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In this paper, we propose and analyze a commensalismmodel with nonmonotonic functional response anddensity-dependent birth
rates. The model can have at most four nonnegative equilibria. By applying the differential inequality theory, we show that each
equilibrium can be globally attractive under suitable conditions. However, commensalism can be established only when resources
for both species are large enough.

1. Introduction

Commensalism is a long-term biological interaction in which
members of one species gain benefits while those of the
other species neither benefit nor are harmed. An example of
it is that remora are specially adapted to attach themselves
to larger fish that provide locomotion and food. In the last
decades, commensalism has attracted the attention of many
researchers ([1–16]). Complicated dynamics have been found
in the study. For example, in [3], Lin considered the effects
of partial closure and harvesting. Depending on the size of
the harvesting area, species can go extinct, partially survive,
or become permanent. He also showed in [4] that the final
density of the species increases as the Allee effect increases.
This is quite different from results for predator-prey system
with Allee effect.

Recently, Chen and Wu [5] proposed the following two
species commensal symbiosis models with nonmonotonic
functional response:

𝑑𝑥
𝑑𝑡 = 𝑥(𝑎1 − 𝑏1𝑥 +

𝑐1𝑦
𝑑1 + 𝑦2) ,

𝑑𝑦
𝑑𝑡 = 𝑦 (𝑎2 − 𝑏2𝑦) ,

(1)

where 𝑎1, 𝑏1, 𝑐1, 𝑑1, 𝑎2, 𝑏2 are all positive constants. System
(1) admits four nonnegative equilibria, 𝐴0(0, 0),𝐴1(𝑎1/𝑏1, 0),𝐴2(0, 𝑎2/𝑏2), and 𝐴3(𝑥∗, 𝑦∗), where

𝑥∗ = 𝑎1𝑏
2
2𝑑1 + 𝑎1𝑎22 + 𝑎2𝑏2𝑐1
𝑏1 (𝑏22𝑑1 + 𝑎22) ,

𝑦∗ = 𝑎2𝑏2 .
(2)

The stability of the equilibria is summarized as follows (see
Theorem 2.1 and 2.2 in [5] for more detail).

Theorem A. 𝐴0(0, 0), 𝐴1(𝑎1/𝑏1, 0), and 𝐴2(0, 𝑎2/𝑏2) are
unstable; 𝐴3(𝑥∗, 𝑦∗) is globally asymptotically stable.

When the interaction between the species is ignored, the
growth for both species is described by traditional logistic
equations. Indeed, without the presence of 𝑦, the growth of
the first species takes the form

𝑑𝑥
𝑑𝑡 = 𝑥 (𝑎1 − 𝑏1𝑥) , (3)

where 𝑎1 is the intrinsic growth rate and 𝑏1 is the density-
dependent coefficient or the interspecific competition coef-
ficient. However, in most situations, the intrinsic growth rate
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is not always constant. Onemodel incorporating nonconstant
intrinsic growth rate is the following density-dependent
model:

𝑑𝑥
𝑑𝑡 = 𝑥(

𝑎11
𝑎12 + 𝑎13𝑥 − 𝑎14 − 𝑏1𝑥) . (4)

For more details, see [6–8]. Combining this with (1), we
propose the following commensalism model:

𝑑𝑥
𝑑𝑡 = 𝑥(

𝑎11
𝑎12 + 𝑎13𝑥 − 𝑎14 − 𝑏1𝑥 +

𝑐1𝑦
𝑑1 + 𝑦2) ,

𝑑𝑦
𝑑𝑡 = 𝑦(

𝑎21
𝑎22 + 𝑎23𝑦 − 𝑎24 − 𝑏2𝑦) ,

(5)

where 𝑎𝑖𝑗 (𝑖 = 1, 2, 𝑗 = 1, 2, 3, 4) and 𝑏1, 𝑐1, 𝑑1, and 𝑏2 are
all positive constants. Here 𝑥(𝑡) and 𝑦(𝑡) are the densities of
the first and second species at time 𝑡, respectively. 𝑎11 and𝑎21 stand for the total resources available per-unit-time for
species 𝑥 and 𝑦, respectively.

