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Scientific coauthorship, generated by collaborations and competitions among researchers, reflects effective organizations of human
resources. Researchers, their expected benefits through collaborations, and their cooperative costs constitute the elements of a
game. Hence, we propose a cooperative game model to explore the evolution mechanisms of scientific coauthorship networks.
The model generates geometric hypergraphs, where the costs are modelled by space distances, and the benefits are expressed by
node reputations, that is, geometric zones that depend on node position in space and time. Modelled cooperative strategies
conditioned on positive benefit-minus-cost reflect the spatial reciprocity principle in collaborations and generate high clustering
and degree assortativity, two typical features of coauthorship networks. Modelled reputations generate the generalized Poisson
parts, and fat tails appeared in specific distributions of empirical data, for example, paper team size distribution. The combined
effect of modelled costs and reputations reproduces the transitions that emerged in degree distribution, in the correlation
between degree and local clustering coefficient, and so on. The model provides an example of how individual strategies induce
network complexity, as well as an application of game theory to social affiliation networks.

1. Introduction

Collaborations between researchers contribute not only to
the breakthrough achievement unattainable by individuals
[1, 2] but also to the transmission and fusion of knowledge,
and hence, they incubate several interdisciplines [3–6].
Coauthorship in scientific papers, as a valid proxy of collab-
orations, can be expressed graphically (termed as coauthor-
ship network), where nodes and edges represent authors
and coauthorship, respectively. Studies of large-scale coau-
thorship networks provide a bird’s eye view of collaboration
patterns in diverse fields and have become an important topic
of social sciences [7–11].

Empirical coauthorship networks have specific common
local (degree assortativity, high clustering) and global
(fat-tail, small-world) features [12–17]. Some important
models have been proposed to reproduce those properties,
such as modeling fat-tail through preferential attachment
or cumulative advantage [18–23] and modeling degree

assortativity by connecting two nonconnected nodes that
have similar degrees [24]. Except for preferential attach-
ment, the inhomogeneity of node influences is an alterna-
tive explanation for fat-tail: nodes with wider influences
are likely to gain more connections [25]. The idea has
been applied to model coauthorship networks in a geomet-
ric way: node influences are modelled by attaching specific
geometric zones to nodes [26, 27].

To find the essence from the above features, we face a
basic question [28]: “how did cooperative behavior evolve”?
Five typical mechanisms of cooperative evolution [29] all
hold for coauthorship: coauthoring frequently occurs
between students and their tutors (kin selection); coopera-
tion helps to achieve breakthroughs that are unattainable by
an individual (direct reciprocity); coauthoring someone
could establish a good reputation (indirect reciprocity);
spatial structures or social networks make some researchers
interact more often than others and obtain more collabora-
tors (network reciprocity); a successful research team is
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attractive for collaborators (group selection). To quantify col-
laborations and predict behavioral outcomes, a modelling
approach termed as the game theory is developed to find
rational strategies. Then do there exist inherent game rules
behind the complexity of coauthorship networks?

We try to find a solution for the above question through
simulation. A cooperative game consists of two elements: a
set of players and a characteristic function specifying the
value (i.e., benefit-minus-cost) created by subsets of players
in the game. Scientific cooperation has those elements. The
diversity of researchers’ learning programs leads to their
individual research interests. Cooperation costs could be
considered investments of time and effort to complete a study
by crossing the distance between research interests [30]. The
reputation in academic society could be regarded as the
expected benefit of cooperation: coauthoring with a famous
researcher contributes to achieve academic success.

In the model, the set of interests is abstracted as a circle,
and players are located on the circle. Cooperative costs are
geometrized as angular distances, and the reputation benefit
of a player is valued as a power function of player generation
time. Modelled cooperative strategies conditioned on posi-
tive benefit-minus-cost imitate the spatial reciprocity princi-
ple in collaborations [31] and yield high clustering and
degree assortativity. The designed form of reputations,
together with the strategies, yields the features (hook heads,
fat tails [32]) of specific distributions of empirical data, such
as degree distribution and the distribution of paper team
sizes. Moreover, the combined effect of spatial reciprocity
and the diversity of reputations reproduce the transition phe-
nomena in degree distribution, in the correlation between

degree and local clustering coefficient, and so on. The good
model-data fitting shows the reasonability of the designed
game mechanisms.

