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This paper investigates a two-machine flow shop problem with release dates in which the job processing times are variable
according to a learning effect. The bicriterion is to minimize the weighted sum of makespan and total completion time subject
to release dates. We develop a branch-and-bound (B&B) algorithm to solve the problem by using a dominance property, several
lower bounds, and an upper bound to speed up the elimination process of the search tree. We further propose a multiobjective
memetic algorithm (MOMA), enhanced by an initialization strategy and a global search strategy, to obtain the Pareto front of
the problem. Computational experiments are also carried out to examine the effectiveness and the efficiency of the B&B
algorithm and the MOMA algorithm.

1. Introduction

In many industrial systems, logistics, and service settings, the
processing times of jobs can decrease due to the learning
effects, i.e., firms and employees perform a job (task) over
and over and they learn how to perform more efficiently
[1, 2]. This is especially observed in seru production system,
consisting of some equipment and workers who produce one
or more part types. After undertaking cross-training, the
learning effects greatly affect their efficiencies [3]. “As there
is a significant involvement of humans in scheduling envi-
ronments, the number of activities subject to learning is high,
too. Hence it seems reasonable to consider learning in sched-
uling environments” [2]. On the other hand, the importance
of flow shop scheduling optimization is widely recognized in
many manufacturing and assembling processes, e.g., the
internet connectivity problem in 3-tiered client-server data-
bases is a two-machine flow shop problem (see [4]); the
scheduling of multimedia date objectives for WWW appli-
cations reduces to a two-machine flow shop problem (see
[5–7]; see also the reviews given in [6] and [8–10]).

More recently, Xu et al. [11], Eren [12], Wu and Lee [13],
Rudek [14], Kuo et al. [15], Lee and Chung [16], Sun et al.
[17, 18], Cheng et al. [19], Li et al. [20], Wang and Zhang
[21], J. B. Wang and J. J. Wang [22], Lai et al. [23], Liu and
Feng [24], Wang and Zhang [21], Wu et al. [25], Shiau
et al. [26], Lu [27], Qin et al. [28], He [29], and Wang et al.
[30] considered flow shop scheduling problems with learning
effects, but without release dates. Xu et al. [11] considered the
flow shop scheduling problems with position-dependent
learning effect, i.e., if job J j is in position l of a schedule, the
actual processing time pijl of job J j on machine Mi is pijl =
pij a − bl and pijl = pijl

α, where pij denotes the normal pro-
cessing time of job J j on Mi and a > 0, b ≥ 0, and α ≤ 0 are
the learning rates. For several regular objective functions,
they presented approximate algorithms. Cheng et al. [19]
considered the model pijl = pijl

α. For the maximum lateness
minimization, they gave a mathematical programming
model. Wang et al. [31] considered the model pijl = pijl

α.
For the total completion time minimization, they gave a
branch-and-bound algorithm and several well-known
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heuristics. Lai et al. [23] considered the model pijl = pijl
α. For

the total tardiness minimization, they gave a branch-and-
bound algorithm and two heuristics. He [29] and Li et al.
[20] considered the flow shop scheduling problems with
time-dependent learning effect, i.e., if job J j is in position
l of a schedule, the actual processing time pijl of job J j on

machine Mi is pijl = pij 1 +∑l−1
h=1pi h

a
, where a ≤ 0 is the

learning rate and h denotes the job that occupies the hth
position in a sequence. For several regular objective func-
tions, they presented approximate algorithms. Shiau et al.
[26] considered the flow shop scheduling problems with
general position-dependent learning effect, i.e., if job J j is
in position l of a schedule, the actual processing time pijl
of job J j on machine Mi is pijl = pijg l , where 1 = g 1
≥ g 2 ≤⋯≥ g n is a nonincreasing function. Sun et al.
[18] considered the total weighted completion time minimi-
zation flow shop scheduling problem. For three position-
dependent learning effects, they gave heuristic algorithms.
Cheng et al. [19], Lai et al. [23], Wang et al. [31], Wu and
Lee [13], and Wang et al. [30] considered the flow shop
scheduling with truncated learning effects. J.-B. Wang and
J.-J. Wang [22] considered the flow shop scheduling with a
general exponential learning effect. For five regular objective
functions, they presented heuristic algorithms. Wang and
Zhang [21] considered the flow shop scheduling with
position-weighted learning effects. For the weighted sum of
makespan and total completion time minimization, they
gave a branch-and-bound algorithm and some heuristic
algorithms. Qin et al. [28] considered the flow shop group
scheduling with position-based learning effect. For four
objectives (i.e., the makespan, total completion time, total
weighted completion time, and maximum lateness), they
gave several heuristics and metaheuristics. For new trends
in flow shop scheduling with learning effects, we refer the
reader to Rudek [14], Liu and Feng [24], Shiau et al. [26],
Lu [27], and He [29].

However, in fact, the scheduling with release dates is
interesting and closer to real problems [32–34]. With
modeling a realistic production system in mind, Yin et al.
[35] considered single-machine scheduling with release dates
and position-dependent learning effects. To the best of our
knowledge, the flow shop scheduling problems with a learn-
ing effect and release dates (i.e., the ready times) simulta-
neously have barely been investigated. Bai et al. [36] is the
only identifiable exception. Hence, in this paper, we consider
the two-machine flow shop scheduling problem with
position-dependent learning effect and release dates, and the
objective is to minimize the weighted sum of makespan and
total completion time. Obviously, the problem under study is
NP-hard [34]; thus, the branch-and-bound algorithm might
be a good way to obtain the optimal schedule. We further
design an evolutionary multiobjective optimization algorithm
to obtain the Pareto front of high quality. This contribution
makes a clear distinction between this paper and Bai et al.
[36], which solely focuses on a single aggregated objective.