The aim of this paper is to investigate the attractivity of
equilibria of (5). The main tool is the differential inequality
theory or comparisonprinciple. To the best of our knowledge,
this is the first time to use differential inequality in this
direction for ecosystems. The rest of the paper is arranged
as follows. In Section 2, we obtain the existence and global
attractivity of equilibria of system (5). Section 3 is devoted to
illustrating the feasibility of themain results through numeric
simulations. We end this paper by a brief discussion.

2. The Main Result

We first consider the existence of equilibria of (5). An
equilibrium of (5) satisfies the equilibrium equations,

𝑥( 𝑎11𝑎12 + 𝑎13𝑥 − 𝑎14 − 𝑏1𝑥 +
𝑐1𝑦
𝑑1 + 𝑦2) = 0, (6)

𝑦( 𝑎21𝑎22 + 𝑎23𝑦 − 𝑎24 − 𝑏2𝑦) = 0. (7)

If 𝑎21 ≤ 𝑎22𝑎24 then (7) only has the unique nonnegative
solution 𝑦 = 0 while if 𝑎21 > 𝑎22𝑎24, then, besides 𝑦 = 0,
(7) also has a unique positive solution 𝑦∗ = (−(𝑎24𝑎23 +
𝑎22𝑏2) + √(𝑎24𝑎23 + 𝑎22𝑏2)2 + 4𝑏2𝑎23(𝑎21 − 𝑎22𝑎24))/2𝑏2𝑎23.
Substituting 𝑦 = 0 into (6), we see that if 𝑎11 ≤ 𝑎12𝑎14,
then 𝑥 = 0 is the only nonnegative solution while
if 𝑎11 > 𝑎12𝑎14, besides 𝑥 = 0, (6) also has a
unique positive solution 𝑥∗ = (−(𝑎14𝑎13 + 𝑎12𝑏1) +
√(𝑎14𝑎13 + 𝑎12𝑏1)2 + 4𝑏1𝑎13(𝑎11 − 𝑎12𝑎14))/2𝑏1𝑎13. Similarly,
substituting 𝑦 = 𝑦∗ into (6), we can get that 𝑥 = 0 is the only
nonnegative solution if 𝑎11 ≤ 𝑎12𝑎∗14 while, besides 𝑥 = 0,
(6) also has a unique positive solution 𝑥∗∗ = (−(𝑎∗14𝑎13 +
𝑎12𝑏1) + √(𝑎∗14𝑎13 + 𝑎12𝑏1)2 + 4𝑏1𝑎13(𝑎11 − 𝑎12𝑎∗14))/2𝑏1𝑎13
if 𝑎11 > 𝑎12𝑎∗14, where 𝑎∗14 = 𝑎14 − 𝑐1𝑦∗/(𝑑1 + (𝑦∗)2). In
summary, we have obtained the following result.

Proposition 1. �e following statements on equilibria of (5)
are valid.

(i) If 𝑎11 ≤ 𝑎12𝑎14 and 𝑎21 ≤ 𝑎22𝑎24 then there is only the
trivial equilibrium 𝐴0 = (0, 0).

(ii) If 𝑎11 > 𝑎12𝑎14 and 𝑎21 ≤ 𝑎22𝑎24 then, besides 𝐴0,
there is also the nontrivial boundary equilibrium𝐴1 =(𝑥∗, 0).

(iii) If 𝑎21 > 𝑎22𝑎24 and 𝑎11 ≤ 𝑎12𝑎∗14 then there are only the
two equilibria𝐴0 and 𝐴2(0, 𝑦∗).

(iv) If 𝑎21 > 𝑎22𝑎24 and 𝑎12𝑎∗14 < 𝑎11 ≤ 𝑎12𝑎14 then there are
only three equilibria𝐴0, 𝐴2, and 𝐴3(𝑥∗∗, 𝑦∗).

(v) If 𝑎21 > 𝑎22𝑎24 and 𝑎11 > 𝑎12𝑎14 then there are only four
equilibria𝐴0, 𝐴1, 𝐴2, and 𝐴3.

Before analyzing the stability of the equilibria of (5), we
first consider the dynamic behavior of the following equation:

𝑑𝑦
𝑑𝑡 = 𝑦(

𝑎21
𝑎22 + 𝑎23𝑦 − 𝑎24 − 𝑏2𝑦) (8)

with 𝑦(0) = 𝑦0 ∈ [0, +∞). Clearly, every such solution of (8)
is nonnegative.