This paper is organized as follows: the model and data are
described in Sections 2 and 3, respectively. Cooperation cost,
reputation benefit, and the relationship between them are
discussed in Sections 4 and 5. The conclusion is drawn in
Section 6.

2. The Model

A hypergraph is a generalization of a graph, in which an edge
(termed as hyperedge) can join any number of nodes. Coau-
thorship relationship can be expressed by a hypergraph,
where nodes represent authors, and the author group of a
paper (called a “paper team”) forms a hyperedge. A number
of models have been proposed for generating hypergraphs
in specific random ways, and some of them have been used
for modelling coauthorship networks [32–34]. Meanwhile,
there has been an amount of previous work on the structures
of specific random hypergraphs, such as clustering and the
emergence of a giant component [35–38].

We provide a geometric hypergraph model, where the set
of research interests is abstracted as a circle S1, and
researchers are expressed as nodes located on the circle
(Figure 1). The nodes are generated in batches from 1 to
T ∈ℤ+; hence, they can be identified by spatiotemporal
coordinates. Some nodes are randomly selected as “lead
nodes” to attach specific arcs that imitate their “reputations.”
The nodes covered by a lead node’s arc constitute a “research
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Figure 1: An illustration of an evolutionary research team. At each time, a new player joins the research team, and the group of the players
with white numbers forms a hyperedge. It illustrates a usual scene. New coming player 6 wants to complete a work and write it as a paper.
Suppose completing the paper needs four players. Then player 6 would ask leader 1 for help, and the leader would suggest team members
2 and 3, who have the most similar interest to player 6, to cooperate.
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team.” The paper teams are modelled by hyperedges, which
are generated by following ca ooperative game mechanism.

A cooperative game consists of two elements: a set of
players N and a characteristic function specifying the value
(benefit-minus-cost) created by subsets of players in the
game. The characteristic function is a function v mapping
each subset S of N to the value v S it creates. Regard nodes
as players N = i1,… , in . Think of a player il as a lead node
with players il1 ,… , ilm as its research team members and
player ic as a candidate attempting to cooperate with il and
specific members (e.g., ii1 ,… , ils).

Assume that the cooperation cost is d il, il,… , il1 , ic , and
suppose that those players will receive a benefit valued by il’s
reputation r il . We can define azgame as follows:

v S =
r il − d il, il1 ,… , ils , ic ,  S = il, il1 … , ils , ic ,

0,  S ≠ il, il1 ,… , ils , ic
1

Under definition (1), if v il, il,… , ils , ic > 0,, those
players will collaborate.

The empirical distributions of paper team sizes emerge a
hook head and a fat tail, which means the sizes of substantial
papers are around their average, and a few papers have a sig-
nificantly large size. In reality, researchers in a small research
team are more likely to write papers together. Members of a
large research team rarely coauthor a paper altogether, but
rather with a fraction of members. Treating paper team size
as a random variable x, we design a mechanism to simulate
the distribution of x. Give the upper bound of small research
team μ > 0 and the lower bound of large research team ν > 0
Denote the expected value of paper team size and the size of
the corresponding research team to be η and λ, respectively.
Let η = λ, if λ ≤ μ. Let η = μ, if μ < λ ≤ ν. Draw η from a power
law distribution with an exponent γ and domain μ, λ , if
λ > ν. Then draw x from a Poisson distribution with
expected value η. Note that in the description of the above
game, x = s + 2 and λ =m + 2.

Cooperation costs could be considered investments of
time and effort to complete a study by crossing the distance
between the research interest of the leader and that of the
candidate and so on. Denote the spatiotemporal coordinates
of player i ∈N by θi, ti , and write the player as i θi, ti We
abstractly geometrize the cost d il, il1 … , ils , ic = π − π −
θil − θic , namely, the angular distance between il θil , til
and ic θic , tic .