The remaining of the paper is organized as follows. In
Section 2, we formalize the problem. Dominance conditions

for the problem are presented in Section 3. Branch-and-
bound algorithm is discussed in Section 4. Numerical exper-
iments are conducted in Section 5. The last section concludes
the paper.

2. Notations and Assumptions

The problem may be stated as follows. We are given n jobs
and two machines M1 and M2. Each machine is available at
time zero and the job J j becomes available at its release date
r j ≥ 0. Let J = J1,… , J j,… , Jn represent the set of jobs
which are to be processed on 2 machine permutation flow
shop settings. Each job J j j = 1, 2,… , n is required to be
processed on machine M1 and then M2. As in Biskup [2],
Lee and Chung [16], Lee and Wu [37], and Lee et al. [38], if
job J j is in position l of a schedule, then the actual processing
times ajl and bjl of job J j on machines M1 and M2 are

ajl = ajl
α, l, j = 1, 2,… , n,

bjl = bjl
α, l, j = 1, 2,… , n,

1

respectively, where aj bj denotes the normal processing
time (i.e., the basic processing time before learning effects
happened) of job J j on M1 M2 and α = log2LR ≤ 0 is the
learning index for both machines M1 and M2 depending on
the learning rate LR. For a given schedule π, let C1j π =
C1j C2j π = Cj be the completion time of job J j on machine
M1 M2 . The objective is to minimize λCmax + 1 − λ ∑n

j=1
Cj, where Cmax = max Cj∣j=1,2,…,n is the makespan and
∑n

j=1Cj is the total completion time, 0 ≤ λ ≤ 1. Using the
conventional three-field notation for describing scheduling
problems (Graham et al. [39]), the problem under consid-
eration can be described as F2 LE, rj λCmax + 1 − λ ∑n

j=1
Cj, where LE denotes the learning effect [1, 2].

3. Dominance Conditions

In this section, we give some dominance rules for F2 LE, r j
λCmax + 1 − λ ∑n

j=1Cj. “Dominance rules are basically nec-
essary conditions for any optimal schedule that can be gener-
ated. Applying such rules results in a set of precedence
relations between jobs. These precedence relations are then
used to reduce the number of branches in a branch-and-
bound search tree” (Yin et al. [35]). Let S1 = π, J j, Jk, π′
and S2 = π, Jk, J j, π′ be obtained from S1 by only interchan-

ging jobs J j and Jk, where π and π′ are partial sequences, and
there are l − 1 jobs in π. To show that S2 dominates S1, it is
sufficient to show that C1j S2 ≤ C1k S1 , Cj S2 ≤ Ck S1 ,
and Ck S2 + Cj S2 ≤ Ck S1 + Cj S1 . Let A B denote the
last completion time prior to jobs J j and Jk on machine M1
M2 in S1; obviously, A and B remain unchanged in S2.

Proposition 1. If the jobs Jk and J j satisfy the following
conditions:
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(i) Either rk + akl
α + bkl

α ≤ rj + ajl
α + bjl

α or rk + akl
α

+ bkl
α ≤ A + ajl

α + bjl
α or rk + akl

α + bkl
α ≤ B + bjl

α

(ii) Either A + akl
α + bkl

α ≤ r j + ajl
α + bjl

α or ak + bk ≤
aj + bj or A + akl

α + bkl
α ≤ B + bjl

α

(iii) Either B + bkl
α ≤ r j + ajl

α + bjl
α or B + bkl

α ≤ A +
ajl

α + bjl
α or bk ≤ bj

(iv) Either rk + akl
α + aj l + 1 α ≤ r j + ajl

α + ak l + 1 α

or A + akl
α + aj l + 1 α ≤ r j + ajl

α + ak l + 1 α ;

