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Many investigators are interested in improving the control strategies of hand prosthesis to make it functional and more convenient
to use. The most used control approach is based on the forearm muscles activities, named ‘ElectroMyoGraphic’ (EMG) signal.
However, these biological signals are very sensitive to many disturbances and are generally unpredictable in time, type, and level.
This leads to inaccurate identification of user intent and threatens the prosthesis control reliability. This paper proposed a real-
time fault detection and localization approach applied to handwriting device on the plane. This approach allows connecting inputs
(IEMG signals)/outputs (pen tip coordinates) data as a parametric model for Multi-Inputs Multi-Outputs (MIMO) system. The
proposed approach is considered as a model-independent abrupt or intermittent fault detection method and as an alternative
solution to the unpredictable input observer based techniques, without any observability requirements. This approach allows
detecting, in real time, several types of faults in one or two inputs signals and in the same or different instants. Our study is
appropriate for many rapidly expanding fields and practices, including biomedical engineering, robotics, and biofeedback therapy
or even military applications.

1. Introduction

In the last decades, robot control is considered as an impor-
tant research field, especially for robots intervening in the
tasks of everyday life (assistance robots, social robots, service
robots, clinical application robots, etc.). Many investigators
are interested in improving the quality of prosthesis to make
it functional and more convenient to use. The increase in
functionality is mainly based on the progression of the
control strategies. The most used control approach is based
on the amplifier electrical activity of themuscles, named elec-
tromyographic signal (EMG), which allows directly encoding
the orders generated by the brain [1–4].

The wealth of information of these biological signals
leads several researches to propose approaches based on
the muscular activities control. For example, in [7] EMG
signals of ten muscles were used to control an artificial hand
with four fingers. Schulz et al. proposed, in [8], an artificial
handwith hydraulically drivenmultifunction. In this context,

different reviews of controlling by electrical muscles activities
are proposed in [9–12].

However, EMGs are very sensitive to many disturbances
in EMG recordings and are generally unpredictable in time,
type, and level.The characteristics of themuscles activities are
easily affected by many factors, such as recording over layers
of muscles, fat, and tissue, abrupt changing of the electrodes
positions, sweat of the prosthesis wearer at the recording site,
changes of the impedance of the electrode, filtering method,
noise of measure, disturbances, and user fatigue [13–15]. All
these conditions lead to inaccurate identification of user
intent and threaten the prosthesis control reliability [16–20].

In order to solve these problems, software integrated
electromyographic (IEMG) sensor and intelligent techniques
are used, in [21], to replace physical sensors. It was also used
as a part of fault detection approaches, where the output is
compared to the corresponding sensor.

In [22], Zhang et al. proposed a practical fault-tolerant
module for robust EMG, based on Mahalanobis distance
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analysis [23]. Using the Zhang fault approach, Resnik
included in [24] a fault detection module which detects faults
in the input signals (EMG). In 2018, Huang proposed an EMG
fault detector, taking into account only 3 kinds of signal faults
(e.g., EMG signal drift and saturation, additional noise, and
variation of EMGmagnitude) [25].

In fact, nowadays, Fault Detection and Diagnosis (FDD)
have been growing interest generated in several fields, espe-
cially in the emerging field of bio-robotics. For these reasons,
this topic has been addressed in many previous works. In
this sense, a bibliographic review on reconfigurable fault-
tolerant control approach is presented in [26]. In [27], a data
mapping fault detection approach was proposed to detect
actuator faults of a manipulator robot. Indeed, FDD can be
typically classified into two different classes: model-based
and model-free approaches. For model-based class, different
methods using mathematical models have been developed
in [27–32]. Furthermore, approaches that are not based on
system modeling used generally intelligent methods like
neural network or fuzzy logic concepts. In several works, deep
learning have been developed to compute the residuals and to
detect sensor or actuator faults for different types of systems
(linear, nonlinear electrical, hydraulic, etc.), as presented in
[33, 34].

