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The exact controllability results for Hilfer fractional differential inclusions involving nonlocal initial conditions are presented and
proved. By means of the multivalued analysis, measure of noncompactness method, fractional calculus combined with the
generalized Monch fixed point theorem, we derive some sufficient conditions to ensure the controllability for the nonlocal Hilfer
fractional differential system. The results are new and generalize the existing results. Finally, we talk about an example to
interpret the applications of our abstract results.

1. Introduction

Fractional calculus generalizes the standard integer calculus
to arbitrary order. It provides a valuable tool for the descrip-
tion of memory and hereditary properties of diversified
materials and processes. In the past twenty years, the subject
of the fractional calculus is picking up considerable popular-
ity and importance. We can refer to the monographs of
Diethelm and Freed [1], Kilbas et al. [2], Miller and Ross
[3], Podlubny [4], and Zhou [5]. Fractional differential
equations and inclusions involving Caputo derivative or
Riemann-Liouville derivative have obtained more and more
results (see [6–15]). Recently, Hilfer [16] initiated an
extended Riemann-Liouville fractional derivative, named
Hilfer fractional derivative, which interpolates Caputo frac-
tional derivative and Riemann-Liouville fractional derivative.
This operator appeared in the theoretical simulation of
dielectric relaxation in glass forming materials. Hilfer et al.
[17] initially presented linear differential equations with the
new Hilfer fractional derivative and applied operational
calculus to solve such generalized fractional differential
equations. Subsequently, Furati et al. [18] and Gu and
Trujillo [19] generalized to consider nonlinear problems
and proved the existence, nonexistence, and stability results
for initial value problems of nonlinear fractional differential

equations with Hilfer fractional derivative in a suitable
weighted space of continuous functions.

Control theory is an interdisciplinary branch of engineer-
ing and mathematics that deals with influence behavior of
dynamical systems. Controllability is one of the fundamental
concepts in mathematical control theory, it means that it is
possible to steer a dynamical system from an arbitrary initial
state to arbitrary final state using the set of admissible
controls. Recently, the controllability conditions for various
linear and nonlinear integer or fractional order systems have
been considered in many papers by using different methods
[20–33] and the references. There have also been some
results [20–24, 32, 33] about the investigations of the exact
controllability of systems represented by nonlinear evolution
equations in infinite dimensional space. But when the
semigroup or the control action operator B is compact, then
the controllability operator is also compact and the applica-
tions of exact controllability results is just restricted to the
finite dimensional space [20]. Therefore, we investigate the
exact controllability of the fractional evolution systems only
involving noncompact semigroups.

The nonlocal initial problems have been initially pro-
posed by Byszewski et al. [34, 35] to generalize the study of
the canonical initial problem, comes from physical science.
For instance, it used to determine the unknown physical
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parameters in some inverse heat condition problems. It
has been found that the nonlocal initial condition is more
exact to describe the nature phenomena than the classical
initial condition, since more data is taken into account,
therefore abating the negative influences induced by a pos-
sible inaccurate single estimation taken at the start time.
For more discussion on this type of differential equations
and inclusions, we can see papers [36–42] and references
given therein.

Boucherif and Precup [36] proved the existence for
mild solutions to the following nonlocal initial problem
for first-order evolution equations using Schaefer fixed
point theorem:

x′ t + Ax t = f t, x t , t ∈ J ,

x 0 + 〠
m

k=1
akx tk = 0, 0 < t1 < t2 <⋯ < tm < b,

1

where A D A ⊆ X→ X is the infinitesimal generator
of a C0-semigroup T t t≥0 on a Banach space X and
f J × X→ X is a known function.

Liang and Yang [33] concerned the controllability for
the following fractional integrodifferential evolution equa-
tions involving nonlocal conditions using the Monch fixed
point theorem:

Dqx t + Ax t = f t, x t ,Gx t + Bu t , t ∈ J ,

x 0 = 〠
m

k=1
ckx tk , 0 < t1 < t2 <⋯ < tm < b,

2

where Dq is the Caputo derivative of order q ∈ 0, 1 ,
−A D A ⊆ X → X is the infinitesimal generator of C0-semi-
group T t t≥0 of uniformly bounded linear operator, the
control function u is known in L2 J ,U ; U is a Banach
space, B is a linear bounded operator from U to X; f is a
known function and Gx t = t

0K t, s x s ds is a Volterra
integral operator.

Du et al. [43] generalized the results of [33] and gave
the controllability for a new class of fractional neutral inte-
grodifferential evolution equations with infinite delay and
nonlocal conditions using Mönch fixed point theorem.
However, it should be emphasized that to the best of our
knowledge, the exact controllability of Hilfer fractional dif-
ferential system has not been investigated yet. Motivated by
[19, 30, 33, 36, 43], in this paper, we concern the controlla-
bility of the following fractional differential inclusions
involving a more general fractional derivative with nonlocal
initial conditions:

Dp,q
0+ x t ∈ Ax t + F t, x t + Bu t , t ∈ 0, a ,

I 1−q 1−p
0+ x 0+ = 〠

n

i=1
aix ti , 0 < t1 < t2 <⋯ < tn < a,

3

where Dp,q
0+ is the Hilfer fractional derivative of order p

(p obeys 1/2 < p ≤ 1) and type q (q obeys 0 ≤ q ≤ 1) which will
be given in Section 2; E is separable and A is bounded, so S ·
is a uniformly continuous semigroup and S t = eAt . The
nonlinear term F J × E→ 2E \ ∅ is multivalued function.
Let J = 0, a , J′ = 0, a , a > 0 are two finite intervals of ℝ;
ai ∈ℝ, ai ≠ 0 i = 1, 2,… , n , n ∈N The control function u
takes values in L2 J ,U , with U as a Banach space; B is
a linear bounded operator from U to E.

