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An optimal prediction model for flow boiling heat transfer of refrigerant mixture R245fa inside horizontal smooth tubes is
proposed based on the GRNN neural network. The main factors strongly affecting flow boiling such as mass flux rate (G), heat
flux (q), quality of vapor-liquid mixture (x), evaporation temperature (Tev), and tube inner diameter (D) are used as the inputs
of the model and the flow boiling heat transfer coefficient (h) as the output. Neural network model is used to optimize the
prediction of flow boiling heat transfer coefficient of R245fa in horizontal light pipe through training and learning. The
prediction results are in good agreement with the experimental results. For the network model of heat transfer, the average
deviation is 7.59%, the absolute average deviation is 4.89%, and the root mean square deviation is 10.51%. The optimized
prediction accuracy of flow boiling heat transfer coefficient is significantly improved compared with four frequently used
conventional correlations. The simulation results reveal that the modeling method based on R245fa neural network is feasible to
calculate the flow boiling heat transfer coefficient, and it may provide some guidelines for the optimization design of tube
evaporators for R245fa.

1. Introduction

At present, in the study of the overall efficiency improvement
of ORC, it is found that evaporator is a key part of organic
Rankine cycle. In recent years, many researchers have been
in the study of the improvement of the heat transfer effi-
ciency of the evaporator. In the ORC system, the working
medium is also a very important factor affecting the stable,
safe, and efficient operation of the system [1]. R245fa is one
of the ideal low-temperature waste heat powers generating
organic Rankine’s cycle fluids [2]. Considering the safe oper-
ation and technical economy of R245fa organic Rankine’s
circulatory system’s evaporator, it must be accurately grasped
the fluid’s flow boiling heat transfer performance [3]. How-
ever, as the result of complex flow boiling heat transfer

process and many influencing factors, there are strong cou-
pling, uncertainty, and nonlinear characteristics among vari-
ous factors [4–6]. It is difficult to obtain accurate model
through the traditional modeling method. Most existing
correlations are summarized from the experiment data of
empirical and semiempirical correlation [7, 8]. Moreover,
experiment research and correlation for R245fa flow boiling
heat transfer are still very rare at present. The calculations
associated with R245fa still have rather large errors.

Therefore, based on the R245fa, a GRNN network
optimization model for R245fa flow boiling heat transfer in
a saturated state horizontal smooth tubes is established to pre-
dict the flow boiling heat transfer performance of R245fa [9,
10] and compared with the results of traditional associated
equations and then to optimize the traditional association.
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The structure of this paper is as follows: Section 2 is the
formula of the problem. Section 3 is the establishment of
the flow boiling heat transfer neural network model. Section
4 is the optimization of the prediction results and analysis,
and the conclusion is in Section 5.

2. Problem Formulation

The flow boiling heat transfer of a horizontal smooth tube is
mainly focused on the influence of mass flux rate, heat flux,
quality of vapor-liquid mixture, and pipe diameter on the
boiling heat transfer coefficient [11] and the deduction and
improvement of the correlation of heat transfer and pressure
drop during the flow boiling process. Besides, as the fourth-
generation refrigerant, R245fa also plays an important role
in the study of flow boiling.

In this paper, R245fa is used as the working medium to
establish an optimized prediction model of flow boiling heat
transfer based on the GRNN neural network in horizontal
smooth tube. In the GRNN neural network, mass flux rate,
heat flux, quality of vapor-liquid mixture, evaporation tem-
perature, and inner diameter of light tube are used as the
network inputs, and the flow boiling heat transfer coefficient
is used as the network output. And the model can be used to
predict the boiling heat transfer coefficient of R245fa in hor-
izontal smooth tube by learning. By comparing the results of
four traditional associated equations, we can see which is
closer to the experimental results. It is proved that the predic-
tion model of flow boiling heat transfer of the GRNN neural
network is more accurate than the four traditional associated
equations and further illustrates that the model can achieve
the optimization of the traditional formula.

3. The Establishment of a Neural Network
Model for Flow Boiling Heat Transfer

The GRNN network training speed is fast, design is simple,
and it is appropriate for nonlinear function’s approximation.
It could deal with complex and highly nonlinear problems
well. The GRNN network can obtain better learning effect
under the circumstances of less sample data. However, the
selection of the GRNN network training samples is very
important for the construction of network; it must be repre-
sentative, as it will directly determine the right value of
network and affect the final prediction results [12].