The main contribution of this paper is the proposal of a
real-time fault detection and localization approach applied
to handwriting device allowing producing cursive letters and
geometric shapes from electromyographic signals of only
two forearm muscles. As already mentioned, these signals
are subject to uncertainties and internal/external disturban-
ces.

In this sense, a predictive model is particularly chal-
lenging for the estimation of faulty unpredictable inputs.
This model allows connecting inputs (IEMG signals)/outputs
(pen tip coordinates) data as a parametric model for Multi-
Inputs Multi-Outputs (MIMO) system. Afterward, Recursive
Least Squares (RLS) algorithm is used to identify the model’s
parameters. Our focus, hereafter, will be the use of normal-
ized residue to detect in real-time different kinds of actuator
fault arising on the studied device.

Unlike previous fault detection studies, developed for
myoelectric prosthesis and devices ensuring simple move-
ment (opening, closing), the developed approach is proposed
for handwriting system allowing us to generate cursive and
complex pattern, especially cursive Arabic letters, .ℎ, « HA»
and 𝑠, «SIN », which are composed by combined movements,
vertical, horizontal, oblique, etc.

On the other hand, our study is considered as a
model-independent abrupt or intermittent fault detection
method and as an alternative solution to the unpredictable
input observer based techniques, without any observability
requirements.

Indeed, the unpredictable characteristics and the varia-
tion of the biological parameters, related to the handwriting
process, like muscle mass and muscle fatigue, which interfere
with physical and psychical variation of scripters, make the
task ofmodeling complex and tedious.Therefore, freemodels
approaches are preferable in this case. The proposed fault
detection method is part of this category of model.

In addition, the developed fault detection approach
allows detecting several types of faults in one or two inputs
signals and in the same or different instants. These faults may
be due to technical problems (defective electrode), physical
(sweat), or even damage to the components that constitute
the system to be supervised.

The present paper is organized as follows: after pre-
sentation of the handwriting experimental approach in the
second section, the third section focuses on the study and
classification of different kinds of faults that can be detected
during the handwriting act. The fourth section shows the
development of actuator online fault modeling approach
using damaged outputs to detect faulty inputs.

2. Experimental Approach

Handwriting movement, on the plane (x, y), is considered as a
complex movement based on two electromyography signals,
EMG1 and EMG2, of the most active forearm muscles,
namely, the “Abductor Pollicis Longus” and the “Extensor
Capri Ulnaris” [5, 35]. The first muscle is responsible for the
vertical displacement and the second one for the horizontal
motions.

In this sense, an experimental approach was proposed,
in Hiroshima City University, to record at the same instant
cursive Arabic letters or geometric forms and two forearm
EMG signals [35].

In fact, the measuring data were synchronized by sending
a step signal from the parallel interface port on the computer
to the data recorder. This experimentation had required the
following equipment:

(i) Digital table of the brand “WACOM, KT-0405-RN”.
(ii) Preamplifiers “TEAC, AR-C2EMG1”.
(iii) Data recorder “TEAC, DR-C2”.
(iv) Bipolar surface electrodes (MEDICOTEST, Blue Sen-

sor N-00-S).
(v) Computer.

Figure 1 indicates the positioning of electrodes on the
writer’s arm. Electrodes, indicated by “ch1”, are relative to
the first muscle and those relative to the second muscle are
indicated by “ch2” [5].

In Figure 2, the recorded data for the Arabic letter, .ℎ,
“HA” are presented [35].

However, it is difficult to get the useful information from
muscles activities. Therefore, a variety of signal processing
techniques are used to make EMG waveforms easier to inter-
pret. Indeed, the fluctuation of EMG’s magnitudes can be
filtered to obtain new curves called integrated EMG (IEMG),
represented by dotted red curves in Figure 2(b) [35].

We note IEMG1 and IEMG2, the integrated EMG1 and
EMG2 signals, respectively.