In this paper, by means of a concrete nonlocal function,
we do not have to suppose the compactness and Lipschitz
conditions on the nonlocal function but only assume that ai
i = 1, 2,… , n satisfy the hypothesis (H0) (see Section 3).
Furthermore, the proofs of our main results are based on
fractional calculus theory, the multivalued analysis, measure
of noncompactness method, in addition to the O’Regan-
Precup fixed point theorem, which is an extension of the
Mönch fixed point theorem.

2. Preliminaries and Notations

Let C J′, E and C J , E denote the space of E-valued
continuous functions from J′ to E and from J to E,
respectively; Let r = p + q − pq.

Define Y = x ∈ C J′, E : limt→0+ t
1−rx t exists and is

finite}, involving the norm · Y defined by x Y =
supt∈J′ t1−r x t . Then, Y is a Banach space. We also
note that

(1) When r = 1, then Y = C J , E and · Y = · ;

(2) Let x t = tr−1y t for t ∈ J′, x ∈ Y if and only if
y ∈ C J , E , and x Y = y .

For γ > 0, define BY
γ J′ = x ∈ Y x Y ≤ γ Thus BY

γ is
a bounded closed and convex subset of Y .

Let Bγ J = y ∈ C J , E : y ≤ γ , Then Bγ is a closed
ball of the space C J , E with the radius γ and center
at 0. And Bγ is also a bounded closed and convex subset
of C J , E .

Next, we list some definitions and properties in fractional
calculus, multivalued analysis, semigroup theory, and mea-
sure of noncompactness.

The following definitions concerning fractional calculus
can be found in the books [2–4, 16].

Definition 1. The fractional integral for function f from lower
limit 0 and order α can be expressed by

Iα0+ f t = 1
Γ α

t

0

f s

t − s 1−α ds, α > 0, t > 0, 4

where Γ is the gamma function, and right side of upper
equality is point-wise defined on 0, +∞ .
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Definition 2. The Riemann-Liouville derivative of order α
with the lower limit 0 for function f 0, +∞ →ℝ can be
expressed by

R−LDα
0+ f t = 1

Γ n − α

dn

dtn

t

0

f s

t − s α+1−n ds, t > 0, 0 ≤ n − 1 < α < n

5

Definition 3. The Caputo derivative of order α for function
f 0, +∞ →ℝ can be denoted by

CDα
0+ f t = R−LDα f t − 〠

n−1

k=0

tk

k
f k 0 , t > 0, 0 ≤ n − 1 < α < n

6

Definition 4. The left Hilfer derivative of order 0 < p ≤ 1 and
type 0 ≤ q ≤ 1 of function f is defined by

Dp,q
0+ f t = Iq 1−p

0+ D I 1−q 1−p
0+ f t , 7

where D≔ d/dt

Remark 1.

(i) The operator Dp,q
0+ can be written as

Dp,q
0+ f t = Iq 1−p

0+ D I1−r0+ f t

= Iq 1−p
0+ Dr f t , r = p + q − pq

8

(ii) When q = 0 and 0 < p ≤ 1, the Hilfer fractional
derivative coincides with the Riemann-Liouville
derivative:

Dp,0
0+ f t = d

dt
I1−p0+ f t = R−LDp

0+ f t 9

(iii) When q = 1 and 0 < p ≤ 1, the Hilfer fractional
derivative coincides with the Caputo derivative:

Dp,1
0+ f t = I1−p0+

d
dt

f t = CDp
0+ f t 10

Let P E be the set of all nonempty subsets of E. We
will use the following notations:

P cl E ≔ Y ∈P E Y is closed ,
P b E ≔ Y ∈P E Y is bounded ,
P cv E ≔ Y ∈P E Y is convex ,
P cp E ≔ Y ∈P E Y is compact

11

Remark 2.

(i) A measurable function u J → E is Bochner integra-
ble if and only if u is Lebesgue integrable.

(ii) A multivalued map F E→ 2E is said to be convex
valued (closed valued) if F u is convex (closed)
for all u ∈ E is said to be bounded on bounded sets
if F B = ∪u∈B is bounded in E for all B ∈P b E

(iii) A multivalued map F is said to be upper semicontin-
uous (u.s.c.) on E if for each u0 ∈ E, the set F u0 is a
nonempty closed subset of E, and if for each open
subset Ω of E containing F u0 , there exists an open
neighborhood ∇ of u0 such that F ∇ ⊆Ω

(iv) A multivalued map F is said to be completely
continuous if F B is relatively compact for every
B ∈P b E If the multivalued map F is completely
continuous with nonempty compact values, then
F is u.s.c. if and only if F has a closed graph, that
is, un → u, yn → y, yn ∈ F u0 imply y ∈ F u We
say that F has a fixed point if there is u ∈ E, such
that u ∈ F u

(v) A multivalued map F J →P cl E is said to be mea-
surable if for each u ∈ E, the function y J → R
defined by y t = d u, F t = inf u − z , z ∈ F t
is measurable.