3.1. Parameter Selection.ANOVA (analysis of variance) tech-
nique was used to select the significant parameter influencing
boiling heat transfer coefficient. This paper studied the most
influencing ambient parameter affecting boiling heat transfer
coefficient. The ANOVA technique was used to study the
effect of ambient parameters on boiling heat transfer coeffi-
cient. Here, four ambient parameters (atmospheric pressure,
ambient temperature, ambient relative humidity, and ambi-
ent wind velocity) were considered with three levels (low,
medium, and high conditions) having 34 factorial designs of
81 ambient conditions. The control factors (ambient param-
eters) considered for the ANOVA study are listed in Table 1.
The minimum number of ambient conditions required for
ANOVA is calculated using the following equation [13]:

N = 1 + n L − 1 1

Here, N represents the minimum number of ambient
data required for ANOVA, n represents the number of
ambient parameters, and L represents the number of
levels, and n = 4 and L = 3. So, nine ambient conditions
are simulated using the GRNN. The ambient parameters
considered at three levels are listed in Table 2. The stan-
dard L9 orthogonal array used for ANOVA is shown in
Table 2. The GRNN-simulated boiling heat transfer coeffi-
cient as per the standard L9 orthogonal array is shown in
Table 3. The following equations are used to calculate the
ANOVA parameters [13].

The sum of squares due to mean (SSm) is given by

SSm =N × Y2 2

Here, N represents the minimum number of ambient
data, and Y2 represents the average of sum of squares. The
sum of squares due to each parameter SS is given by the fol-
lowing equation:

SS = L × P2
L1
+ P2

L2
+ P2

L3
− SSm 3

Table 1: Ambient conditions.

Parameter
levels

Atmospheric
pressure
(kPa)

Ambient
temperature

(°C)

Ambient
relative
humidity

(%)

Ambient
wind

velocity
(m/s)

L1 80.735 30 15 2.7

L2 80.735 26 20 2.1

L3 80.735 22 25 1.5

Kunming is about 1860 meters above sea level, and the standard atmospheric
pressure is 1 013 × 105 Pa. For every 12-meter elevation, the atmospheric
pressure drops by 133 Pa, so the atmospheric pressure of Kunming is
80.735 kPa.

Table 2: Standard L9 orthogonal array.

Simulated
ambient
conditions

Atmospheric
pressure
(kPa)

Ambient
temperature

(°C)

Ambient
relative
humidity

(%)

Ambient
wind

velocity
(m/s)

1 L1 L1 L1 L1

2 L1 L2 L2 L2

3 L1 L3 L3 L3

4 L2 L1 L2 L3

5 L2 L2 L3 L1

6 L2 L3 L1 L2

7 L3 L1 L3 L2

8 L3 L2 L1 L3

9 L3 L3 L2 L1
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Here, L represents the number of levels; PL is the param-
eter at different levels. The total sum of squares (TSS) is given
by the following equation:

TSS = SS1 + SS2 + SS3 + SS4 4

The degrees of freedom (DOF) is given by

DOF = Level − 1 5

The mean sum of squares (MSS) is given by

MSS =
SS

DOF
6

Pure sum of squares (PSS) is calculated by the following
equation:

PSS =MSS −MSSPE × DOF 7

Percentage contribution (PC) is given by

PC =
PSS
TSS

× 100 8

Based on the above equations, the influence of ambient
conditions on mass flux rate, heat flux, quality of vapor-
liquid mixture, and evaporation temperature is calculated.

3.2. The GRNN Network Structure. Make the mass flux rate
(G), heat flux (q), quality of vapor-liquid mixture (x), and
the evaporation temperature (Tev) as the GRNN neural net-
work inputs. Work with the flow boiling heat transfer coeffi-
cient (h) as the output of the network to build the GRNN
network. In this work, mass flux rate means the quality of
fluid flowing across unit cross-sectional area per unit time.
For heat flux firstly, heat that passes through a given area
per unit time is heat transfer rate; hence, heat transfer rate
per unit area is called the heat flux. Quality of vapor-liquid
mixture means mass fraction of dry steam in wet steam per
kilogram. Evaporation temperature means gas temperature
during vaporization of fluids. The GRNN network structure
includes four layers: input layer, model layer, add layer, and
output layer. Among these layers, model layer and add layer
constituted the intermediate network.