(v) Either rk + akl
α + aj l + 1 α ≤ A + ajl

α + ak l + 1 α

or akl
α + aj l + 1 α ≤ ajl

α + ak l + 1 α or rj + aj
l + 1 α ≤ A + ajl

α + ak l + 1 α

(vi) Either A + akl
α + aj l + 1 α ≤ rk + ak l + 1 α or rj +

aj l + 1 α ≤ rk + ak l + 1 α

(vii) Either akl
α + aj l + 1 α + bj l + 1 α ≤ ajl

α + ak l +
1 α + bk l + 1 α or akl

α + aj l + 1 α + bj l + 1 α ≤
ajl

α + bjl
α + bk l + 1 α or A + akl

α + aj l + 1 α + bj
l + 1 α ≤ B + bjl

α + bk l + 1 α or A + akl
α + aj l +

1 α + bj l + 1 α ≤ r j + ajl
α + ak l + 1 α + bk l + 1 α

or A + akl
α + aj l + 1 α + bj l + 1 α ≤ r j + ajl

α + bjl
α

+ bk l + 1 α or A + akl
α + aj l + 1 α + bj l + 1 α ≤

rk + ak l + 1 α + bk l + 1 α

(viii) Either akl
α + bkl

α + bj l + 1 α ≤ ajl
α + ak l + 1 α +

bk l + 1 α or akl
α + bkl

α + bj l + 1 α ≤ ajl
α + bjl

α +
bk l + 1 α or A + akl

α + bkl
α + bj l + 1 α ≤ B + bjl

α

+ bk l + 1 α or A + akl
α + bkl

α + bj l + 1 α ≤ rj + aj
lα + ak l + 1 α + bk l + 1 α or A + akl

α + bkl
α + bj

l + 1 α ≤ rj + ajl
α + bjl

α + bk l + 1 α or A + akl
α +

bkl
α + bj l + 1 α ≤ rk + ak l + 1 α + bk l + 1 α

(ix) Either B + bkl
α + bj l + 1 α ≤ A + ajl

α + ak l + 1 α +
bk l + 1 α or B + bkl

α + bj l + 1 α ≤ A + ajl
α + bjl

α

+ bk l + 1 α or bkl
α + bj l + 1 α ≤ bjl

α + bk l + 1 α

or B + bkl
α + bj l + 1 α ≤ r j + ajl

α + ak l + 1 α + bk
l + 1 α or B + bkl

α + bj l + 1 α ≤ r j + ajl
α + bjl

α +
bk l + 1 α or B + bkl

α + bj l + 1 α ≤ rk + ak l + 1 α

+ bk l + 1 α

(x) Either rk + akl
α + aj l + 1 α + bj l + 1 α ≤ A + aj

lα + ak l + 1 α + bk l + 1 α or rk + akl
α + aj l + 1 α

+ bj l + 1 α ≤ A + ajl
α + bjl

α + bk l + 1 α or rk +
akl

α + aj l + 1 α + bj l + 1 α ≤ B + bjl
α + bk l + 1 α

or rk + akl
α + aj l + 1 α + bj l + 1 α ≤ rj + ajl

α + ak
l + 1 α + bk l + 1 α or rk + akl

α + aj l + 1 α + bj
l + 1 α ≤ r j + ajl

α + bjl
α + bk l + 1 α or akl

α + aj
l + 1 α + bj l + 1 α ≤ ak l + 1 α + bk l + 1 α

(xi) Either rk + akl
α + bkl

α + bj l + 1 α ≤ A + ajl
α + ak

l + 1 α + bk l + 1 α or rk + akl
α + bkl

α + bj l + 1 α

≤ A + ajl
α + bjl

α + bk l + 1 α or rk + akl
α + bkl

α +
bj l + 1 α ≤ B + bjl

α + bk l + 1 α or rk + akl
α + bkl

α

+ bj l + 1 α ≤ rj + ajl
α + ak l + 1 α + bk l + 1 α or

rk + akl
α + bkl

α + bj l + 1 α ≤ rj + ajl
α + bjl

α + bk
l + 1 α or akl

α + bkl
α + bj l + 1 α ≤ ak l + 1 α + bk

l + 1 α

(xii) Either rj + aj l + 1 α + bj l + 1 α ≤ A + ajl
α + ak

l + 1 α + bk l + 1 α or r j + aj l + 1 α + bj l + 1 α ≤
A + ajl

α + bjl
α + bk l + 1 α or rj + aj l + 1 α + bj

l + 1 α ≤ B + bjl
α + bk l + 1 α or aj l + 1 α + bj

l + 1 α ≤ ajl
α + ak l + 1 α + bk l + 1 α or aj l + 1 α

+ bj l + 1 α ≤ ajl
α + bjl

α + bk l + 1 α or r j + aj
l + 1 α + bj l + 1 α ≤ rk + ak l + 1 α + bk l + 1 α

then S2 dominates S1.

Proof 1. Under schedules S1 and S2, the completion times of
jobs J j and Jk are

C1j S1 = max A, r j + ajl
α, 2

Cj S1 = max B, C1j S1 + bjl
α

=max r j + ajl
α + bjl

α, A + ajl
α + bjl

α, B + bjl
α ,

3

C1k S1 = max C1j S1 , rk + ak l + 1 α

=max rj + ajl
α + ak l + 1 α,

A + ajl
α + ak l + 1 α, rk + ak l + 1 α ,

4

Ck S1 = max C1k S1 , Cj S1 + bk l + 1 α

=max A + ajr
α + ak l + 1 α + bk l + 1 α,

A + ajl
α + bjl

α + bk l + 1 α, B + bjl
α

+ bk l + 1 α, rj + ajl
α + ak l + 1 α

+ bk l + 1 α, rj + ajl
α + bjl

α + bk l + 1 α,
rk + ak l + 1 α + bk l + 1 α ,

5

C1k S2 = max A, rk + akl
α, 6

Ck S2 = max rk + akl
α + bkl

α, A + akl
α + bkl

α, B + bkl
α , 7

C1j S2 = max rk + akl
α + aj l + 1 α,

A + akl
α + aj l + 1 α, r j + aj l + 1 α ,

8

Cj S2 = max A + akl
α + aj l + 1 α + bj l + 1 α,

A + akl
α + bkl

α + bj l + 1 α, B + bkl
α

+ bj l + 1 α, rk + akl
α + aj l + 1 α

+ bj l + 1 α, rk + akl
α + bkl

α + bj l + 1 α,
r j + aj l + 1 α + bj l + 1 α

9

If the cases rk + akl
α + bkl

α ≤ r j + ajl
α + bjl

α, A + akl
α +

bkl
α ≤ rj + ajl

α + bjl
α, B + bkl

α ≤ rj + ajl
α + bjl

α, rk + akl
α + aj

l + 1 α ≤ rj + ajl
α + ak l + 1 α, rk + akl

α + aj l + 1 α ≤ A +
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ajl
α + ak l + 1 α, A + akl