Lemma 1 (see [44]). Let E be a Banach space. The multiva-
lued map satisfies the following: for each t ∈ J , F t, · : E→
P b,cl,cv E is u.s.c.; for each x ∈ E, the function F ·, x : E→
P b,cl,cv E is strongly measurable and the set SF,x = f ∈ L1
J , E : f t ∈ F t, x t , for a e t ∈ J is nonempty. Let Γ
be a linear continuous mapping from L1 J , E to C J , E ,
then the operator

Γ ∘ SF C J , E →P b,cl,cv C J , E , x↦ Γ ∘ SF x = Γ SF,x ,
12

is a closed graph operator in C J , E × C J , E
Consider

Kp t = p
∞

0
θξp θ S tpθ dθ, t ≥ 0, 13

where ξp θ = 1/p θ−1−1/2ωp θ−1/2 , and

ωp θ = 1
π
〠
∞

n=1
−1 n−1θ−pn−1

Γ np + 1
n

sin nπp , θ ∈ 0,∞ ,

14

and ξp is a probability density function defined on 0,∞ , that
is ∞

0 ξp θ dθ = 1
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Remark 3 (see [2]). As we all know from [2] that Kp can be
denoted by the Mittag-Leffler functions:

Kp t = 〠
∞

i=0

Aitpi

Γ pi + p
15

The following essential propositions can be found in the
papers [19, 38].

Lemma 2. If S t ≤N , t ∈ J , then for each x ∈ E,

(i) Kp t x ≤ N/Γ p x ;

(ii) tp−1Kp t x ≤ Ntp−1/Γ p x and Iq 1−p
0+ tp−1

Kp t x ≤ Ntr−1/Γ r x .

Lemma 3 (Example 2.1.3 [45]).
For each G ⊂ C J , E and t ∈ J , define G t = g t :

g ∈G If G is equicontinuous and bounded, then β G t
is continuous on J and

β G =max
t∈J

β G t 16

Here, β is the Hausdorff noncompact measure on E
defined on every bounded subset U of Banach space E by

β U = inf ε > 0,U has a f inite ε − net in E 17

Lemma 4 (see Lemma 5 [46]). Let G ⊆ L1 J , E be a countable
subset with g t ≤ φ t , for almost everywhere t ∈ J and any
g ∈G, where φ ∈ L1 J ,ℝ+ . Then

β
J
g t dt g ∈G ≤

J
β G t dt 18

To end this section, we reintroduce the O’Regan-Precup
fixed point theorem.

Lemma 5 (see Theorem 3.2 [47]). LetD be a subset of Banach
space E which is closed and convex. Ω is a relatively open
subset of D, and T Ω→P cv D Suppose graph (T ) is
closed, T maps compact sets into relatively compact sets,
and that for some x0 ∈Ω, the following two conditions
are satisfied:

Z ⊆D, Z ⊂ conv x0 ∪T Z

Z = G with G ⊆ Z countable
⇒Z compact,

x ∉ 1 − λ x0 + λT x , for all x ∈Ω\Ω, λ ∈ 0, 1

19

Then T has a fixed point.

3. Controllability Results

We first consider linear Hilfer fractional differential equa-
tions of the form

Dp,q
0+ x t = Ax t + h t , t ∈ J′,

I1−r0+ x 0+ = 〠
n

i=1
aix ti ,

20

where h ∈ C J , E .
Assume that there exists the bounded operator K E→ E

given by

K ≔ I − 〠
n

i=1
aiΦp,r A, ti

−1

, 21

where Φp,r A, t = Iq 1−p
0+ tp−1Kp t .

By means of [48], we can present the sufficient conditions
for the existence and boundedness of the operator K .

Lemma 6. If the hypothesis (H0) ∑n
i=1 ai < Γ r /N t1

1−r

holds, the operator K defined in (21) exists and is bounded.

Proof 1. From the hypothesis H0 , we have

〠
n

i=1
aiΦp,r A, ti ≤

N
Γ r

〠
n

i=1
ai · tr−1i < Ntr−11

Γ r
〠
n

i=1
ai < 1

22

By operator spectrum theorem, the operator K ≔
I − ∑n

i=1aiΦp,r A, ti
−1 exists and is bounded. Furthermore,

by Neumann expression, we get

K ≤ 〠
∞

n=0
〠
n

i=1
aiΦp,r A, ti

n

= 1
1 − ∑n

i=1aiΦp,r A, ti

≤
1

1 − Ntr−11 /Γ r ∑n
i=1 ai

23

Using Lemma 6 and [19], we give the following definition
of mild solution for the Hilfer fractional system (20)
involving nonlocal initial conditions.

Definition 5. A function x ∈ C J′, X is called a mild solu-
tion for the Hilfer fractional system (20) if it satisfies
the following equation:

x t =Φp,r A, t 〠
n

i=1
aiK h ti + h t , t ∈ J′, 24

where h t = t
0Φp,p A, t − s h s ds.
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Remark 4. By virtue of [19], a mild solution for Hilfer
fractional evolution (20) with the initial condition is

x t =Φp,r A, t I1−r0+ x 0+ +
t

0
Φp,p A, t − s h s ds 25

Specially,

x ti =Φp,r A, ti I1−r0+ x 0+ +
ti

0
Φp,p A, ti − s h s ds

26
Using (20) and (26), we get

I − 〠
n

i=1
aiΦp,r A, ti · I1−r0+ x 0+ = 〠

n

i=1
ai

ti

0
Φp,p A, ti − s h s ds

27
Since I −∑n

i=1aiΦp,r A, ti exists a bounded inverse operator
which is denoted by K , so

I1−r0+ x 0+ = 〠
n

i=1
aiK

ti

0
Φp,p A, ti − s h s ds 28

And hence,

x t =Φp,r A, t 〠
n

i=1
aiK h ti + h t , t ∈ J′, 29

it is indeed (24).