We now show how to value reputation. Considering the
inefficient information of new players, we simply assume
each lead node has the same attraction to new players and
so we value the reputation of a lead node i θi, ti as r i
∝ 1/ti Hence, the expected number of i’s collaborators is
ki t = α T − ti /ti ≈ αT/ti at time T ≫ ti, where α > 0
Those yield P ki T < k = P ti > αT/k . The probability
density of a lead node generated at ti is 1/T . Hence,
P ti > αt/k = 1 − P ti ≤ αΤ/k = 1 − α/k. Then the tail of
degree distribution P k = ∂P ki T < k /∂k∝ 1/k2. We
can obtain the general case P k ∝ 1/k1+1/β for large enough

k by valuing the reputation r i = αt−βi tβ−1, where β ∈ 0, 1 .
The strict mathematical deduction of the degree distribution
tail needs averaging on Poisson distribution, which is inspired
by some of the same general ideas as explored in [25].

We next show how to generate a paper team, namely,
cooperation rule. Empirical collaboration behaviors have
specific certainty (due to kin selection, network selection,
etc.), as well as uncertainty. Consider a usual scene, a
researcher i of leader j’s research team wants to complete a
work and write it as a paper, which needs x ≥ 2 researchers
to work together. Then i would ask leader j for help, and j
would suggest min x, Rj − 2 the members of his research
team Rj, who have the most similar interest to i, to cooperate
with i. Such behavior can be viewed as kin selection and is
featured in certainty. When finishing the work is beyond
the ability of team Rj, the researcher i would ask for external
helpers. Uncertainty exists in this selection behavior, which
inspires the design of randomly choosing x −min x, Rj

players outside of Rj to cooperate. The uncertainty shorts
the average shortest path length of modelled networks. Note
that a researcher could belong to several research teams;
hence, the above scene would happen in each team.

Based on the above set-up, we build the hypergraph
model as follows:

(1) Reputation assignment: for time t = 1,… , T ∈ℤ+, do
the following:

Sprinkle nodes Nt as new players uniformly and
randomly on S1. Select subset Nl

t from Nt randomly
as lead nodes, and value the reputation of j θj, t j ∈Nl

t as

r j = αt−βj tβ−1.

(2) Cooperation rule: for time t = 1,… , T , do the
following:

For each new node i θi, ti ∈Nt , select a lead node setMl
i

for which ∀j θ j, t j ∈Ml
i satisfies r j > π − π − θi − θj and

t j < ti. For each j ∈ Mi
l, add i to j’s research team Rj, and

generate a hyperedge at probability p by grouping i, j, min
x, Rj − 2 players of Rj nearest to i and x −min x, Rj

players ∉ Rj randomly, where x is the random variable above
defined.

The player set of the model N = ∪T
t=1Nt , and the number

of players n = N =∑T
t=1 Nt . Here, we let Nt and Nl

t be
constants over t. Compared with the model in [38], the new
model reduces the number of parameters. Moreover, the
new model has the ability to reproduce the empirical feature
of the distribution of hyperdegrees and that of paper team
sizes. A node’s hyperdegree is the number of hyperedges that
contain the node.

3. The Data

To test the fitting ability of the proposed model, we analyze
two empirical coauthorship networks (Table 1). Dataset
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PNAS is composed of 52,803 papers published in Proceedings
of the National Academy of Sciences during 1999–2013. Data-
set PRE comprises 24,079 papers published in Physical
Review E during 2007–2016. Note that 43,304 papers of the
first dataset belong to biological sciences, and the second
dataset comes from physical sciences. The different collabo-
ration level (reflected by the average number of authors per
paper) of the two datasets (PNAS 6.028, PRE 3.102) helps
to test the flexibility of the model.

In the process of extracting networks from those meta-
data, authors are identified by their names on their papers.
For example, the author named “CarloM. Croce” on his paper
is represented by the name. We mainly focus on the distribu-
tion of degree and that of hyperdegree as well as some proper-
ties based on degrees. From the analysis of [39], we find that
identifying authors by their name on papers holds the degree
distribution feature of ground truth data, which partially
verifies the reliability of the empirical networks used here.

Using the surname and the initial of the first given name
generates a lot of merging errors of name disambiguation
[40]. Hence, we compute the proportion of those authors
and that of those authors further conditioned on publishing
more than one paper. Meanwhile, Chinese names were also
found to account for the repetition of names [39]. We count
the proportion of names with a given name less than six char-
acters and a surname among major 100 Chinese surnames.
The small proportions of such authors and those of such
authors publishing more than one paper (Table 1) limit the
impact of name repetition, especially for dataset PNAS.