α + aj l + 1 α ≤ rk + ak l + 1 α, akl
α

+ aj l + 1 α + bj l + 1 α ≤ ajl
α + ak l + 1 α + bk l + 1 α, akl

α

+ bkl
α + bj l + 1 α ≤ ajl

α + ak l + 1 α + bk l + 1 α, B + bkl
α +

bj l + 1 α ≤ A + ajl
α + ak l + 1 α + bk l + 1 α, rk + akl

α + aj
l + 1 α + bj l + 1 α ≤ A + ajl

α + ak l + 1 α + bk l + 1 α, rk +
akl

α + bkl
α + bj l + 1 α ≤ A + ajl

α + ak l + 1 α + bk l + 1 α,
and r j + aj l + 1 α + bj l + 1 α ≤ A + ajl

α + ak l + 1 α + bk
l + 1 α can be satisfied, we have the following: first term in
(7)≤first term in (3), second term in (7)≤first term in (3),
third term in (7)≤first term in (3), first term in (8)≤first
term in (4), second term in (8)≤first term in (4), third term
in (8)≤first term in (4), first term in (9)≤first term in (5),
second term in (9)≤first term in (5), third term in (9)≤first
term in (5), fourth term in (9)≤first term in (5), fifth term in
(9)≤first term in (5), and sixth term in (9)≤first term in (5).

Hence, C1j S2 ≤ C1k S1 , Ck S2 ≤ Cj S1 , Cj S2 ≤ Ck

S1 , and Ck S2 + Cj S2 ≤ Cj S1 + Ck S1 . Similarly to this
case, the other cases can be obtained.

4. Branch-and-Bound (B&B) Algorithm

4.1. Lower Bound. Let π = π1, π2 be a schedule in which π1
is the scheduled part, and suppose there are θ jobs in π1, and
π2 is the set of so far unscheduled jobs. Let pi j θ + 1 ≤ j ≤ n
denote the jth smallest normal processing time on machine
Mi (i = 1 and 2) when jobs in π2 are arranged in an ascend-
ing order of the normal processing time on machine Mi. By
definition, the completion time of the θ + 1 th job on
machine M2 is

C2 θ+1 π =max max r θ+1 , C1 θ π

+ a θ+1 θ + 1 α, C2 θ π + b θ+1 θ + 1 α

=max r θ+1 + a θ+1 θ + 1 α + b θ+1 θ + 1 α,

C1 θ π + a θ+1 θ + 1 α + b θ+1 θ + 1 α,

C2 θ π + b θ+1 θ + 1 α

≥ r θ+1 a θ+1 + b θ+1 θ + 1 α

10

Similarly,

C2 θ+j π ≥ r θ+j + a θ+j + b θ+j θ + j α, 11

where 1 ≤ j ≤ n − θ.
Hence,

Cmax = C2 n π ≥ rmax + abminn
α, 12

where rmax = max r j∣j∈π2
and abmin = min aj + bj∣j∈π2

.

〠
n

j=1
Cj π = 〠

θ

j=1
C2 j π + 〠

n

j=θ+1
C2 j π

≥ 〠
θ

j=1
C2 j π + 〠

n−θ

j=1
r θ+j

+ 〠
n−θ

j=1
a θ+j + b θ+j θ + j α

13

Hence,

λCmax + 1 − λ 〠
n

j=1
Cj π

≥ λ rmax + abminn
α + 1 − λ

× 〠
θ

j=1
C2 j π + 〠

n−θ

j=1
r θ+j + 〠

n−θ

j=1
a θ+j + b θ+j θ + j α

= λ rmax + abminn
α + 1 − λ 〠

θ

j=1
C2 j π + 〠

n−θ

j=1
r θ+j

+ 1 − λ 〠
n−θ

j=1
a θ+j + b θ+j θ + j α

14

It is noticed that the term λ rmax + abminn
α + 1 − λ

∑θ
j=1C2 j π +∑n−θ

j=1 r θ+j is a fixed constant and the term

1 − λ ∑n−θ
j=1 a θ+j + b θ+j θ + j α is minimized by sequenc-

ing the jobs in a nondecreasing order of a j + b j . Conse-
quently, we obtain the first lower bound which is

LB1 = λ rmax + abminn
α + 1 − λ 〠

θ

j=1
C2 j π + 〠

n−θ

j=1
r θ+j

+ 1 − λ 〠
n−θ

j=1
a θ+j + b θ+j θ + j α ,

15

where rmax = max rj ∣ j ∈ π2 , abmin = min aj + bj ∣ j ∈ π2 ,
and a θ+1 + b θ+1 ≤ a θ+2 + b θ+2 ≤⋯≤ a n + b n .

Similarly,

C2 θ+j π ≥ C1 θ π + 〠
j

l=1
a θ+l θ + l α + b θ+j θ + j α, 16

where 1 ≤ j ≤ n − θ.
Hence,

Cmax ≥ C1 θ π + 〠
n−θ

l=1
a θ+l θ + l α + b n n

α, 17
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and the total completion time is

〠
n

j=1
Cj π = 〠

θ

j=1
C2 j π + 〠

n

j=θ+1
C2 j π

≥ 〠
θ

j=1
C2 j π + n − θ C1 θ π

+ 〠
n−θ

j=1
〠
j

l=1
a θ+l θ + l α + 〠

n−θ

j=1
b θ+j θ + j α

18

Hence,

λCmax + 1 − λ 〠
n

j=1
Cj π

≥ 1 − λ 〠
θ

j=1
C2 j π + λ + 1 − λ n − θ C1 θ π

+ λ 〠
n−θ

l=1
a θ+l θ + l α + b n n

α

+ 1 − λ 〠
n−θ

j=1
〠
j

l=1
a θ+l θ + l α + 〠

n−θ

j=1
b θ+j θ + j α

19

Obviously, 1 − λ ∑θ
j=1C2 j π + λ + 1 − λ n − θ C1 θ

π is a fixed constant, b n n
α is minimized by choosing

bmin = min bj∣j∈π2
and λ ∑n−θ

l=1 a θ+l θ + l α , and 1 − λ

∑n−θ
j=1∑

j
l=1a θ+l θ + l α +∑n−θ

j=1 b θ+j θ + j α can be mini-
mized by sequencing the jobs in a nondecreasing order of
a j and b j , respectively. Consequently, we have