The studied system is sensitive to different types of faults
due to many problems: electronic, mathematic, biologic, etc.
Electromyography signals are directly related to several mor-
phological and technical properties that influence the quality
of these signals (filtering method, noise and disturbances,
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Figure 1: Experimental assembly and electrodes’ positions on the writer’s arm [5].
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Figure 2: The letter, �, «HA». (a) Movement on the plane (x,y) and EMG signals. (b) IEMG signals. (c) Form.

distance between the muscles and the electrodes that are the
sensors of the muscular activities, etc.).

An undesirable deviation could occur on the written
shape if a fault appears on the handwriting process inputs.
To conclude, the fault that damages EMG signals affects
outputs of the handwriting model, and this will further
make the studied system reconstructing faulty graphic tra-
ces.

Figure 3 shows the impact of faulty inputs on the quality
of writing. Its presents some faulty responses of two cursives
Arabic letters, .ℎ, “HA” in Figure 3(a), 𝑠, “SIN” in Figure 3(b).
The experimental recorded data, in fault free case, are repre-
sented by discontinuous lines.Themodel’s outputs, responses
for faulty inputs, are presented by a continuous line [6].

However, electromyography signal is considered as a
complex signal with the particularity of variation according
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Figure 3: Damaged Arabic letters due to faulty inputs. (a) Arabic letter, �, « HA». (b) Arabic letter, �, «SIN » [6].
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Figure 4: Synoptic schema of the proposed fault detection approach.

to the writers, the nature of the produced form, and even
the variation of physical and psychical state of an individual.
In summary, electromyographic signals are very sensitive to
several distortions, so a fault detection approach is necessary
to ensure a good functioning of the studied process.

In this sense, we propose the new fault detection approach
introduced in Figure 4, based on predictive model using
parametric identification model for the reconstruction of
not healthy inputs (IEMG signals) of the handwriting
assistance system using the writing coordinates on (x, y)
plane.

The proposed technique is applicable for several kinds
of faults and can be useful in a lot of applications, such as

hand prosthesis, smart electrodes maintenance, and military
applications.

3. Faults Study and Classification

Before describing the proposed fault detection approach, we
will present, in this section, the most frequent faults that can
occur during the writing. Indeed, we can propose 3 main
classes of faults [36–49]: technical, neurogenic, andmodeling
class.

(i) In the case of the technical class, faulty IEMG signal
presents decrease/increase in the IEMG amplitude from a
nominal one. We can cite, for example, muscles-electrodes
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distance, distance between electrodes and alignment to the
fiber direction, displacement of electrodes from their initial
position, and transmission cable.

(ii) In the case of neurogenic or myogenic class, related
to neuronal and muscular problems, the faults lead to record
a poor muscle activity signal with an increase of the IEMG
signal amplitude from a nominal one, such as variation of the
muscular temperature, morphologic variation, weariness of
the muscles, and moving of electrodes during the writing act.

(iii) The case of modeling class is related to modeling
problems, as variation of model parameters.

4. Faulty Inputs Estimation from Outputs

In this study, we are interested in studying faults of technical
class. Knowing that most of these faults are related to IEMG
signals, we choose to consider all distortions as actuator
faults.

Figure 4 describes the studied approach that is based on
a mathematical model (Block 1), developed by Chihi et al.
[5], allowing us tomimic the handwritingmotion.Otherwise,
this model estimates coordinates of a drawing shape on the
plane (x, y) from IEMG signals. However, the performance of
this model depends on the quality of IEMG signals, recorded
by surface electrodes. As we already mentioned, these signals
can present several faults and distortions.

The objective of the proposed fault detecting system is to
detect and to localize a fault in the measured IEMG signals,
inputs of the considered assistive handwriting system.

As it is presented in Figure 4, the main idea for detecting
faults during this complex process is to propose a predicted
model (Block 2) to estimate faulty inputs (IEMG signals)
only from the coordinates of the written shape on the plane.
The fault diagnostic algorithm is also based on the analysis
of the absolute difference (Block 3) between the estimated
e𝑚1 and e𝑚2, and the referential data, e𝑟1 and e𝑟2, of the
forearm IEMG signals. These signals are recorded in good
conditions without faults. A residue computing procedure is
then proposed to define r1 and r2(Block 4), which are used
to decide and to generate fault warning (Block 5).

