𝜌𝑖24 .

(44)

Using control law (37), inequality (42) can be rewritten as

𝑉(𝛼) (𝑡) ≤ 𝑛∑
𝑖=1

[𝜉𝑇𝑖 (𝑡) 𝑢𝑖 (𝑡) + 𝜃𝑖𝑤∗𝑖 𝜉𝑖 (𝑡)2 𝑆𝑖 (𝑧𝑖)2

+ 𝜉𝑖 (𝑡)2] +
𝑛∑
𝑖=1

𝛿−1𝑖 𝑤𝑖 (𝑡) 𝑤(𝛼)𝑖 (𝑡) + 𝑛∑
𝑖=1

(12𝛽2𝑖 + 14𝜃𝑖
+ 𝜌2𝑖4 ) ≤ 𝑛∑

𝑖=1

[−𝑘𝑖𝜉𝑇𝑖 (𝑡) 𝜉𝑖 (𝑡)
− 𝜃𝑖𝑤𝑖 𝑆𝑖 (𝑧𝑖)2 𝜉𝑇𝑖 (𝑡) 𝜉𝑖 (𝑡)
+ 𝜃𝑖𝑤∗𝑖 𝜉𝑖 (𝑡)2 𝑆𝑖 (𝑧𝑖)2 + 𝜉𝑖 (𝑡)2] +

𝑛∑
𝑖=1

𝑤𝑖 (𝑡)

⋅ (𝜃𝑖 𝜉𝑖 (𝑡)2 𝑆𝑖 (𝑧𝑖)2 − 𝜎𝑖𝑤𝑖 (𝑡)) + 𝑛∑
𝑖=1

(12𝛽2𝑖
+ 14𝜃𝑖 +

𝜌2𝑖4 ) ≤ 𝑛∑
𝑖=1

(−𝑘𝑖𝜉𝑇𝑖 (𝑡) 𝜉𝑖 (𝑡) + 𝜉𝑖 (𝑡)2

− 𝜃𝑖𝑤𝑖 𝜉𝑖 (𝑡)2 𝑆𝑖 (𝑧𝑖)2
+ 𝜃𝑖𝑤∗𝑖 𝜉𝑖 (𝑡)2 𝑆𝑖 (𝑧𝑖)2) +

𝑛∑
𝑖=1

𝑤𝑖 (𝑡)
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⋅ (𝜃𝑖 𝜉𝑖 (𝑡)2 𝑆𝑖 (𝑧𝑖)2 − 𝜎𝑖𝑤𝑖 (𝑡)) + 𝑛∑
𝑖=1

(12𝛽2𝑖
+ 14𝜃𝑖 +

𝜌2𝑖4 ) ≤ − 𝑛∑
𝑖=1

[(𝑘𝑖 − 1) 𝜉𝑖 (𝑡)2]

− 𝑛∑
𝑖=1

𝜎𝑖𝑤𝑖 (𝑡) 𝑤𝑖 (𝑡) + 𝑛∑
𝑖=1

(12𝛽2𝑖 + 14𝜃𝑖 +
𝜌2𝑖4 ) ,

(45)

because

𝑤𝑖 (𝑡) 𝑤𝑖 (𝑡) = 12𝑤2𝑖 (𝑡) + 12𝑤2𝑖 (𝑡) − 12𝑤∗2𝑖 , (46)

so that

−𝜎𝑖𝑤𝑖 (𝑡) 𝑤𝑖 (𝑡) ≤ −12𝜎𝑖𝑤2𝑖 (𝑡) + 12𝜎𝑖𝑤∗2𝑖 , (47)

and, then, we can obtain the following result from inequality
(45)

𝑉(𝛼) (𝑡) ≤ − 𝑛∑
𝑖=1

𝑟𝑖2 𝜆𝑚𝑎𝑥 (Δ) 𝜉𝑖 (𝑡)2 − 12
𝑛∑
𝑖=1

𝜎𝑖𝑤𝑖 (𝑡)

+ 𝑛∑
𝑖=1

(12𝛽2𝑖 + 14𝜃𝑖 +
𝜌2𝑖4 + 𝜎𝑖𝑤∗22 )

≤ −𝑟𝑉 (𝑡) + 𝜂,

(48)

where 𝑟 = min(𝑟1, . . . , 𝑟𝑛, 𝜎1𝛿1, . . . , 𝜎𝑛𝛿𝑛). 𝜂 = ∑𝑛𝑖=1((1/2)𝛽2𝑖 +1/4𝜃𝑖 + 𝜌2𝑖 /4 + 𝜎𝑖𝑤∗2/2). According to the proof process in
Section 3.1, we can prove that the adaptive consensus can
be achieved under control law (37), and the consensus error
among agents can converge in a small neighborhood of the
origin.