LB2 = 1 − λ 〠
θ

j=1
C2 j π + λ + 1 − λ n − θ C1 θ π

+ λ 〠
n−θ

l=1
a θ+l θ + l α + bminn

α

+ 1 − λ 〠
n−θ

j=1
〠
j

l=1
a θ+l θ + l α + 〠

n−θ

j=1
b θ+j θ + j α ,

20

where bmin = min bj ∣ j ∈ π2 and a θ+1 ≤ a θ+2 ≤⋯ ≤ a n

b θ+1 ≤ b θ+2 ≤⋯≤ b n is a nondecreasing order of the
normal processing times on M1 M2 for the remaining
unscheduled jobs (note that a l and b l do not necessarily
correspond to the same job).

Similarly,

C2 θ+j π ≥ C2 θ π + 〠
j

l=1
b θ+l θ + l α, 21

where 1 ≤ j ≤ n − θ.
Hence,

Cmax ≥ C2 θ π + 〠
n−θ

l=1
b θ+l θ + l α, 22

and

〠
n

j=1
Cj π = 〠

θ

j=1
C2 j π + 〠

n

j=θ+1
C2 j π

≥ 〠
θ

j=1
C2 j π + n − θ C2 θ π

+ 〠
n−θ

j=1
〠
j

l=1
b θ+j θ + l α

23

Hence,

λCmax + 1 − λ 〠
n

j=1
Cj π

≥ 1 − λ 〠
θ

j=1
C2 j π + λ + 1 − λ n − θ C2 θ π

+ λ 〠
n−θ

l=1
b θ+l θ + l α + 1 − λ 〠

n−θ

j=1
〠
j

l=1
b θ+l θ + l α

24

It is noticed that the term 1 − λ ∑θ
j=1C2 j π + λ +

1 − λ n − θ C2 θ π is a fixed constant and the term

λ ∑n−θ
l=1 b θ+l θ + l α + 1 − λ ∑n−θ

j=1∑
j
l=1b θ+l θ + l α can be

minimized by sequencing the jobs in a nondecreasing
order of b j . Consequently, we have

LB3 = 1 − λ 〠
θ

j=1
C2 j π + λ + 1 − λ n − θ C2 θ π

+ λ 〠
n−θ

l=1
b θ+l θ + l α

+ 1 − λ 〠
n−θ

j=1
〠
j

l=1
b θ+l θ + l α ,

25

where b θ+1 ≤ b θ+2 ≤⋯≤ b n is a nondecreasing order of
the normal processing times on M2 for the remaining
unscheduled jobs.
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In order to make the lower bound tighter, we choose the
maximum values LBh, h = 1,2,3, as a lower bound for π2, i.e.,

LB =max LB1, LB2, LB3 26

4.2. The Algorithm for the Upper Bound. Similarly to Frami-
nan and Leisten [40] (they proposed the O mn4 FL heuristic
for solving Fm prmu ∑Cj), the FL heuristic can be adjusted
for solving F2 LE, rj λCmax + 1 − λ ∑n

j=1Cj. Now, we give
the modified FL algorithm.

Since Phase I takes O n log n time and Phase II takes
O mn4 time, the overall time complexity of the FLTPA
algorithm is O mn4 .

4.3. The B&B Algorithm. A B&B algorithm that uses the
depth first search strategy to solve F2 LE, r j λCmax + 1 − λ

∑n
j=1Cj is proposed. Now the B&B algorithm can be described

as follows.

Step 1. Initialization: the FL-based two-phase algorithm
(FLTPA) is applied to obtain an upper bound.

Step 2. Fathoming: apply Proposition 1 to eliminate the dom-
inated partial sequences from the initial node and their
descendants from the tree.

Step 3. Bounding: calculate the lower bound for the node. If
the lower bound for an unfathomed partial schedule is larger

Phase I
Step 1. Sequence the jobs in nondecreasing order of r j
Step 2. Sequence the jobs in nondecreasing order of aj
Step 3. Sequence the jobs in nondecreasing order of bj.
Step 4. Sequence the jobs in nondecreasing order of aj + bj
Step 5. Choose the best solution from Steps 1 to 4

Phase II
Step 1. Let π0 be the schedule obtained from Phase I
Step 2. Set k = 2. Select the first two jobs from π0 and select the better between the two possible sequences
Step 3. Increment k, k = k + 1. Select the kth job from π0 and insert it into k possible positions of the best partial sequence

obtained so far. Among the k sequences, the best k-job partial sequence is selected based on minimum λCmax + 1 − λ

∑n
j=1Cj. Next, determine all possible sequences by interchanging jobs in positions i and j of the above partial sequence for

all i, j 1 ≤ i < k, i < j ≤ k . Select the best partial sequence among k k − 1 /2 sequences having minimum λCmax + 1 − λ

∑n
j=1Cj

Step 4. If k = n, then STOP; else, go to Step 3

Algorithm 1: FL-based two-phase algorithm (FLTPA).