Flow boiling heat transfer GRNN model of network
structure is shown in Figure 1 [14].

3.3. Data Collection, Training Samples, and Test Samples. The
selection of sample data has important influence on the
learning speed and generalization ability of neural network.
The sample size is too small to make the network’s expression
insufficient and it will reduce the network’s generalization
ability. Meanwhile, the excess of the sample number may
have the redundancy problem, increase the training time of
the network, and may even appear “overfitting” phenome-
non, which will lead to the network’s generalization ability.
Therefore, the selection of sample data must be representa-
tive and comprehensive. At present, the research on R245fa
is still prevalent in the thermodynamic cycle analysis of the
experimental study, while it is rare on the flow boiling heat
transfer and it is difficult to obtain the experimental data.

Table 3: Standard L9 orthogonal array of simulated ambient parameters and boiling heat transfer coefficient.

Simulated
ambient
conditions

Atmospheric
pressure (kPa)

Ambient
temperature

(°C)

Ambient
relative

humidity (%)

Ambient wind
velocity (m/s)

Mass flux rate
(kgm−2 s−1)

Heat flux
(Wm−2)

Quality of
vapor-liquid
mixture (%)

Evaporation
temperature

(K)

1 80.735 30 15 2.7 763.4 532.32 0.5429 313.15

2 80.735 26 20 2.1 294.9 509.18 0.3722 313.15

3 80.735 22 25 1.5 491.5 231.54 0.4996 313.15

4 80.735 30 20 1.5 688.1 300.78 0.7061 323.15

5 80.735 26 25 2.7 786.3 240.62 0.5957 323.15

6 80.735 22 15 2.1 393.2 694.33 0.3920 323.15

7 80.735 30 25 2.1 196.6 416.60 0.1660 333.15

8 80.735 26 15 1.5 678.3 891.73 0.4425 333.15

9 80.735 22 20 2.7 589.8 601.64 0.1981 333.15

G

q

h
x

Tev

P1

P1

⫶

⫶

⫶

⫶

SD

SN1

SNj

P1

Input layer Pattern layer Sum layer Output layer

Figure 1: Flow boiling heat transfer GRNN network model
structure chat.
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Therefore, the data of R245a in this paper is based on the
experimental study of the R245fa boiling heat transfer perfor-
mance of Huang et al. [15].

After excluding the experimental data, 108 groups of
valid data are obtained as the total sample. The condi-
tion scopes of sample data are as follows: evaporation
temperature (40°C to 60°C), refrigerant mass flux rate
(393.2~786.3 kgm−2 s−1), and refrigerant heat flux
(208.3~1380.7Wm−2).

In order to establish the neural network model, the
sample data is divided into two parts: the training set
and testing set, which are based on the principle of ergo-
dicity data grouping. Get access to every item of the total
sample of 108 datasets. After the first time, all items
should be divided into two parts: 54 groups of odd num-
ber items and 54 groups of even number items. Then,
ongoing the second time, the latter is divided into 27
groups of odd number items and 27 groups of even
number items. In order to cover all test conditions, the
training samples take the odd number items in the first
time and take the even number items in the second time.
By far, the total sample data is divided into two parts:
the former 81 groups as the training set and the remain-
ing 27 groups as the test set. Part of experimental data is
shown in Table 4.

3.4. The Preprocessing and Postprocessing of the Data. The big
data is bound to the annihilation of the small role of neural
networks for data, because of the disparity of the various
components of the data; even some of them have different
several orders of magnitude, so it is needed for data normal-
ization; all the input data is converted to [0, 1], which can
effectively reduce the input of data redundancy and speed
up the training of the network, and through the data after
normalization is used to train the neural network, it can
improve the accuracy of the model.