Lemma 2. �e following statements on (8) hold.
(i) If 𝑎21 > 𝑎22𝑎24 then the unique positive equilibrium 𝑦∗

is globally attractive in (0, +∞).
(ii) If 𝑎21 ≤ 𝑎22𝑎24 then the equilibrium 𝑦 = 0 is globally

attractive in [0, +∞).
Proof. Denote

𝐹 (𝑦) = 𝑎21𝑎22 + 𝑎23𝑦 − 𝑎24 − 𝑏2𝑦. (9)

Note that
𝐹 (𝑦)

= −𝑏2𝑎23𝑦
2 − (𝑎24𝑎23 + 𝑎22𝑏2) 𝑦 + (𝑎21 − 𝑎22𝑎24)

𝑎22 + 𝑎23𝑦 . (10)

(i) When 𝑎21 > 𝑎22𝑎24, it is easy to see that 𝐹 only has
the unique positive zero 𝑦∗. Observe that 𝑦𝐹(𝑦) > 0 for
𝑦 ∈ (0, 𝑦∗) and 𝑦𝐹(𝑦) < 0 for 𝑦 > 𝑦∗. It follows easily that
lim𝑡󳨀→+∞𝑦(𝑡) = 𝑦∗ if 𝑦0 > 0; that is, 𝑦∗ is globally attractive
in (0, +∞).

(ii) When 𝑎21 ≤ 𝑎22𝑎24, clearly 𝐹 can not have positive
zero and hence 𝑦 = 0 is the only equilibrium. As 𝑦𝐹(𝑦) < 0
for 𝑦 > 0, we obtain lim𝑡󳨀→+∞𝑦(𝑡) = 0. This completes the
proof.

Nowwe are ready to study the attractivity of the equilibria
of (5).

Theorem 3. (i) Assume that 𝑎21 ≤ 𝑎22𝑎24 and 𝑎11 < 𝑎12𝑎14.
�en 𝐴0 is globally attractive in [0, +∞) × [0, +∞).

(ii) Suppose that 𝑎21 ≤ 𝑎22𝑎24 and 𝑎11 > 𝑎12𝑎14. �en 𝐴1 is
globally attractive in (0, +∞) × [0, +∞).

(iii) Assume that 𝑎21 > 𝑎22𝑎24 and 𝑎11 < 𝑎12𝑎∗14. �en 𝐴2
is globally attractive in [0, +∞) × (0, +∞).

(iv) Assume that 𝑎21 > 𝑎22𝑎24 and 𝑎11 > 𝑎12𝑎∗14. �en
the unique positive equilibrium 𝐴3 is globally attractive in
(0, +∞) × (0, +∞).
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Proof. First, assume that 𝑎21 ≤ 𝑎22𝑎24. By Lemma 2 (ii), we
have lim𝑡󳨀→+∞𝑦(𝑡) = 0 for 𝑦0 ∈ [0, +∞).

(i) As 𝑎11 < 𝑎12𝑎14, we can choose 𝜀 > 0 small enough so
that 𝑎11 < 𝑎12(𝑎14−𝑐1𝜀/𝑑1). For this 𝜀, there exists 𝑇1 ≥ 0 such
that 𝑦(𝑡) < 𝜀 for 𝑡 ≥ 𝑇1. This, together with the first equation
of (5), gives

𝑑𝑥
𝑑𝑡 ≤ 𝑥(

𝑎11
𝑎12 + 𝑎13𝑥 − 𝑎14 − 𝑏1𝑥 +

𝑐1𝜀
𝑑1 ) for 𝑡 ≥ 𝑇1. (11)

It follows from the choice of 𝜀, Lemma 2 (ii), and the
comparison principle that lim𝑡󳨀→+∞𝑥(𝑡) = 0. Therefore,

lim𝑡󳨀→+∞(𝑥(𝑡), 𝑦(𝑡)) = 𝐴0; that is, 𝐴0 is globally attractive
in [0, +∞) × [0, +∞).