Table 1: Results of the B&B algorithm and the FLTPA heuristic for r j~ 1, 10 .

n α
CPU time (ms)

Node number Error
FLTPA B&B

Mean Max Mean Max Mean Max Mean (%) Max (%)

11

−0.152 0 0 44.320 172 1265.940 5689 0.131 1.792

−0.322 0.94 16 45.260 280 1283.260 8116 0.120 1.777

−0.515 0.64 16 16.520 187 445.660 5037 0.058 1.151

12

−0.152 0.62 16 151.340 1404 4556.020 44563 0.129 2.105

−0.322 0.3 15 70.540 359 1930.160 9557 0.211 2.973

−0.515 0.62 16 52.420 390 1401.980 9733 0.162 2.043

13

−0.152 0.96 16 385.920 2699 9631.740 76047 0.220 1.798

−0.322 1.26 16 119.180 780 2858.480 17116 0.255 2.622

−0.515 0.64 16 119.800 655 2883.180 15506 0.177 2.497

14

−0.152 2.16 16 1518.840 19,890 36283.359 466540 0.228 2.435

−0.322 1.56 16 543.500 4197 12781.740 96673 0.240 1.913

−0.515 2.18 16 202.180 1872 4837.700 47663 0.147 1.650

15

−0.152 3.12 16 4629.780 118,311 102398.320 2724303 0.198 2.759

−0.322 1.82 16 1299.860 13,869 30514.420 317594 0.157 0.970

−0.515 1.54 16 424.020 5382 10577.960 141059 0.114 0.622
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than the upper bound, eliminate the node and all the nodes
following it in the branch. Calculate the objective function
value λCmax + 1 − λ ∑n

j=1Cj of the completed schedule; if
it is less than the upper bound, replace it as the new solution;
otherwise, eliminate it.

Step 4. Termination: continue to search all the nodes, and the
remaining upper bound is optimal.

4.4. The Improved EMO Algorithm. The B&B algorithm
outputs the optimal solution, and the LFTPA heuristic

outputs a near-optimal solution to the linearly weighted
sum of Cmax and ∑n

j=1Cj. From the perspective of biobjec-
tive optimization, evolutionary multiobjective optimization
(EMO) algorithm returns at one time a set of nondomi-
nated solutions [41–43], i.e., the Pareto front, for the
decision-maker’s reference. We propose two strategies to
improve the multiobjective memetic algorithm (MOMA)
which has successfully solved many difficult numerical opti-
mization problems and outperforms NSGA-II (the nondo-
minated sorting genetic algorithm) and SPEA2 (the
improved strength Pareto evolutionary algorithm) for the

Table 2: Results of the B&B algorithm and the FLTPA heuristic for r j~ 1, 50 .

n α
CPU time (ms)

Node number Error
FLTPA B&B

Mean Max Mean Max Mean Max Mean Max

11

−0.152 1.56 16 38.380 219 1120.480 7152 0.301 4.920

−0.322 0 0 22.480 156 623.360 6093 0.117 1.076

−0.515 0.3 15 15.300 47 402.100 1456 0.314 4.642

12

−0.152 0.92 16 110.780 1341 3182.240 40970 0.195 2.423

−0.322 0.94 16 66.140 203 1872.820 6067 0.263 3.295

−0.515 1.26 16 40.860 656 1191.280 21210 0.301 2.267

13

−0.152 1.86 16 274.580 2012 6466.040 43732 0.355 3.760

−0.322 1.6 16 216.180 1186 5390.040 32324 0.375 4.117

−0.515 1.26 16 142.260 1107 3474.940 25696 0.538 5.303

14

−0.152 1.28 16 743.780 5725 17542.561 124227 0.488 2.817

−0.322 3.76 16 272.040 1981 6133.940 43542 0.112 0.942

−0.515 1.58 16 477.660 8361 11843.340 213835 0.480 3.439

15

−0.152 2.84 16 1422.080 10,983 32341.820 272559 0.256 2.603

−0.322 1.88 16 1106.980 12,043 26354.939 285013 0.272 1.663

−0.515 1.84 16 461.180 3854 11786.160 118523 0.207 2.318

Table 3: Results of the B&B algorithm and the FLTPA heuristic for r j~ 1,100 .

n α
CPU time (ms)

Node number Error
FLTPA B&B

Mean Max Mean Max Mean Max Mean Max

11

−0.152 0.62 16 50.860 343 1288.380 11,443 0.634 4.170

−0.322 1.56 16 27.460 94 735.060 2719 0.528 5.771

−0.515 0 0 18.100 125 436.120 3457 0.481 3.671

12

−0.152 1.58 16 108.580 998 2754.880 25142 0.377 3.067

−0.322 0.62 16 46.180 297 1122.220 8368 0.321 1.720

−0.515 1.24 16 50.560 546 1296.280 15767 0.602 4.513

13

−0.152 1.24 16 167.860 920 4312.520 24715 0.365 2.844

−0.322 1.9 16 132.260 1809 3278.320 45866 0.560 3.596

−0.515 1.28 16 94.200 1061 2279.440 26942 0.507 4.397

14

−0.152 1.56 16 433.060 3775 10215.620 97348 0.505 3.298

−0.322 3.46 16 196.220 1170 4658.940 29477 0.550 4.448

−0.515 1.58 16 191.860 1279 4328.420 26003 0.528 4.147

15

−0.152 2.52 16 1491.960 34,819 33631.441 775620 0.586 3.553

−0.322 2.14 16 774.120 8954 17432.561 224454 0.400 2.774

−0.515 3.46 16 561.260 9579 12746.040 211568 0.607 5.383
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two-objective and three-objective benchmark flow shop
scheduling instances [44].

(1) Initialization strategy: the initial population consists
of one individual generated by the LFTPA heuristic
and some others adjusted from that individual by
exchanging operators. The number of the LFTPA
heuristic-related individuals is equal to half of the
population size. The remaining individuals are ran-
domly generated to guarantee population diversity.