The residue, r𝑠𝑖, 𝑖 = {1, 2}, is compared to a threshold value
to detect and isolate the faults. Threshold is a parameter to be
adjusted according the writer. In fact, each person presents
his or her own reference IEMG signal, i.e., certain range of
amplitude.

We note that r𝑠𝑖 is the absolute difference between the
faulty and the normal electromyography signal (5) and r𝑖 is
the normalized residue (6).

𝑟𝑠𝑖 (𝑘) = (𝑒𝑟𝑖 (𝑘) − 𝑒𝑚𝑖 (𝑘) , 𝑖 = {1, 2} (1)

𝑟𝑖 (𝑘) =
{
{
{

1, if 𝑟𝑠𝑖 (𝑘) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0, 𝑒𝑙𝑠𝑒

(2)

Figure 5 presents the flowchart of the proposed fault detec-
tion algorithm, based on the absolute residual computation
which further allows defining a normalized residue to better
present the instant of the fault appearance and its duration.

rsi (k) = (eri (k)− emi (k)

ri(k)=0,
k=k+1

ri(k)>threshold

ri(k)=1, k=k+1
i={1,2}

Start

||

Figure 5: Flowchart of the fault detection and isolation procedure
based on structural residue computations.

The proposed predicted model of faulty inputs (block 2 of
Figure 4) is a MIMO fourth order model, whose inputs and
outputs are interconnected. This model estimates both IEMG
signals at the same time. It is based on velocities of thewriting,
V𝑥 and V𝑦, according to x and y coordinates, respectively. In
fact, velocity of writing has inspiredmany researchers to solve
various problems related to handwriting, such as the study of
the rapid humanmovement [50], pattern recognition [51, 52],
and even the handwriting modeling and control [53–55].

𝑒𝑚1 (𝑘) = −
4

∑
𝑖=1

[𝑎1𝑖𝑒𝑚2 (𝑘 − 𝑖) + 𝑏1𝑖𝑒𝑚1 (𝑘 − 𝑖)]

+
4

∑
𝑖=1

[𝑐1𝑖𝑉𝑥 (𝑘 − 𝑖 + 1) + 𝑑1𝑖𝑉𝑦 (𝑘 − 𝑖 + 1)]

𝑒𝑚2 (𝑘) = −
4

∑
𝑖=1

[𝑎2𝑖𝑒𝑚2 (𝑘 − 𝑖) + 𝑏2𝑖𝑒𝑚2 (𝑘 − 𝑖)]

+
4

∑
𝑖=1

[𝑐2𝑖𝑉𝑥 (𝑘 − 𝑖 + 1) + 𝑑2𝑖𝑉𝑦 (𝑘 − 𝑖 + 1)]

(3)

where

𝑉𝑥,𝑉𝑦 are the velocities of faulty coordinates, x and y,
respectively,

𝑒m1, 𝑒m2 are the estimated IEMG signals,

𝑎1i, 𝑏1i, 𝑐1i, 𝑑1i and 𝑎2i, 𝑏2i, 𝑐2i, 𝑑2i are the estimated
parameters, relative to e𝑚1 and e𝑚2, respectively.

The model parameters identification is based on classical
Recursive Least Squares (RLS) algorithm with forgetting
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Figure 6: Step fault in IEMG signal. (a) Healthy and faulty IEMG signal. (b) Real and estimated faulty input.

factor equal to 0,95 which performs the following operations
to update the parameters of the researched model [55–58].

𝜃 (𝑘) = 𝜃 (𝑘 − 1) + 𝑃 (𝑘)
𝑘

∑
𝑖=𝑛+1

𝑦 (𝑖) Ψ (𝑖) (4)

𝑃 (𝑘) = 𝑃 (𝑘 − 1) − 𝑃 (𝑘 − 1)Ψ (𝑘)Ψ𝑇 (𝑘) 𝑃 (𝑘 − 1)
1 + Ψ𝑇 (𝑘) 𝑃 (𝑘 − 1)Ψ (𝑘) (5)

𝜀 (𝑘) = 𝑦 (𝑘) − 𝜃 (𝑘 − 1)Ψ (𝑘) (6)

where

𝜃(𝑘) is the vector of estimated parameters,
𝑃(𝑘) is the adaptation matrix,
𝑦(𝑘) is the actual output of the system to be identified,
𝜓(𝑘) is the observation matrix,
𝜀(𝑘) is the estimated error.