Remark 6. The constant 𝜂 decides the quality of the state
convergence performance, which depends on external distur-
bance, the RBFNNs approximation error 𝜀𝑖, and the parame-
ters 𝜃𝑖,𝑤∗𝑖 ; the convergence performance can be improved as
good as desired through changing above influencing factors.

Remark 7. Different from the results in [27–31], where the
Lipschitz condition and the boundedness condition are
demanded to achieve consensus of fractional-order MASs,
the results in this paper do not include above rigorous
conditions, and they provide a control method to solve the
consensus problem for the general nonlinear fractional-order
MASs.

4. Simulations

To prove the effectiveness of the obtained results, we consider
twoMASs in two-dimensional space: one contains six agents,
and the other contains five agents. The predictor-corrector
method for fractional-order systems is mainly used [39],
where the estimation value 𝑤∗ plays a key role, which can be
solved by the fractional-order adaption law.

v1 v3

v4

v5

v6v2

Figure 1: Communication graph with six agents.

In the simulations, 36 nodes are designed in RBFNNs,
and 𝜇𝑖 evenly distribute in range [−6, 6] × [−6, 6], the width𝜑𝑗 = 2. 𝑆𝑖(𝑥𝑖(𝑡)) = [𝑠1(𝑥𝑖(𝑡), . . . , 𝑠36(𝑥𝑖(𝑡))]𝑇, where 𝑠𝑗(𝑥𝑖(𝑡)) =
exp[−(𝑥𝑖(𝑡) − 𝜇𝑗(𝑡))𝑇(𝑥𝑖(𝑡) − 𝜇𝑗(𝑡))/𝜑2𝑗 ], 𝑗 = 1, 2, . . . , 36.

Firstly, we consider the communication topology graph
with six agents as in Figure 1, which are connected. Choose𝛼 = 0.98; we denote the state of the 𝑖th agent as 𝑥𝑖(𝑡) =(𝑥𝑖1(𝑡), 𝑥𝑖2(𝑡))𝑇; for the six agents, their initial values are given
as (𝑥11(0), 𝑥12(0))𝑇 = (5, −3)𝑇, (𝑥21(0), 𝑥22(0))𝑇 = (10, 3)𝑇,(𝑥31(0), 𝑥32(0))𝑇 = (−3, 2)𝑇, (𝑥41(0), 𝑥42(0))𝑇 = (3, −3)𝑇,(𝑥51(0), 𝑥52(0))𝑇 = (−5, 0)𝑇, (𝑥61(0), 𝑥62(0))𝑇 = (2, 6)𝑇. Let
the initial value 𝑤𝑖(0) = 0, 𝑖 = 1, 2, . . . , 6 for the fractional-
order adaption law. The systems with nonlinear term and
external disturbance can be written as the following form:

[𝑥(𝛼)𝑖1 (𝑥𝑖 (𝑡))
𝑥(𝛼)𝑖2 (𝑥𝑖 (𝑡))] = [𝑓𝑖1 (𝑥𝑖 (𝑡))𝑓𝑖2 (𝑥𝑖 (𝑡))] + [𝑑𝑖1 (𝑥𝑖 (𝑡))𝑑𝑖2 (𝑥𝑖 (𝑡))]

+ [𝑢𝑖1 (𝑥𝑖 (𝑡))𝑢𝑖2 (𝑥𝑖 (𝑡))] ,
(49)

where 𝑓𝑖1(𝑥𝑖(𝑡)) = 𝑥𝑖2(𝑡) sin(𝑥𝑖1(𝑡)/15), 𝑓𝑖2(𝑥𝑖(𝑡)) =𝑥𝑖1(𝑡) sin(𝑥𝑖2(𝑡)/15), 𝑑𝑖1(𝑥𝑖(𝑡)) = 𝑥𝑖1(𝑡)2 cos(𝑥𝑖1(𝑡)/3),𝑑𝑖2(𝑥𝑖(𝑡)) = 𝑥𝑖2(𝑡)2 cos(𝑥𝑖2(𝑡)/3) are defined, and 𝛿𝑖 = 0.4 > 0,𝜃𝑖 = 2 > 0, 𝜎𝑖 = 0.2 > 0, 𝑟𝑖 = 1/6 > 0. Based on the Laplace
matrix, we can calculate that 𝜆𝑚𝑎𝑥(Δ) = 3.0779. The
conditions in Theorem 5 are satisfied. Figures 2(a) and 2(b)
describe the agents states 𝑥𝑖1(𝑡) and 𝑥𝑖2(𝑡) along x-axis and
y-axis, respectively. From the figures, we can see that the
consensus errors remain in a small neighborhood of the
origin, the consensus can be achieved by using the control
law (37) and the fractional-order adaption law (38), and
Theorem 5 can be guaranteed. Figure 3 gives the state graph
in two-dimensional space when time is changing; it also
proves the obtained results.