(2) Global search strategy: due to the nondominated
sorting and crowd distance calculation mechanisms,
NSGA-II has a very good performance to solve many
multiobjective problems and is used as global search.
Its key operators include selection, crossover, and
mutation. We apply the tournament selection opera-
tor (see the details in [44]). According to Ishibuchi
et al. [45], the two-point crossover and insertion
mutation operators are adopted.

5. Computational Study

Computational experiments were studied to evaluate the
effectiveness of the B&B algorithm and the FLTPA heuristic.
We coded the B&B algorithm, the FLTPA heuristic, and the
improved MOMA in VC++ 6.0 and ran on CPU Intel® Core
(TM) i7-4790 3.6GHz and 8GB RAM. For the experiments,
the parameters are considered as follows: λ = 0 5 and the
numbers of jobs n : 11, 12, 13, 14, and 15 for small size
and 500 and 1000 for large size. The normal processing times
of jobs (aj and bj) are randomly generated from the uniform
distribution over the integers [1, 100].

In order to study the impact of the parameters, the
values of the learning effect are taken to be 90% (i.e., α =
log20 9 = −0 152), 80% (i.e., α = log20 8 = −0 322), and 70%
(i.e., α = log20 7 = −0 515). The release dates of jobs r j are

randomly generated from the uniform distribution over the
integers [1, 10,1, 50] and [1, 100].

As a consequence, for small-size problems, 45 experi-
mental conditions were examined and 50 replications were
randomly generated for each condition. A total of 2250
problems were tested. For large-size problems, 18 experi-
mental conditions were examined and 50 replications were
randomly generated for each condition. A total of 900 prob-
lems were tested. For the B&B algorithm, the average and
maximum number of nodes and the average and the maxi-
mum time (in milliseconds) are reported. The percentage
error of the solution produced by the FLTPA heuristic is
calculated as

The results of small-size problems are summarized in
Tables 1–3. From Tables 1–3, we find that the B&B algorithm
can solve a problem of up to 15 jobs in a very short amount of
time. The most time-consuming instance took a maximum of
118311ms for n = 15, α = −0 152, and r j~ 1, 10 . As for the
performance of the FLTPA heuristic, it is seen that the
FLTPA heuristic performs very well for the error percent-
ages. The mean error percentage is less than 0.7% for all the
tested cases, and the max error percentage is less than 6%
for all the tested cases.

For large-size problems, the termination of the pro-
posed MOMA algorithm is controlled by setting a running

time limit of 100 seconds. In order to verify the effective-
ness and efficiency, the MOMA is compared with several
state-of-the-art EMO algorithms [44], including the hybrid
quantum-inspired genetic algorithm (HQGA), the hybrid
particle swarm optimization algorithm (HPSO), the hybrid
simulated annealing algorithm (HSA), the multiobjective
evolutionary algorithm based on decomposition (MOEA/
D), and NSGA-II. The parameters of the above algorithms
are taken from Liu et al. [44]. The performance of an
EMO is reflected by the obtained Pareto front’s proximity
and diversity. We consider two metrics for performance
measurement. The IGD (inverted generational distance)
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Figure 1: Pareto front of a problem instance for n = 500, r j~ 1, 50 ,
and α = −0 152.

λCmax FLTPA + 1 − λ ∑n
j=1Cj FLTPA − λCmax OPT + 1 − λ ∑n

j=1Cj OPT

λCmax OPT + 1 − λ ∑n
j=1Cj OPT

× 100% 27
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mainly evaluates the proximity of a Pareto front to the opti-
mal reference set, which consists of nondominated solutions
in the grouped Pareto fronts. The smaller the IGD metric is,
the better proximity a Pareto front has. And the HV (hyper-
volume) evaluates the maximal area dominated by a Pareto
front, which estimates both the convergence and diversity.

The larger the value of HV means the better the integrated
performance. As is shown in Figure 1 (Pareto front of a prob-
lem instance for n = 500, r j~ 1, 50 , and α = −0 152), the pro-
posed MOMA clearly dominates the rest of the algorithms.
This result is similar for the rest of the problem instances.
The dominance relationship is further demonstrated in

Table 4: The mean IGD value (×106) of 6 algorithms.

n rj α NSGA-II HPSO HQGA HSA MOEA/D MOMA

500

[1, 10]

−0.152 6.653 6.770 6.518 6.597 6.569 0.000

−0.322 3.971 4.091 3.866 3.931 4.140 0.000

−0.515 2.197 2.308 2.136 2.179 1.961 0.000

[1, 50]

−0.152 6.713 6.962 6.683 6.755 7.046 0.027

−0.322 3.838 3.995 3.767 3.817 4.248 0.000

−0.515 2.133 2.228 2.098 2.137 2.113 0.000

[1, 100]

−0.152 6.635 6.827 6.506 6.630 6.946 0.004

−0.322 3.837 4.002 3.771 3.796 4.095 0.000

−0.515 2.065 2.142 2.034 2.062 2.128 0.000

1000

[1, 10]

−0.152 2.781 2.799 2.738 2.780 2.223 0.001

−0.322 1.455 1.478 1.450 1.448 0.815 0.000

−0.515 7.305 7.422 7.264 7.279 5.803 0.000

[1, 50]

−0.152 2.707 2.708 2.655 2.689 1.993 0.001

−0.322 1.431 1.454 1.413 1.423 0.968 0.001

−0.515 7.132 7.285 7.071 7.131 5.075 0.000

[1, 100]

−0.152 2.738 2.739 2.688 2.736 1.885 0.000

−0.322 1.428 1.458 1.406 1.422 0.860 0.000

−0.515 6.917 7.035 6.826 6.927 5.706 0.000

Table 5: The mean HV values (×1010) of 6 algorithms.