Normalized formula is as follows:

X∧ =
X − Xmin

Xmax − Xmin
9

In the formula, Xmax is the maximum value of experi-
mental data; Xmin is the minimum value of experimental
data; X is the experimental data; X∧ is the normalized data
of one of the posts.

To ensure the consistency of the format of input and out-
put data, training and testing samples of neural networks
need to be normalized pretreatment. The collected sample
data normalized after treatment is shown in Table 5.

Table 4: Part of the experimental data.

Sequence
number

Mass flux rate
(kgm−2 s−1)

Heat flux
(Wm−2)

Quality of vapor-liquid
mixture (%)

Evaporation
temperature (K)

Optical tube inner diameter
(mm)

1 294.9 532.32 0.3722 313.15 4473.3

2 393.2 601.76 0.4996 313.15 5056.8

3 491.5 601.76 0.4066 313.15 5421.2

4 589.8 578.61 0.1981 313.15 5786.1

5 688.1 509.18 0.0541 313.15 4546.2

6 688.1 740.62 0.5957 313.15 6223.7

7 786.3 694.33 0.392 313.15 6943.3

8 196.6 416.60 0.712 323.15 3893.5

9 294.9 439.74 0.7061 323.15 4071.7

10 393.2 462.89 0.5429 323.15 4628.9

11 491.5 439.74 0.3026 323.15 4997.1

12 589.8 416.60 0.1483 323.15 5080.5

13 688.1 370.31 0.0407 323.15 4069.4

14 688.1 555.47 0.4425 323.15 5673.2

15 786.3 509.18 0.2938 323.15 6445.3

16 196.6 254.59 0.4526 333.15 3264

17 294.9 254.59 0.1785 333.15 3536

18 393.2 231.44 0.0462 333.15 3127.6

19 393.2 300.88 0.4157 333.15 4011.7

20 491.5 300.88 0.2920 333.15 4490.7

21 589.8 277.73 0.1660 333.15 4408.5

22 688.1 254.59 0.0820 333.15 4243.2

23 786.3 231.44 0.0231 333.15 3454.4

24 786.3 347.17 0.2563 333.15 5586.6

… … … … … …
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After the GRNN network model training is completed,
the outputs of the network are normalized values, which need
to postprocess, which is the say that the real output value is
the antinormalized value, in order to easily and intuitively
compare with the original experimental data.

Antinormalization formula is as follows:

X = X∧ ∗ Xmax − Xmin + Xmin 10

3.5. The GRNN Neural Network Training and Learning. The
GRNN neural network chose improved newgrnn of neural
network toolbox () function in MATLAB R2008 to design.
The invocation of the format for its function is as follows:

net = newgrnn (inputn_train, outputn_train, spread)
among,
inputn_train: training set of sample input;
outputn_train: training set of sample output;
spread: GRNN network smooth factor.
Considering that the sample data is still not enough, this

paper tries to use the method of cross-validation (CV) to
train the GRNN network and to find out the best spread.
Under normal circumstances, the smaller the spread, the bet-
ter the approximation of the network, but the approaching
process is not smooth; conversely, the faster the spread, the

more smooth the network approximation, but the error will
be increased greatly. The spread can be an interval [0.1, 0.5]
by experience during the GRNN network creation [16],
increasing by 0.01 circuit training for optimization in order
to achieve the best predictive effect after training the network.
Results of the program after the operation show that the per-
formance of the training data is optimum when the spread
value was 0.14 [17–19]. The process of heat transfer predic-
tion of the GRNN network is shown in Figure 2 [20].

The average relative error between the simulation output
value and the experimental value is 1.56%, and the maximum
relative error is 10.17%, which shows that the GRNN net-
work has a good learning on the internal relationship among
the quality of the working medium flow rate, heat flux, qual-
ity of vapor-liquid mixture, and evaporation temperature
which are represented by the GRNN network [21, 22].

4. The Prediction Results and Analysis

4.1. Comparing the Experimental Results with the Prediction
Results. Figure 3 is the comparison of simulation results with
the experimental results of the GRNN network model. The
abscissa is the experimental results, and the ordinates are
the simulation results of network model. The figure shows
the anastomosis of network simulation results and

Table 5: Some of the experimental data after being normalized.