Secondly, the communication topology graph with five
agents is considered as in Figure 4, which are also con-
nected. To verify Theorem 5, we choose 𝛼 = 0.94; the
initial values are designed as (𝑥11(0), 𝑥12(0))𝑇 = (0.5, −3)𝑇,(𝑥21(0), 𝑥22(0))𝑇 = (−2, 1)𝑇, (𝑥31(0), 𝑥32(0))𝑇 = (3.4, −5)𝑇,(𝑥41(0), 𝑥42(0))𝑇 = (5.8, −10)𝑇, (𝑥51(0), 𝑥52(0))𝑇 = (−6, 6)𝑇.
The initial value 𝑤𝑖(0) = 0, 𝑖 = 1, 2, . . . , 6, is assumed
for the fractional-order adaption law. The nonlinear term
and external disturbance are defined as 𝑓𝑖1(𝑥𝑖(𝑡)) = 𝑥2𝑖2(𝑡),𝑓𝑖2(𝑥𝑖(𝑡)) = 𝑥2𝑖1(𝑡), 𝑑𝑖1(𝑥𝑖(𝑡)) = 2𝑥𝑖2(𝑡)2 sin(𝑥2𝑖1(𝑡)),𝑑𝑖2(𝑥𝑖(𝑡)) = 2𝑥𝑖1(𝑡)2 cos(𝑥2𝑖2(𝑡)), 𝛿𝑖 = 4 > 0, 𝜃𝑖 = 6.6 > 0,𝜎𝑖 = 1.2 > 0, 𝑟𝑖 = 3 > 0. Based on the Laplace matrix,
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Figure 2:The states of the 𝑖th agent (𝑖 = 1, 2, 3, 4, 5, 6): (a) the state 𝑥𝑖1 along 𝑥-axis; (b) the states 𝑥𝑖2 along 𝑦-axis.
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Figure 3:The states of six agents in two-dimensional space.
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Figure 4: Communication graph with five agents.

we can calculate that 𝜆𝑚𝑎𝑥(Δ) = 1.9275. The conditions for
the fractional-order adaption law andTheorem 5 are satisfied.
Figures 5(a) and 5(b) show the consensus errors remaining
in a small neighborhood of the origin along x-axis and y-
axis, respectively. From the figures, we can judge that the
consensus can be achieved based on the control law (37) and
the fractional-order adaption law (38), and the effectiveness
of Theorem 5 can be proved. To show the states relationship,
Figure 6 gives the state graph in two-dimensional space with
time changing; it also shows that the consensus can be
achieved by using the control law based on RBFNNs.

5. Conclusion

This paper has investigated adaptive consensus of the frac-
tional nonlinear MASs based on the developed RBFNNs
approximation control method. Firstly, the fractional deriva-
tive theories and corresponding graph theory have been
given; moreover, RBFNNs based method has been explained
to achieve the nonlinear terms approximation. Secondly, by
using matrix theory and fractional-order theory, the valid
control law and relative results have been obtained based
on the known nonlinear terms, and then, to overcome the
unknown nonlinear terms, the control law and a fractional-
order adaption law have been designed based on the RBFNNs
method; at last, a theorem has been given to achieve adaptive
consensus when the nonlinear terms are unknown, and the
rigorous proof has been given to guarantee the correctness
of the gotten theorem. Finally, two simulations with six
agents and five agents have been discussed by using the
designed control law for the uncertain nonlinear MASs,
which have proved the validity of the obtained theory. Time
delay is inevitable in real application, and it can cause poor
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Figure 5: The states of the 𝑖th agent (𝑖 = 1, 2, 3, 4, 5): (a) the state 𝑥𝑖1 along 𝑥-axis; (b) the states 𝑥𝑖2 along 𝑦-axis.
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Figure 6: The states of five agents in two-dimensional space.

performance for the system stability; therefore, the study on
the time delay of the fractional-order uncertain MASs will be
our main work.
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