n rj α NSGA-II HPSO HQGA HSA MOEA/D MOMA

500

[1, 10]

−0.152 0.619 0.593 0.646 0.632 0.586 2.123

−0.322 1.300 1.187 1.404 1.343 0.985 6.742

−0.515 0.332 0.278 0.365 0.342 0.427 2.195

[1, 50]

−0.152 0.693 0.644 0.697 0.686 0.560 2.187

−0.322 1.562 1.416 1.636 1.586 0.997 7.057

−0.515 0.359 0.311 0.380 0.361 0.306 2.186

[1, 100]

−0.152 0.633 0.599 0.663 0.638 0.543 2.091

−0.322 0.160 0.143 0.166 0.163 0.115 0.714

−0.515 0.390 0.353 0.415 0.392 0.274 2.172

1000

[1, 10]

−0.152 0.298 0.292 0.310 0.298 0.480 1.318

−0.322 0.504 0.475 0.513 0.510 1.721 3.663

−0.515 0.095 0.087 0.097 0.097 0.222 0.970

[1, 50]

−0.152 0.300 0.298 0.314 0.303 0.535 1.320

−0.322 0.516 0.490 0.542 0.530 1.396 3.648

−0.515 0.099 0.089 0.102 0.098 0.286 0.944

[1, 100]

−0.152 0.301 0.299 0.315 0.302 0.587 1.308

−0.322 0.507 0.467 0.536 0.514 1.526 3.581

−0.515 0.102 0.095 0.108 0.101 0.196 0.915
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Tables 4 and 5. MOMA’s smallest IGD values and largest HV
values of all instances show that it comprehensively outper-
forms the other 5 algorithms.

Finally, we examine the impact of choice of parame-
ters, n, r j, and α, on algorithm performances. We perform
a N-way ANOVA using the commercial software SPSS ver-
sion 17.0. The impacts of n, r j, and α on the FLTPA heuris-
tic’s error, MOMA’s IGD metric, and MOMA’s HV metric
are shown in Tables 6–8, respectively. Throughout the
results, when the significance level (the last column in the

tables) is under 0.01, the impact is deemed as significant.
We observe that r j is significant for the FLTPA heuristic’s
performance. The error percentage is much smaller when
jobs’ release dates are smaller. This could be explained by
smaller release dates that do not tightly restrict the solution
space. We further find out that all parameters are not signif-
icant for MOMA’s IGD metric, whereas n, α, and n ∗ α all
have a significant impact on MOMA’s HV metric. As n
and/or α change, the hypervolume of a Pareto front would
change dramatically as large numerical values are involved.

Table 6: Tests of between-subject effects to the FLTPA heuristic’s error.

Source Type III sum of squares df Mean square F Sig.

Intercept 0.024 1 0.024 434.996 0.000

Error 0.003 49 5.50× 10−5

r j 0.004 1.738 0.002 64.339 0.000

n 0.000 4 7.15× 10−5 1.949 0.104

α 9.51× 10−5 2 4.75× 10−5 1.035 0.359

r j ∗ n 0.000 6.094 6.14× 10−5 1.083 0.373

r j ∗ α 0.000 3.191 8.99× 10−5 1.632 0.181

n ∗ α 0.000 8 3.95× 10−5 0.777 0.623

r j ∗ n ∗ α 0.001 10.777 5.91× 10−5 0.926 0.513

Table 7: Tests of between-subject effects to IGD of MOMA.

Source Type III sum of squares df Mean square F Sig.

Intercept 84615121.839 1.000 84615121.839 5.971 0.018

Error 694370982.111 49.000 14170836.370

n 1080878.541 1.000 1080878.541 0.071 0.791

r j 45480148.228 1.445 31473956.059 1.525 0.226

α 130844023.359 1.060 123491834.545 4.492 0.037

rj ∗ n 29827527.174 1.440 20717814.407 0.967 0.360

r j ∗ α 10336869.257 1.058 9768265.055 0.342 0.573

n ∗ α 54777091.926 1.536 35666809.099 0.907 0.385

r j ∗ n ∗ α 97890760.041 1.544 63387257.520 1.607 0.211

Table 8: Tests of between-subject effects to HV of MOMA.

Source Type III sum of squares df Mean square F Sig.

Intercept 1.07913× 1022 1.000 1.07913× 1022 96208.156 0.000

Error 5.49614× 1018 49.000 1.12166× 1017

n 5.3842× 1021 1.000 5.3842× 1021 34294.873 0.000

r j 4.11552× 1017 1.960 2.09991× 1017 1.118 0.330

α 8.24917× 1021 1.214 6.79569× 1021 33897.141 0.000

r j ∗ n 2.46247× 1017 2.000 1.23123× 1017 0.806 0.450

r j ∗ α 4.41039× 1021 1.137 3.87975× 1021 16984.584 0.000

n ∗ α 2.48526× 1017 2.323 1.06983× 1017 0.366 0.726

r j ∗ n ∗ α 3.88625× 1016 2.376 1.63594× 1016 0.067 0.957
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6. Summary and Future Research

In this study, we considered a bicriterion makespan and
total completion time minimization flow shop scheduling
with a learning effect subject to release dates. We propose
a branch-and-bound algorithm and a heuristic algorithm.
Numerical studies showed that the FLTPA heuristic was
shown to perform well in obtaining near-optimal solu-
tions. Future research may focus on considering the other
bicriteria flow shop scheduling problems with a learning
effect subject to release dates or studying more efficient
heuristic algorithms.
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