Using Definition 5, we give a new definition of the
mild solution for the Hilfer fractional nonlocal differential
inclusions (3) as follows:

Definition 6. A function x ∈ C J′, E is called a mild solu-
tion of the Hilfer fractional nonlocal differential inclusions
(3) if for any u ∈ L2 J ,U , the following integral equation
is satisfied:

x t =Φp,r A, t 〠
n

i=1
aiK f ti + f t , t ∈ J′, 30

where f t = t
0Φp,p A, t − s Bu s + f s ds, Φp,p A, t =

tp−1Kp t and f ∈ SF,x.

To present and prove the main results of this paper,
we enumerate the following hypotheses:

(H1) E is a separable Banach space, A is bounded, hence
S · = eA· is a uniformly continuous semigroup.

(H2) The multivalued map F J × E→P b,cl,cv E sat-
isfies the following:

(2a) For every t ∈ J , F t, · : E→P b,cl,cv is u.s.c., for
each x ∈ E, the function F ·, x : J →P b,cl,cv is
strongly measurable. The set SF,x = f ∈ L1
J , E : f t ∈ F t, x t , for almost everywhere
t ∈ J is nonempty;

(2b) There exists a function ξ1 ∈ L1/p1 J ,ℝ+ ,
p1 ∈ 0, p and a continuous nondecreasing
function ψ 0,∞ → 0,∞ , such that for
any t, x ∈ J × E, we have F t, x t = sup

f t : f t ∈ F t, x t ≤ ξ1 t ψ x Y ,
limm→∞ inf ψ m /m =Λ <∞;

(2c) There exists a constant p2 ∈ 0, p and a
function ξ2 ∈ L1/p2 J′,ℝ+ s.t. β F t, Z ≤
ξ2 t β t1−rZ for any countable subset Z ⊂ E.

(H3) (3a) Linear operator V L2 J ,U → E defined by

Vu = a1−r Φp,r A, a 〠
n

i=1
aiK

ti

0
Φp,p A, ti − s Bu s ds

+
a

0
Φp,p A, a − s Bu s ds

31

is reversible, the inverse operator denoted by V−1

and takes values in L2 J ,U ker V , and there exist
two constants Nu > 0, Nv > 0 such that

B ≤Nu, V−1 ≤Nv ; 32

(3b) There exists a constant p3 ∈ 0, p and ξ3 ∈
L1/p3 J′,ℝ+ such that

β V−1 Z t ≤ ξ3 t β Z , t ∈ J , 33

for any countable subset Z ⊂ E

(H4) limη→∞ sup ηar−1 Np x1 +N1Nr Np + 1 ψ η −1

> 1, where Nr = Γ r N/Γ p Γ r −Ntr−11 ∑n
i=1 ai ,

Np =NuNvNr a1−q 1−p /p a1−q 1−p /p and di = bi
ap−pi , bi = 1 − pi/p − pi

1−pi , Ni = di ξi s L1/pi , i =
1, 2, 3

For any x ∈ BY
γ J′ , define an operator T as follows:

Tx t =Φp,r A, t 〠
n

i=1
aiK

ti

0
Φp,p A, ti − s f s + Bu s ds

+
t

0
Φp,p A, t − s f s + Bu s ds, t ∈ J′,

34

where f ∈ SF,x.
It is evident to see that limt→0t

1−r Tx t = 1/Γ r
∑n

i=1aix ti .
For any y ∈ Bγ J , let x t = tr−1y t for t ∈ J′, then

x ∈ BY
γ J′ . Define T as follows
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T y t =
t1−r Tx t , t ∈ J′,
1

Γ r
〠
n

i=1
aix ti , t = 0

35

Clearly, x is a mild solution of (3) in Y if and only if
y =T y has a solution y ∈ C J , E

u t ; x = a1−rV−1 x1 −Φp,r A, a 〠
n

i=1
aiK

ti

0
Φp,p A, ti − s f s ds

−
a

0
Φp,p A, a − s f s ds t , t ∈ J , f ∈ SF,x

36

For brevity, let us take the following notations

P t ; x = Bu t ; x + f t , f ∈ SF,x ;

P x = 〠
n

i=1
aiK

ti

0
Φp,p A, ti − s P s ; x ds

37

In view of Lemma 2, we obtain the following lemma that
will be useful in the proof of the main results.

Lemma 7. Under the hypothesis (H2) (2b), (H3) (3a), for each
y ∈ Bγ J , set x t = tr−1y t , t ∈ J′, we have

P t ; x ≤NuNva
1−r x1 +N1Nrψ y

+ ξ1 t ψ y , P x ≤Np 〠
n

i=1
ai x1

+N1Nr Np + 1 〠
n

i=1
ai ψ y

38

Proof 2. By Lemma 2, for each y ∈ Bγ J , set t = tr−1y t ,
t ∈ J′, it is easy to get

Bu t ; x ≤NuNv a1−r x1 + N2 K ψ x Y ∑n
i=1 ai

Γ r Γ p
ti

0
ti − s p−1ξ1 s ds

+ a1−rNψ x Y

Γ p

a

0
a − s p−1ξ1 s ds

≤NuNv a1−r x1 + N2ψ y ∑n
i=1 ai d1 ξ1 L1/p1

Γ p Γ r −Ntr−11 ∑n
i=1 ai

+ Nd1a
1−rψ y
Γ p

ξ1 L1/p1

≤NuNva
1−r x1 + Γ r NN1

Γ p Γ r −Ntr−11 ∑n
i=1 ai

ψ y

≜NuNva
1−r x1 +N1Nrψ y

39

Hence, we easily see that

P t ; x ≤NuNva
1−r x1 +N1Nrψ y

+ ξ1 t ψ y ;