To reproduce specific features of the empirical data, we
choose proper parameters (Table 2) to generate two hyper-
graphs and extract simple graphs from them (where edges
are formed between every two nodes in each hyperedge,
isolated nodes are ignored, and multiple edges are viewed
as one). Since the model is stochastic, we generate 20 net-
works with the same parameters and compare their statistical
indicators in Table 3. The finding is that the model is robust
on those indicators (Table 4).

4. Cooperation Cost and Reputation Benefit

Based on the cost and the benefit of collaborations, we
explain the distribution feature of paper team sizes. The ben-
efit of joining a paper team is limited. The law of diminishing
marginal utility holds in academic society. The allocation of
academic achievements is often according to author order.

Hence, only the researchers with positive benefit-minus-
cost would join the paper team. Assume the number of those
researchers is nr . Meanwhile, the joining behavior has certain
degrees of randomness. Let the joining probability be p. Then
the paper team size will follow a binomial distribution and so
a Poisson distribution with expected value nrp approximately
(Poisson limit theorem). Due to the law of diminishing
marginal utility, the sizes of those papers would follow a
generalized Poisson distribution, because this distribution
describes situations where the occurrence probability of an
event involves memory [41].

Some important works require many researchers (even
from different research teams) to work together, which would
bring about huge economic and social benefits. The papers of
those works would have many authors and sometimes show
their appearances in specific famous journals, for example, a
paper inNaturehas 2832 authors (see Figure 2 in [36]). In fact,
signing on a paper of a famous journal will also bring about a
huge benefit. The existence of those papers leads to fat tails
emerging paper team size distributions.

In brief, the above analysis makes us think that benefit-
minus-cost and the randomness of joining behavior make a
paper team size follow a generalized Poisson distribution,
and huge expected benefits lead to fat-tail. There exists a
crossover between the two limits (Figure 3). The fitting
function of the distribution, including the following dis-
cussed distribution of hyperdegree and that of degree, is a
combination of a generalized Poisson distribution and a
power law function (Table 5). We perform a two-sample
Kolmogorov-Smirnov (KS) test to compare the distribu-
tions of two data vectors: indexes (e.g., paper team sizes)
and the samples drawn from the corresponding fitting dis-
tribution. The null hypothesis is that the two data vectors
are from the same distribution. The p value of each fitting
shows the test cannot reject the null hypothesis at the 5%
significance level.

In the model, with a proper upper bound parameter μ
(around average number of authors per paper of corre-
sponding empirical data), the model can reproduce the
generalized Poisson part of the distribution of paper team
sizes, because most of the modelled paper team sizes are
drawn from Poisson distribution with an expected value
around μ. Meanwhile, with a proper lower bound param-
eter ν, the mechanism can generate a few significantly
large paper team sizes and so the fat tails of the modelled
paper team size distributions. We choose ν through itera-
tion from the starting point of the power law part in the
corresponding empirical distribution of paper team sizes
(E in Table 5) until the modelled networks have the sim-
ilar feature of the empirical distribution of degrees and
that of paper team sizes.

Now, we turn to explain the distribution feature of
degrees. Substantial authors publish only one paper (PNAS:
64.8%, PRE: 63.9%), and most of paper team sizes draw from
a generated Poisson distribution (PNAS: 99.9%, PRE: 99.9%).
Those lead the generalized Poisson parts of degree distribu-
tions. Note that the boundaries of generated Poisson parts
of paper team size distributions are 41 and 20 for PNAS
and PRE, respectively, which are detected by the boundary

Table 1: Specific statistical indexes of the empirical data.

Data a b c d

PNAS 2.62% 1.08% 2.90% 0.27%

PRE 3.85% 1.58% 19.2% 6.45%

Indexes a and b are the percent of authors who have a surname amongmajor
100 Chinese surnames and only one given name shorter than six characters
and the percent of those authors further conditioned on publishing more
than one papers. Indexes c and d are the percent of authors who use the
surname and the initial of the first given name and the percent of those
authors further conditioned on publishing more than one papers.
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point detection algorithm for probability density functions in
[38] (listed in the appendix).