The model structure used to identify the handwriting system
dynamics for Multi-Inputs Multi-Outputs is also given as
follows [55–58]:

𝑒𝑚1 = 𝜓𝑇1 𝜃1 + 𝜀1 (7)

𝑒𝑚2 = 𝜓𝑇2 𝜃2 + 𝜀2 (8)

where

𝜀1 𝑎𝑛𝑑 𝜀2 are the error vectors, relative to 𝑒m1 and 𝑒m2
signals, respectively,
𝜓T
1 𝑎𝑛𝑑 𝜓T

2 are the matrices whose elements are
relative to 𝑒m1 and 𝑒m2 signals, respectively.

4.1. Simulation Results. In order to validate the proposed fault
detection strategy, several simulations were performed in
Matlab/Simulink with real measurement files of EMG signals
and its corresponding pen tip movement coordinates.

We note that e𝑑 is the faulty input signal, which sum-
marizes the frequent technical faults that could attempt the
handwriting process and presents the model of each one [36–
49].

4.1.1. Case 1: One Faulty Input. In a first analysis, we consider
that one fault can affect only one IEMG signal, measured
using surface electrodes. Therefore, we propose studying
these kinds of faults: step, decrease of amplitude, ramp,
random, and intermittent.

For Figures 6–8, we note that the estimated IEMG signals
are presented in red line with stars and real signals are in
continuous blue line. Curves (a) present IEMG signal without
fault (blue continuous line) and the faulty input (red line with
stars). Curves (b) show the real (blue continuous line) and the
estimated faulty inputs (red line with stars) using model (3).

(i) Step Fault. Step fault, expressed by (9), is mainly caused
by the distortion of electrodes that can stay blocked by
generating a constant amplitude, Figure 6.

𝑒𝑑 (𝑡𝑘) =
{
{
{

𝑒 if 𝑡𝑘 < 𝑡𝑓
𝑓 𝑒𝑙𝑠𝑒 𝑡𝑘 ≥ 𝑡𝑓

(9)

f is constant,
t𝑘 is the discreet instant,
t𝑓 is the instant of occurrence of the fault,
e is the not healthy input.

Figure 6(a) shows the difference between the estimated signal
(represented by red stars curves) and its corresponding
referential data (represented by continuous blue curves).
Figure 6(b) presents the ability of the proposed approach
to predict IEMG signal, despite the abrupt changing of the
studied signal.
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Figure 7: Decrease of the amplitude fault in IEMG signal. (a) Healthy and faulty IEMG signal. (b) Real and estimated faulty input.
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(ii) Decrease of the Amplitude Fault. In this study, we take
into consideration the disadvantages of most myoelectric
prostheses, which are summed up in the variation of the
distances between electrodes or between muscles-electrodes,
the alignment to the fiber direction, etc.

The impact of these faults on IEMG signals can be
represented by a decrease of the amplitude, Figure 7.

This type of distortion can cause problems in the control
and precision of the prosthesis, which is very embarrassing
for the user.

The normalized residue r𝑖 is equal to one during the fault
occurrence. Figure 8 presents the residue relative to the cases
step and decrease of the amplitude faults.

(iii) Ramp Fault. The distortion due to the aging of the
electronic components can be represented by a ramp function

(10). Figure 9 shows good estimation of this type of fault using
the proposed approach.

𝑒𝑑 (𝑡𝑘) =
{
{
{

𝑒 if 𝑡𝑘 < 𝑡𝑓
𝛼f else 𝑡𝑘 ≥ 𝑡𝑓

𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (10)

(iv) RandomFault. The faulty input is also estimated with the
presence of a random distortion which can be caused by a
technical problem in the transmission cable, or an unknown
external interference, etc. Generally random fault is difficult
to estimate; however the proposed approach shows a good
concordance between the real and the estimated faulty signal,
Figure 10. The normalized residue is illustrated by Figure 11.