P x ≤
NΓ r ∑n

i=1 ai
Γ p Γ r −Ntr−11 ∑n

i=1 ai
ti

0
ti − s p−1 P s ; x ds

≤
NΓ r ∑n

i=1 ai
Γ p Γ r −Ntr−11 ∑n

i=1 ai
ti

0
ti − s p−1 NuNva

1−r x1 +N1Nrψ y

+ ξ1 s ψ y ds

≤
Γ r NNuNva

1−q 1−p ∑n
i=1 ai

Γ p + 1 Γ r −Ntr−11 ∑n
i=1 ai

x1 +N1Nrψ y +N1Nr 〠
n

i=1
ai ψ y

≜Np 〠
n

i=1
ai x1 +N1Nr Np + 1 〠

n

i=1
ai ψ y

40
This completes the proof.
Next, we derive the controllability results for the Hilfer

fractional nonlocal differential inclusions (3).

Theorem 1. Assume the hypotheses (H0)–(H4) hold, then the
Hilfer fractional nonlocal differential inclusions (3) are exact
controllable on J provided that

Λ ≜NN2 1 +N3NrNua
1−r Nr

Γ r
〠
n

i=1
∣ ai ∣ +

1
Γ p

< 1

41

Proof 3. According to (H2) (2a) and [22], for each x ∈ C
J′, E , the multivalued function t→ F t, x t has a mea-
surable selection, and in view of (H2) (2b), this selection
belongs to SF,x. Thus, we can define a multivalued function
T ′ C J , E → 2C J ,E as follows. For every y ∈ C J , E , let
x t = tr−1y t ∈ Y , t ∈ J′, and a function z ∈T ′y if and only if

z t =
Kr t 〠

n

i=1
aiK f ti + t1−r f t , t ∈ J′,

1
Γ r

〠
n

i=1
aix ti , t = 0

42

where Kr t = t1−rΦp,r A, t , f t = t
0 t − s p−1Kp t − s Bu

s + f s ds and f ∈ SF,x.
Note that according to (H4), there is R∗ such that for

all R > R∗,

a1−r Np x1 +N1Nr Np + 1 ψ R <R 43
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Denote Ω = y ∈ C J , E : y ∞ < R0 and D = y ∈ C
J , E : y ∞ ≤ R0 , where R0 ≥ γ and R0 = R∗ + 1 We just
prove that the multivalued operator mathcalT′ D→ 2C J ,E

meets the conditions of Lemma 5. Obviously, since the values
of F are convex, the values of T ′ are also convex.

Claim 1. Each solution to the inclusion

y ∈ λT ′ y , y ∈D, λ ∈ 0, 1 44

satisfies y ∉D −Ω.
Let y be a solution of (44). Then, by reminding the

definition of T ′, the hypothesis (H2) (2b) and recalling also
Lemma 2, for each t ∈ J , we derive

This inequality with (43) deduces y ∞ < R0, So y ∉D −Ω.

Claim 2. Every function in T ′y y ∈ Bγ J is
equicontinuous.