With the growing of their papers, a few authors experi-
ence the cumulative process of collaborators over time,
whose reputations also increase. As empirical data show, it
is an accelerative process, which is often explained by cumu-
lative advantage. The process reflects as the transition from a
generated Poisson to a power law (Figure 2). The above
explanation can also be used to explain the similar feature
of hyperdegree distributions. Note that the nodes of large
paper teams also have a large degree, which reflects as the
outliers in the tails of degree distributions.

In the model, we can choose suitable parameters α, Nt ,
Nl

t and p to make the hyperdegrees of substantial players
be one (Synthetic-1: 48.5%, Synthetic-2: 61.5%). Meanwhile,
the substantial modelled paper team sizes follow a generalized
Poisson distribution (Synthetic-1: 99.9%, Synthetic-2: 100%).
Those yield the generalized Poisson part of modelled degree
distributions. The boundary of generalized Poisson part is
34 for Synthetic-1 and 23 for Synthetic-2. The mechanism
of generating hyperedges makes only early lead nodes, and
specific players close to them can experience the cumulative
process of connecting new players. The cumulative process

generates the fat tails of modelled degree distributions, as well
as those of modelled hyperdegree distributions (Figure 2).
The cumulative speed and the power law exponent can be
tuned by parameter β.

5. Spatial Reciprocity and Network Reputation

Cooperation needs to be based on acquaintanceship. Hence,
there is an acquaintanceship network under each coauthor-
ship network. Geographic contexts (such as organization
and institution) contribute to an emerging clustering struc-
ture in an acquaintanceship network, namely, “the friend of
my friend is also my friend” [16]. The Internet extends the
scope of acquaintanceship, which crosses spatial barriers
even national boundaries. Therefore, the factor of clustering
changes from geography to interest, namely, “birds of a
feather flock together” [42].

Cooperation costs make cooperators which should have
similar research interests, namely, collaborations existing in
researcher clusters formed by similar interests. Hence, the
spatial reciprocity principle in the cooperative game theory
[31] needs to be modified by interest in the situation of
academic cooperation. In a network perspective, the extent

Table 2: The parameters of Synthetic-1 and Synthetic-2.

T = 5000, 6000 N1 = 100, 15 N2 = 5, 5 p = 0 25, 0.4
α = 0 13, 0.2 β = 0 52, 0.55 γ = 4 2, 4.2 μ = 6, 2 ν = 42, 6
The parameters in the first row control network size, and those in the second row control a range of distributions, such as degree distribution and hyperdegree
distribution.

Table 3: Specific statistical indexes of the analyzed networks.

Network NN NE GCC AC AP MO PG

PNAS 201,748 1,225,176 0.881 0.230 6.422 0.884 0.868

Synthetic-1 128,749 694,769 0.864 0.229 11.35 0.987 0.648

PRE 37,528 90,711 0.838 0.394 6.060 0.950 0.583

Synthetic-2 29,397 62,834 0.829 0.174 12.91 0.983 0.505

The indexes are the numbers of nodes (NN) and edges (NE), global clustering coefficient (GCC), assortativity coefficient (AC), average shortest path length
(AP), modularity (MO), and the node proportion of the giant component (PG). The values of AP of the first two networks are calculated by sampling
300,000 pairs of nodes.

Table 4: The means and standard deviations (SDs) of specific indexes.

NN NE AC GCC PG MO AP

Synthetic-1

Mean 1.29E + 05 6.23E + 04 2.45E − 01 8.64E − 01 6.53E − 01 9.87E − 01 1.12E + 01

SD 7.66E + 02 1.14E + 04 3.45E − 02 7.08E − 04 8.03E − 03 4.97E − 04 1.47E − 01
Synthetic-2

Mean 2.93E + 04 6.23E + 04 1.35E − 01 8.30E − 01 5.06E − 01 9.82E − 01 1.22E + 01

SD 1.48E + 02 5.89E + 02 2.93E − 02 6.13E − 04 6.48E − 03 6.18E − 04 5.33E − 01
The meanings of headers are shown in the notes of Table 3.
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Figure 2: The empirical and synthetic distributions of collaborators/papers per author. The regions “G-P,” “C-O,” and “P-L” stand for
generalized Poisson, crossover and power law, respectively. The parameters and goodness of fittings are listed in Table 5.
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of spatial reciprocity can be reflected by local clustering
coefficient and the degree difference between a node and
its neighbors.