Sequence
number

Mass flux rate
(kgm−2 s−1)

Heat flux
(Wm−2)

Quality of vapor-liquid
mixture (%)

Evaporation
temperature (K)

Coefficient of heat transfer
(W/(m2 K))

1 0.1667 0.2982 0.4011 0 0.3589

2 0.3334 0.3621 0.5492 0 0.4773

3 0.5001 0.3621 0.4411 0 0.5513

4 0.6668 0.3408 0.1988 0 0.6254

5 0.8335 0.2769 0.0315 0 0.3737

6 0.8335 0.4899 0.6608 0 0.7142

7 1.0000 0.4473 0.4241 0 0.8603

8 0 0.1917 0.7960 0.5000 0.2412

9 0.1667 0.2130 0.7891 0.5000 0.2774

10 0.3334 0.2343 0.5995 0.5000 0.3905

11 0.5001 0.2130 0.3202 0.5000 0.4652

12 0.6668 0.1917 0.1409 0.5000 0.4822

13 0.8335 0.1491 0.0159 0.5000 0.2769

14 0.8335 0.3195 0.4828 0.5000 0.6025

15 1.0000 0.2769 0.3100 0.5000 0.7592

16 0 0.0426 0.4945 1.0000 0.1134

17 0.1667 0.0426 0.1760 1.0000 0.1686

18 0.3334 0.0213 0.0223 1.0000 0.0857

19 0.3334 0.0852 0.4517 1.0000 0.2652

20 0.5001 0.0852 0.3079 1.0000 0.3624

21 0.6668 0.0639 0.1615 1.0000 0.3457

22 0.8335 0.0426 0.0639 1.0000 0.3122

23 1.0000 0.0213 −0.0045 1.0000 0.1521

24 1.0000 0.1278 0.2664 1.0000 0.5849

… … … … … …
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experimental results. There is about 88% of the training data
points fall in the range of ±10% error; the experimental data
of the GRNN network prediction effect is better. This shows
that the network has high accuracy and generalization. It is
worth noting that although the predicted results and experi-
mental results of individual data points have larger deviation,
this basically because there are no enough training samples
and data distribution. It can increase the training dataset fur-
ther and use the optimization of the center of web Ci, width
σi, and link weight wik to solve.

4.2. Comparison of the Results of the GRNN Network Model
and the Experimental Results. After the completion of the

training of the GRNN network, the network will begin to pre-
dict. Figure 4 shows the predicted output curve of the GRNN
network. In the figure, it can be seen that the predicted out-
put of network and expected output can accord mostly, but
it cannot completely reflect the change trend of experimental
data point distribution in some places. After calculation, the
average relative error between the output value of the GRNN
network and the output value of the test set is 2.04%, and the
maximum relative error is 13.58%. Although the prediction
error of the RBF network in the last section is increased, the
GRNN network model has better generalization after train-
ing. The GRNN network forecast curve is shown in Figure 4.

4.3. The Comparison of the Predicted Results and the
Traditional Relational Calculation Results. In order to inves-
tigate the precision of the calculation results between the net-
work model and the traditional relational, choose the typical
correlations of the cooling flow boiling heat transfer. From
Table 6, compared with the calculation accuracy of the Chen
[23] correlations, Gungor and Winterton [24] correlations,
Liu and Winterton [25] correlations, and Shah [26] correla-
tions, the prediction accuracy of the GRNN network model
has some extent improvement. It is proved that the model
is suitable for the prediction of R245fa flow boiling heat
transfer in a horizontal pipe and it can satisfy the precision
requirement of engineering application.

4.4. The Influence of Input Parameter Analysis. For further
investigating the prediction accuracy of the GRNN net-
work prediction model’s calculation results and verifying
the model prediction results in accordance with the exper-
imental results along with the change of input parameters,
it makes an impact analysis of the change of input
parameters working on the prediction properties of the
GRNN network.

Figure 5 shows when the nominal mass flux rate, evapo-
ration temperature, boiling heat transfer coefficient are
changing with dryness of the GRNN network and other four

Start

Training GRNN network

Test sample-modified
forecast model

Forecast accuracy to
meet the requirements

Output results

End

Smooth factor
regulation

No

Yes

Figure 2: The process of heat transfer prediction of the GRNN
network.
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relational model calculation results compared with the exper-
imental data. Experimental condition is Tev = 40°C,G =
491 5 kgm−2 s−1, q = 509 18~671 19Wm−2.