For each y ∈ Bγ J , set x t = tr−1y t , t ∈ J′ such that

z ∈T ′ y By (42), there is f ∈ SF,x, for τ1, τ2 ∈ J , τ1 < τ2,
we get

y t ≤
N2∑n

i=1 ai
Γ p Γ r −Ntr−11 ∑n

i=1 ai

ti

0
ti − s p−1 P s ; x ds + Nt1−r

Γ p
·

t

0
t − s p−1 P s ; x ds

≤
N2NuNva

p+1−r∑n
i=1 ai

pΓ p Γ r −Ntr−11 ∑n
i=1 ai

x1 +N1Nrψ y + NNuNva
p+2−2r

pΓ p
· x1 +N1Nrψ y

+ Na1−rψ y
Γ p

t

0
t − s p−1ξ1 s ds + N2ψ y ∑n

i=1 ai
Γ p Γ r −Ntr−11 ∑n

i=1 ai

ti

0
ti − s p−1ξ1 s ds

≤
N2NuNva

p+1−r∑n
i=1 ai

pΓ p Γ r −Ntr−11 ∑n
i=1 ai

+ NNuNvΓ r ap+2−2r −N2NuNva
p+2−2rtr−11 ∑n

i=1 ai
pΓ p Γ r −Ntr−11 ∑n

i=1 ai
· x1 +N1Nrψ y

+ Na1−rψ y Γ r −N2a1−rtr−11 ψ y ∑n
i=1 ai

Γ p Γ r −Ntr−11 ∑n
i=1 ai

+ N2ψ y ∑n
i=1 ai

Γ p Γ r −Ntr−11 ∑n
i=1 ai

· d1 ξ1 L1/p1

≤
Γ r NNuNva

p+2−2r

Γ p + 1 Γ r −Ntr−11 ∑n
i=1 ai

x1 +N1Nrψ y + Γ r a1−rNd1 ξ1 L1/p1ψ y

Γ p Γ r −Ntr−11 ∑n
i=1 ai

≤
Γ r NNuNva

p+2−2r x1
Γ p + 1 Γ r −Ntr−11 ∑n

i=1 ai
+ a1−rN1Nrψ R0

Γ r NNuNva
p+1−r

Γ p + 1 Γ r −Ntr−11 ∑n
i=1 ai

+ 1

≜ a1−r Np x1 +N1Nr Np + 1 ψ R0

45

z τ2 − z τ1 ≤ Kr τ2 P x − Kr τ1 P x

+ τ1−r2

τ2

0
τ2 − s p−1Kp τ2 − s P s ; x ds − τ1−r1

τ1

0
τ1 − s p−1Kp τ1 − s P s ; x ds

≤ Kr τ2 − Kr τ1 P x +
τ2

τ1

τ1−r2 τ2 − s p−1Kp τ2 − s P s ; x ds

+
τ1

0
τ1−r1 τ1 − s p−1 Kp τ2 − s − Kp τ1 − s P s ; x ds

+
τ1

0
τ1−r1 τ1 − s p−1 − τ1−r2 τ2 − s p−1 Kp τ2 − s P s ; x ds

≤ I1 + I2 + I3 + I4,

46
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where

I1 = Kr τ2 − Kr τ1 P x ,

I2 =
N
Γ p

τ2

τ1

τ1−r2 τ2 − s p−1P s ; x ds ,

I3 =
N
Γ p

τ1

0
τ1−r1 τ1 − s p−1 − τ1−r2 τ2 − s p−1 P s ; x ds ,

I4 =
τ1

0
τ1−r1 τ1 − s p−1 Kp τ2 − s − Kp τ1 − s P s ; x ds

47
From (H1), one can deduce that I1 → 0 as τ2 − τ1 → 0 From
Lemma 7, we have

I2 ≤
NNuNva

2−2r

Γ p + 1 x1 +N1Nrψ γ τ2 − τ1
p

+ Nb1a
1−r

Γ p
τ2 − τ1

p−p1 ξ1 L1/p1ψ γ ,
48

which implies that I2 → 0 as τ2 − τ1 → 0

I3 ≤
NNuNva

1−r

Γ p
x1 +N1Nrψ γ

τ1

0
τ1−r1 τ1 − s p−1 − τ1−r2 τ2 − s p−1 ds

+ N
Γ p

ψ γ
τ1

0
τ1−r1 τ1 − s p−1 − τ1−r2 τ2 − s p−1 ξ1 s ds

49

Noting that

τ1−r1 τ1 − s p−1 − τ1−r2 τ2 − s p−1 ξ1 s ≤ τ1−r1 τ1 − s p−1ξ1 s ,
50

and τ1
0 τ

1−r
1 τ1 − s p−1ξ1 s ds, s ∈ 0, τ1 exists, then by Lebes-

gue’s dominated convergence theorem, we obtain I3 → 0 as
τ2 − τ1 → 0.
For ε > 0, we get

The assumption (H1) guarantees that I4 → 0 as τ2 −
τ1 → 0 and ε→ 0 We prove that Kr t is uniformly contin-
uous on J Consequently, T ′ is equicontinuous on Bγ J .

Claim 3. The inference (13) holds with y0 = 0.
Let Z = conv y0 ∪T ′ Z ⊆D, Z =G with G ⊆ Z

countable. We assert that Z is relatively compact. In fact,
since G is countable and G ⊆ Z = conv y0 ∪T ′ Z , we
can chase down a countable set H = zn n ≥ 1 ⊆T ′ Z
with G ⊆ conv y0 ∪H . Then, there exists yn ∈ Z with
zn ∈T ′ yn . This means that there is f n ∈ SF,xn such that
for t ∈ J

zn t = Kr t 〠
n

i=1
aiK f n ti + f n t , 52

where

f n t =
t

0
t − s p−1Kp t − s Bun s + f n s ds 53

From Z ⊆ G ⊆ conv y0 ∪H , for t ∈ J , s ∈ 0, t . By
utilizing Lemmas 2, 4, (H2) (2c), (H3) (3b), and the proper-
ties of the noncompact measure, we can derive

I4 ≤
τ1−ε

0
τ1−r1 τ1 − s p−1 Kp τ2 − s − Kp τ1 − s P s ; x ds

+
τ1

τ1−ε
τ1−r1 τ1 − s p−1 Kp τ2 − s − Kp τ1 − s P s ; x ds

≤NuNva
2−2r x1 +N1Nrψ γ

τp1 − εp

p
sup

s∈ 0,τ1−ε
Kp τ2 − s − Kp τ1 − s

+ τ1−r1

τ1−ε

0
τ1 − s p−1ξ1 s ds sup

s∈ 0,τ1−ε
Kp τ2 − s − Kp τ1 − s ψ γ

+ 2NNuNva
2−2rεp

Γ p + 1 x1 +N1Nrψ γ + 2Na1−r

Γ p
b1ε

p−p1ψ γ ξ1 L1/p1

51
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and

β Z t ≤ β G t ≤ β H t

≤ β Kr t 〠
n

i=1
aiK

ti

0
ti − s p−1Kp ti − s

Bun s + f n s ds n ≥ 1

+ β
t

0
t − s p−1Kp t − s Bun s + f n s ds n ≥ 1

≤
N2∑n

i=1 ai
Γ p Γ r −Ntr−11 ∑n

i=1 ai
ti

0
ti − s p−1 N2NuNra

1−rξ3 s + ξ2 s ds · β Z

+ N
Γ p

t

0
t − s p−1 N2NuNra

1−rξ3 s + ξ2 s ds · β Z

≤NN2 1 +N3NrNua
1−r Nr

Γ r
〠
n

i=1
ai +

1
Γ p

· β Z

≜Λ · β Z

55

Reminding Z = conv y0 ∪T ′ Z , by Claim 2, Z is
equicontinuous. So we find from Lemma 3 that

β Z =max
t∈J

β Z t ≤Λβ Z 56

Since Λ < 1, we obtain β Z = 0 That is, Z is compact.