Now, we discuss the relationship between spatial reci-
procity and network reputation. In the view of nodes, net-
work reputation can be reflected by degree. Hence, the
relationship can be reflected by two functions of degree,
namely, the average local clustering coefficient of k-degree
nodes C k and the average degree of k-degree nodes’ neigh-
bors N k . There is a transition in each of the functions
(Figure 4). The tipping points of C k and N k are detected
by the boundary point detection algorithm for general func-
tions in [38] (listed in the appendix). Inputs of the algorithm

are C k /N k , g · = log · , and h s = a1e
− s−a2 /a3 2

/h s =
a1s

3 + a2s
2 + a3s + a4 s, ai ∈ R, i = 1,… , 4 . Using those

inputs is based on the observation of C k and N k .
Coauthorship networks are found to have two features:

high clustering (a high probability of a node’s two neigh-
bors connecting) and degree assortativity (a positive corre-
lation coefficient between two random variables: a node’s
degree and the average degree of the node’s neighbors),

which are measured by GCC and AC in Table 3, respec-
tively. To understand the essence of high clustering and
degree assortativity, as well as the transitions in C k
and N k , we analyze the feature of the basic context of
collaborations, that is, research teams. Given the cost and
benefit of joining a research team, only the researchers
with positive benefit-minus-cost would join the team with
a probability (that would be affected by previous members
due to gossips, etc.). With an argument similar to the one
used in the distribution of paper team sizes, we can
assume the research team sizes follow a generalized Poisson
distribution. A few research teams with a huge reputation
would attract substantial collaborators and become signifi-
cantly large ones.

Based on the above analysis, we can think that small
degree authors comprise two parts: one is composed of
the authors of small research teams, and the other one
comprises the unproductive authors belonging to small
paper teams and to large research teams. Researchers in
the small research team probably write a paper together,
which causes them to have a high local clustering coeffi-
cient and a slight degree difference between them and their
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Figure 3: The distributions of sizes per paper team. In the panels of the first two columns, the regions “G-P,” “C-O,” and “P-L” stand for
generalized Poisson, crossover, and power law, respectively. The parameters and goodness of fittings are listed in Table 5.
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neighbors. Many authors in large research teams only write
one paper, and the paper team only contains a few leaders.
Hence, those authors would have a relatively high local
clustering coefficient and a relatively small difference
between their degree and the average degree of their neigh-
bors. From the above analysis, we can infer small degree
authors contribute to degree assortativity and high cluster-
ing of coauthorship networks, which fits the empirical data
(Figure 4).

The collaborators of some productive authors may not
coauthor, and some productive authors often have many
collaborators. The degree difference emerges between
those authors and their neighbors, on average. Hence,
we can infer those large degree authors negatively con-
tribute to degree assortativity and high clustering. The
inference fits the empirical data: the tails of C k and
N k of each empirical network emerge a different trend
from the heads (Figure 4). Note that the authors of large
paper teams also have a large degree but contribute to
degree assortativity and high clustering. The existence of
those authors causes the scattered points of the tails of C k
and N k .

The model can generate research teams with a size distri-
bution as above inferred. Due to the power function of repu-
tation, the expected size Eλ T of a research team of lead i is

proportional to ∑T
s=ti+1αt

−β
i sβ−1 ≈ α T/ti β for T ≫ ti. This

yields P Eλ T < κ = P ti > α/κ 1/βT . With an argument
similar to the reasonability of reputation function, we can
obtain the tail of the distribution of modelled research team
sizes P κ = ∂P Eλi T < κ /∂κ∝ 1/κ1+1/β. When T≫ti, the

research team size λ is drawn from a Poisson distribution
with an expected value proper to α T/ti β due to the Poisson
point process of generating nodes. Hence, the small modelled
research team sizes are drawn from a range of Poisson distri-
butions with expected values taking from a power function.
With proper parameters, those can be used as basis to fit aa
given generalized Poisson distribution.