From the distribution of the experimental data points
of Figure 6, under the condition of the same mass flux
rate, with the quality of vapor-liquid mixture increases in
the low degree of dry area, the heat transfer coefficient
of working medium increases. However, with the increase
of quality of vapor-liquid mixture in the high degree of
dry area, heat transfer coefficient trends reduce. The calcu-
lation results of the Chen correlations, Gungor and Win-
terton correlations, and Shah correlations have bigger
difference with the experimental results. The prediction
accuracy of Liu and Winterton correlations accords with
the experimental values well. The predicted results of the
GRNN network model accord with the tendency of distri-
bution of the experimental data points more accurate.
Meanwhile, it demonstrates that the GRNN network that
accords with both is closer [27].

Figures 6 and 7 show that when the evaporation temper-
atures are 50°C and 60°C, respectively, transfer coefficients
of the GRNN network model’s prediction results are
changing with quality of vapor-liquid mixture and mass

flux rate compared with the experimental data. From the
experimental distribution data points from the picture,
the heat transfer coefficient increases with the increasing
of mass flux rate. Under the same mass flux rate condi-
tion, heat transfer coefficient increases with the increasing
of dryness; it generally showed the tendency of increasing
firstly and then decreasing [28]. It is important to empha-
size that the prediction results of the GRNN network
model can roughly reflect such change rule, but in some
parts of the predicted data and experimental data points
has a large deviation. This is mainly due to the current
experiment data is not enough and the covering range of
operation condition is not wide enough. It leads to the
GRNN network training learning is not sufficient, so it is
necessary to expand the experiment working range and
database further.

5. Conclusion

(1) The aim at the pure substance R245fa to establish
level light pipe flow boiling heat transfer of the
GRNN network optimal prediction model is feasible;
the network learning speed is fast and without people
to determine the number of hidden layer neurons. It
avoids analysis R245fa complex internal mechanism
of the flow boiling heat transfer process. It cannot
only improve the prediction accuracy but also reduce
the cost of research effectively, reduce the experimen-
tal workload, and shorten the time [29]

(2) The GRNN network model’s optimal prediction
result of average error (Bias) is 7.59%, the absolute
error (AAD) is 4.89%, and the root mean square
(RMS) error is 10.51%. It also has about 92% data
point error within ±10%. By comparing with the
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GRNN
Liu and Winterton[5]

Shah[6]
Chen[7]
Gungor and Winterton[8]
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Figure 5: When the evaporation temperature is 40°C, the heat
transfer coefficient of R245fa changes with dryness andmass flux rate.

Table 6: Comparison of calculation error between the GRNN
network prediction results and traditional relational calculation
results.

Deviation
(%)

Chen
[23]

Gungor and
Winterton [24]

Liu and
Winterton

[25]

Shah
[26]

GRNN

AAD 17.77 39.94 10.52 27.76 7.59

Bias 15.65 −39.94 7.99 16.76 4.89

RMS 21.82 41.90 15.76 50.07 10.51

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

G=393.2, experiment[15]
G=393.2, RBF

G=688.1, experiment[15]
G=688.1, RBF
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Figure 6: When the evaporation temperature is 50°C, the heat
transfer coefficient of R245fa changes with quality of vapor-liquid
mixture and mass flux rate.
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calculation result of four common correlations, it
shows that the optimal prediction precision is supe-
rior to the traditional associated equations. Along
with quality of vapor-liquid mixture, mass flux rate
and heat flux change trend predicted results can
accord with the experimental result tendency

(3) Using the neural network technique combined with
experimental study, it can accurately predict the
flow boiling heat transfer in the light pipe R245fa
and reduce the experimental workload, and to use
the optimization design of R245fa cooling system’s
tube evaporator provides the beneficial reference.
However, there is still a problem that needs to be
studied further, such as experimental data source
of R407C is not complete and the choice of net-
work type and training algorithm needs to be
improved and optimize the GRNN. It effectively
improves the accuracy of R245fa flow boiling heat
transfer optimal prediction
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