Claim 4. T ′ maps compact sets into relatively compact sets.
LetQ be a compact subset of Z. From Claim 2,T ′ Q is equi-
continuous. Let t ∈ J , by the definition of T ′, for any y ∈Q
and z ∈T ′ y , there is f y ∈ SF,x such that

z t = Kr t 〠
n

i=1
aiK f y ti + f y t , t ∈ J , 57

where f y t = t
0 t − s p−1Kp t − s Buy s + f y s ds

Therefore

β T ′ Q t ≤ β z t : z ∈T ′ y , y ∈Q

≤ β Kr t 〠
n

i=1
aiK

ti

0
ti − s p−1Kp ti − s

Buy s + f y s ds y ∈ G

+ β
t

0
t − s p−1Kp t − s

Buy s + f y s ds y ∈ G

≤NN2 1 +N3NrNua
1−r

Nr

Γ r
〠
n

i=1
ai +

1
Γ p

β Q = 0

58

Then, Lemma 3 indicates β T ′ Q =maxt∈Jβ T ′ Q
t = 0, that is, the set T ′ Q is relatively compact.

Claim 5. The graph T ′ is closed.
For any y n ∈ Bγ J , let x n t = tr−1y n t and x∗

t = tr−1y∗ t , t ∈ J′. Let y n → y∗ n→∞ , μ n ∈T ′ y n ,
μ n → μ∗ n→∞ We will show that μ∗ ∈T ′ y∗ . Since
μ n ∈T ′ y n , there is f n ∈ SF,x n such that for any t ∈ J ,

β Bun s + f n s ≤Nuξ3 s
N2∑n

i=1 ai
Γ p Γ r −Ntr−11 ∑n

i=1 ai

ti

0
ti − s p−1β f n s : n ≥ 1 ds

+ Na1−r

Γ p

a

0
a − s p−1β f n s : n ≥ 1 ds + β f n s : n ≥ 1

≤Nuξ3 s
N2∑n

i=1 ai
Γ p Γ r −Ntr−11 ∑n

i=1 ai

ti

0
ti − s p−1ξ2 s β yn s : n ≥ 1 ds

+ Na1−r

Γ p

a

0
a − s p−1ξ2 s β yn s : n ≥ 1 ds + ξ2 s β yn s : n ≥ 1

≤ N2NuNra
1−rξ3 s + ξ2 s · β Z ,

54
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μ n t = Kr t 〠
n

i=1
aiK

ti

0
ti − s p−1Kp ti − s f n s ds

+ Kr t 〠
n

i=1
aiK

ti

0
ti − s p−1 · Kp ti − s BV−1

· a1−rx1 − Kr a 〠
n

i=1
aiK

ti

0
ti − τ p−1Kp ti − τ f n τ dτ

− a1−r
a

0
a − τ p−1Kp a − τ f n τ dτ ds

+ t1−r
t

0
t − s p−1Kp t − s f n s ds

+ t1−r
t

0
t − s p−1Kp t − s BV−1

a1−rx1 − Kr s 〠
n

i=1
aiK

·
ti

0
ti − τ p−1 · Kp ti − τ f n τ dτ − a1−r

a

0
a − τ p−1Kp a − τ f n τ dτ ds

59

So we just need to demonstrate the existence of f ∗ ∈ SF,x∗
such that for any t ∈ J ,

μ∗ t = Kr t 〠
n

i=1
aiK

ti

0
ti − s p−1Kp ti − s f ∗ s ds

+ Kr t 〠
n

i=1
aiK

ti

0
ti − s p−1 · Kp ti − s BV−1

a1−rx1 − Kr a 〠
n

i=1
aiK

ti

0
ti − τ p−1Kp ti − τ f ∗ τ dτ

− a1−r
a

0
a − τ p−1Kp a − τ f ∗ τ dτ ds

+ t1−r
t

0
t − s p−1Kp t − s · f ∗ s ds

+ t1−r
t

0
t − s p−1Kp t − s BV−1

a1−rx1 − Kr s 〠
n

i=1
aiK ·

ti

0
ti − τ p−1Kp ti − τ f ∗ τ dτ

− a1−r
a

0
a − τ p−1Kp a − τ f∗ τ dτ ds

60

Take into account the linear continuous operator

Γ L1/p J , E → Bγ J , 61

where

Γf t = Kr t 〠
n

i=1
aiK

ti

0
ti − s p−1Kp ti − s

f s − BV−1 Kr s 〠
n

i=1
aiK

·
ti

0
ti − τ p−1Kp ti − τ f τ dτ + a1−r

a

0
a − τ p−1Kp a − τ f τ dτ ds

+ t1−r
t

0
t − s p−1Kp t − s

f s − BV−1 · Kr s 〠
n

i=1
aiK

ti

0
ti − τ p−1 · Kp ti − τ f τ dτ

+ a1−r
a

0
a − τ p−1Kp a − τ f τ dτ ds

62

Clearly, we can get from Lemma 1 that the operator Γ ∘ SF
is a closed graph.