Most modelled hyperedges are generated by grouping a
small fraction (around μ) of nodes close in space, which
expresses the spatial reciprocity principle. Moreover, to fit
empirical hyperdegree distributions, we choose specific
parameters which make a large fraction of nodes only
belong to one hyperedge. Meanwhile, most modelled hyper-
edges contain one lead node, and only early lead nodes and
a few nodes close to them can be persistently contained by
new hyperedges. Those yield that the small/large degree
nodes contribute positively/negatively to degree assortativ-
ity and high clustering. Hence, the model well reproduces
the transitions. In addition, the tails of C k proportional
to 1/k also holds in modelled networks. For a lead node i,
the probability of its new team member coauthor with the

formers is P = αμtβi /tβdt∝ tβi ∝ 1/ki where ki is the
degree of node i.

6. Discussions and Conclusions

Five typical mechanisms of cooperation evolution hold for
academic collaborations, which inspires us to explore game
mechanisms in the evolution of coauthorship networks. We
define a cooperative game model on a circle and reveal how
the costs and benefits of individuals generate a range of statis-
tical and topological features of coauthorship networks, such
as fat-tail and small-world. It overcomes the weakness of the
model in [27], a lot of parameters, and has the new ability to
fit the distribution of paper team sizes and that of hyperde-
gree. Moreover, it has the potential to illuminate specific
views and implications in the broader study of cooperative
behaviors as follows.

Do there exist innate rules behind the social complexity?
It provides an example of how individual strategies based
on maximizing benefit-minus-cost and on specific random-
ness generate the complexity that emerged in coauthorship
networks. The general idea of the model potentially bridges
the cooperative game theory and specific social networks
generated by human strategies, for example, social affiliation
networks.

Does utilitarianism help the development of sciences?
The strategy of maximizing benefit-minus-cost will give rise
to flocking to famous research team or to hot fields. Taking
such strategy helps to collect publications and citations, but
suppresses diversity, and consequently does harm to the flex-
ibility of an academic environment. However, current aca-
demic evaluation methods and funding mechanisms are
mainly oriented by specific indexes, for example, the number
of citations. Specific regulations could be simulated through
the model to work out a way to maintain the balance in the
academic environment, while encouraging breakthroughs
in key fields.

Table 5: The parameters and goodness of fitting functions for
degree distribution, hyperdegree distribution, and the distribution
of paper team sizes, from top to down.

a b c d s B E p value

PNAS

4.751 0.434 110.8 2.987 0.845 10 25 0.256

0.085 0.367 2.368 2.941 11.99 3 7 0.128

3.438 0.382 3,094 4.755 1.095 16 17 0.174

Synthetic-1

5.082 0.380 708.4 3.580 0.898 13 32 0.074

0.664 0.365 16.15 3.694 1.999 4 9 0.971

4.502 0.208 3,621 5.059 1.003 6 20 0.103

PRE

2.776 0.156 8.910 2.758 0.898 5 6 0.118

0.038 0.399 4.260 3.079 25.56 3 10 0.875

2.507 0.000 82.66 4.587 1.249 6 7 0.133

Synthetic-2

2.352 0.2367 46.65 3.460 0.970 5 11 0.052

0.375 0.272 1.786 2.991 3.077 5 6 0.673

2.007 0.065 116.1 4.756 1.146 5 7 0.887

The domains of generalized Poisson f1 x = a a + bx
x−1e−a−bx/x , crossover,

and power law f2 x = cx−d are min x , E , B, E , and B, max x ,
respectively. The fitting function defined on min x , max x is f x =
q x sf1 x + 1 − q x f2 x , where q x = e− x−B / E−x . The fitting
processes are the following: calculate parameters of sf1 x and f2 x by
regressing the head and tail of empirical distribution, respectively and find
B and E through exhaustion to make f x pass the KS test (p value > 0.05).
The p value measures the goodness-of-fit.
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Figure 4: The relation between a degree and an average degree of neighbors and that between local clustering coefficient and degree. The
panels show k-degree nodes’ average degree of their neighbors and their average local clustering coefficient.

9Complexity



Appendix

Detecting Boundary Points

The followingboundary detection algorithms come from [38].
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