(v) Intermittent Fault. The estimation of inputs with an
intermittent fault (11) is also taken into account. In effect,
micro cuts, instantaneous displacement of electrodes, or even
unpredictable changes in IEMG signals can be considered as
an intermittent fault (ramp, step, random, etc.).

𝑒𝑑 =
{
{
{

𝑓int (𝑡𝑘) , 𝑡𝑓1 ≤ 𝑡𝑘 ≤ 𝑡𝑓2
𝑒, 𝑡𝑘 ∉ [𝑡𝑓1 𝑡𝑓2]

(11)

t𝑓1 and t𝑓2 are instants of the beginning and the end of the
fault.

Figure 12 shows good concordance between the real
inputs and the estimated signals. The normalized residue is
equal to one during the fault occurrence, Figure 13.

4.1.2. Case 2: Tow Faulty Inputs. In a second analysis, we
suppose that both inputs are sensitive to two successive faults.

In order to show the relevance of the proposed approach,
we start with the case where both IEMG signals have only one
fault, Figure 10(a). Figure 10(b) presents the estimated and
the real not healthy signals in the case of two faults in each
electromyographic signal.
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Figure 9: Ramp fault in IEMG signal. (a) Healthy and faulty IEMG signal. (b) Real and estimated faulty input.

5

10

15

20

25

30

35

em
2

3510 15 20 25 30 400 5
time

(a)

14

16

18

20
em

1

3510 15 20 25 30 400 5
time

3510 15 20 25 30 400 5
time

0

10

20

30

40

em
2

(b)

Figure 10: Step fault in IEMG2 signal. (a) Healthy and faulty IEMG signal. (b) Real and estimated faulty input.
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tude faults.

The normalized residues give information on the time
of occurrence of the fault and its duration. Residues of each
input are different to zero in the presence of any kind of fault,
Figures 14(a) and 14(b).

To evaluate the proposed fault detection approach, one
or more IEMG signals in the testing data set were artificially
distorted. Therefore, step, ramp, intermittent, and random
faults were adjusted to simulate the different disturbances
commonly occurring at EMG signal. The proposed approach
shows good concordance to estimate faulty recorded mus-
cles activities from damaged shapes coordinates on the
plane.

In order to make handwriting practical and available to
people with motor deficits, real writing challenges resulting
in deformation in EMG signals must be overcome. This
work aims to address these challenges by proposing a fault
detection approach to mimic the behavior of individual
distorted EMG signals.
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Figure 12: Random fault in IEMG1 signal. (a) Healthy and faulty IEMG1 signal. (b) Real and estimated faulty input.
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Figure 13: Normalized residue for intermittent fault in IEMG2 signal.

The results of this study demonstrate several benefits of
the designed fault detection approach, such as the adequacy
to correct for sudden signal disturbances simulated in the
present study and the possibility of detecting one or multiple
distorted EMG signals.

The proposed fault detection approach is considered
as an alternative solution to the unknown input observer
based techniques allowing model-independent fault detec-
tion without any observability requirements.

5. Conclusion

Thepresent work developed a newmodel-free fault detection
technique for unpredictable biological inputs. For this, we
presented a classification study of the different kinds of
faults that can affect the writing process. Then parametric
identification model with RLS algorithm was proposed to

reconstruct faulty integrated EMG signals. Thereafter, from
the fault reconstruction results, a normalized residual is
computed to facilitate the fault detection procedure from
damaged system outputs.

The proposed fault detection method showed high per-
formance in detecting faults of different types and for one or
multiple distorted EMG signals.

These promising outcomes could inform the design
of clinically viable EMG estimation and eventually benefit
individuals with motor deficits.

Data Availability

The [EMG signals and the corresponding letters coordinates]
data used to support the findings of this study are available
from the corresponding author upon request.
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