Since μ n → μ∗, n→∞, we can obtain that as n→∞,

μ n t − Kr t 〠
n

i=1
aiK

ti

0
ti − s p−1Kp ti − s BV−1a1−rx1ds

− t1−r
t

0
t − s p−1 · Kp t − s BV−1a1−rx1ds

− μ∗ t − Kr t 〠
n

i=1
aiK

ti

0
ti − s p−1Kp ti − s

· BV−1a1−rx1ds − t1−r

⋅
t

0
t − s p−1Kp t − s BV−1a1−rx1ds → 0

63

In addition, we get

μ n t − Kr t 〠
n

i=1
aiK

ti

0
ti − s p−1Kp ti − s BV−1a1−rx1ds

− t1−r
t

0
t − s p−1Kp t − s BV−1a1−rx1ds ∈ Γ SF,x n

64

Since y n → y∗ n→∞ , we can obtain from Lemma 1
that
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μ∗ t − Kr t 〠
n

i=1
aiK

ti

0
ti − s p−1Kp ti − s BV−1a1−rx1ds

− t1−r
t

0
t − s p−1Kp t − s BV−1a1−rx1ds

= Kr t 〠
n

i=1
aiK

ti

0
ti − s p−1Kp ti − s f ∗ s ds

− Kr t 〠
n

i=1
aiK

ti

0
ti − s p−1 · Kp ti − s BV−1

Kr s 〠
n

i=1
aiK

ti

0
ti − τ p−1Kp ti − τ f ∗ τ dτ + a1−r

·
a

0
a − τ p−1Kp a − τ f ∗ τ dτ ds

+ t1−r
t

0
t − s p−1Kp t − s f ∗ s ds

− t1−r
t

0
t − s p−1Kp t − s BV−1

Kr s 〠
n

i=1
aiK

ti

0
ti − τ p−1Kp ti − τ · f ∗ τ dτ

+ a1−r
a

0
a − τ p−1Kp a − τ f ∗ τ dτ ds

65

For some f ∗ ∈ SF,x∗ , this infers that μ∗ ∈T ′ y∗ Hence,
T ′ has a closed graph. Thus, Claims 1–5 are completed. By
use of Lemma 5, we know operator T ′ has a fixed point in
Bγ J . Let x t = tr−1y t , then x is a mild solution of (3)
and it satisfies x a = x1. Therefore, the Hilfer fractional non-
local differential inclusions (3) are exact controllable on J

4. Applications

Consider the following partial differential system

D3/4,2/3
0+ x t, s ∈ −

∂
∂s

x t, s

+ e−2t

1 + et
x t, s + η t, s , t ∈ 0, a , s ∈ 0, 1 ,

x t, 0 = x t, 1 = 0, t ∈ 0, a ,

I1/3 1−p
0+ x t, s

t=0
= 〠

n

i=1
Γ 11

12 arctan 1
2i2

x ti, s , s ∈ 0, 1 ,

66

where n ∈ 0, a is constants, η J × 0, 1 → 0, 1 is
continuous.

Let E =Ω≕ C 0, 1 and A is defined by

D A = w ∈ E w′ ∈ E,w 0 =w 1 = 0 ,

Aw = −w′,w ∈D A
67

As we all know that −A generates an equicontinuous
semigroup S t t ≥ 0 in E and it satisfies

T t w υ =w t + υ , 68

for w ∈ E Thus, S t t ≥ 0 is not compact in E and
sup0≤t≤a T t ≤ 1 Take

x t s = x t, s ,

D3/4,2/3
0+ x t s = I1/60+ D

11/12
0+ x t, s

= 1
Γ 1/6

t

0
t − τ −5/6 ∂11/12

∂τ11/12
x τ, s dτ,

f t, x t s = e−2t

1 + et
x t, s ,

u t s = μ t, s ,

ai = Γ 11
12 arctan 1

2i2 , ti = i, i = 1, 2,… , n

69

Then, for any y ∈ Bγ ≔ y ∈ C J , E : y ≤ γ , where J =
0, a , let x t = t− 1/12 y t , t ∈ J′≔ 0, a , then x ∈ BY

γ J′ ,
and we obtain

f t, x t s ≤
e−2t

1 + et
x t, s ≤

e−2tγ
1 + et

≤
γ

2
70

Thus, the hypothesis H2 holds for β = 1/2 and ξ2 t =
1/2 for all t ∈ J′ By

〠
n

i=1
ai ≤ Γ 11

12 · 〠
∞

i=1
arctan 1

2i2
= Γ 11

12 · π4 < Γ 11
12 ,

71

we verify that the hypothesis (H0) holds.
For s ∈ 0, 1 , the operator V is defined as

V t s = Kr a I − Γ 11
12 〠

n

i=1
i− 1/12 Kr i arctan 1

2i2
−1

Γ 11
12 〠

n

i=1
arctan 1

2i2

·
i

0
i − τ − 1/4 Kp i − τ η τ, s dτ

+
a

0
a − τ − 1/4 Kp a − τ η τ, s dτ,

72

where Kr t t≥0 and Kp t
t≥0 satisfy

Kr t = I1/60+ t− 1/4 Kp t ,

Kp t = 〠
∞

i=0

Ait 3/4 i

Γ 3/4 i + 3/4

73
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IfV satisfies the hypothesis (H3), from Theorem 1, we get
that the Hilfer fractional differential inclusion (66) involving
nonlocal initial conditions is exact controllable on 0, a
provided that (H4) and (41) are satisfied.
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