(ii) On the one hand, for any 𝜀 > 0 such that 𝑎14(𝜀) =𝑎14 − 𝑐1𝜀/𝑑1 > 0, there exists 𝑇𝜀 ≥ 0 such that 𝑦(𝑡) < 𝜀 for
𝑡 ≥ 𝑇1. Thus it follows from the first equation of (5) that

𝑑𝑥
𝑑𝑡 ≤ 𝑥(

𝑎11
𝑎12 + 𝑎13𝑥 − 𝑎14 (𝜀) − 𝑏1𝑥) for 𝑡 ≥ 𝑇𝜀. (12)

Note that 𝑎11 > 𝑎12𝑎14 > 𝑎12𝑎14(𝜀). By comparison principle
and Lemma 2 (i),

lim sup
𝑡󳨀→+∞

𝑥 (𝑡) ≤ 𝑥∗ (𝜀) = − (𝑎14 (𝜀) 𝑎13 + 𝑎12𝑏1) + √(𝑎14 (𝜀) 𝑎13 + 𝑎12𝑏1)
2 + 4𝑏1𝑎13 (𝑎11 − 𝑎12𝑎14 (𝜀))

2𝑏1𝑎13 . (13)

Letting 𝜀 󳨀→ 0+ gives lim sup𝑡󳨀→+∞𝑥(𝑡) ≤ 𝑥∗. On the other
hand, note that

𝑑𝑥
𝑑𝑡 ≥ 𝑥(

𝑎11
𝑎12 + 𝑎13𝑥 − 𝑎14 − 𝑏1𝑥) . (14)

Again, by comparison principle and Lemma 2 (i), we have
lim inf 𝑡󳨀→+∞𝑥(𝑡) ≥ 𝑥∗. It follows that lim𝑡󳨀→+∞𝑥(𝑡) = 𝑥∗. In
summary, lim𝑡󳨀→+∞(𝑥(𝑡), 𝑦(𝑡)) = 𝐴1; namely, 𝐴1 is globally
attractive in (0, +∞) × [0, +∞).

Now suppose that 𝑎21 > 𝑎22𝑎24. Then lim𝑡󳨀→+∞𝑦(𝑡) = 𝑦∗
for 𝑦0 > 0 by Lemma 2 (i).

(iii) Since 𝑎11 < 𝑎12𝑎∗14, we choose 𝜀 > 0 sufficiently small
so that 𝑎11 < 𝑎12𝑎∗14(𝜀), where 𝑎∗14(𝜀) = 𝑎14 − 𝑐1(𝑦∗ + 𝜀)/(𝑑1 +(𝑦∗ − 𝜀)2). For this 𝜀, there exists 𝑇̂𝜀 ≥ 0 such that

𝑦∗ − 𝜀 < 𝑦 (𝑡) < 𝑦∗ + 𝜀 for 𝑡 ≥ 𝑇̂𝜀. (15)

This, combined with the first equation of (5), gives

𝑑𝑥
𝑑𝑡 ≤ 𝑥 (

𝑎11
𝑎12 + 𝑎13𝑥 − 𝑎

∗
14 (𝜀) − 𝑏1𝑥) for 𝑡 ≥ 𝑇̂𝜀. (16)

Then lim𝑡󳨀→+∞𝑥(𝑡) = 0 by the choice of 𝜀, Lemma 2
(ii), and the comparison principle. Thus we have shown

lim𝑡󳨀→+∞(𝑥(𝑡), 𝑦(𝑡)) = 𝐴2; that is, 𝐴2 is globally attractive
in [0, +∞) × (0, +∞).

(iv) This time 𝑎11 > 𝑎12𝑎∗14. For any 𝜀 > 0 such that 𝑎∗14 =𝑎14 − 𝑐1(𝑦∗ + 𝜀)/(𝑑1 + (𝑦∗ − 𝜀)2) > 0 and 𝑎11 > 𝑎12𝑎∗14(𝜀), there
exists 𝑇̃𝜀 ≥ 0 such that

𝑦∗ − 𝜀 < 𝑦 (𝑡) < 𝑦∗ + 𝜀 for 𝑡 ≥ 𝑇̃𝜀, (17)

where 𝑎∗14(𝜀) = 𝑎14 − 𝑐1(𝑦∗ − 𝜀)/(𝑑1 + (𝑦∗ + 𝜀)2). Again,
employing the first equation of (5), we have

𝑥( 𝑎11𝑎12 + 𝑎13𝑥 − 𝑎
∗
14 (𝜀) − 𝑏1𝑥) ≤ 𝑑𝑥𝑑𝑡

≤ 𝑥( 𝑎11𝑎12 + 𝑎13𝑥 − 𝑎
∗
14 (𝜀) − 𝑏1𝑥)

(18)

for 𝑡 ≥ 𝑇̃𝜀. Note that 𝑎11 > 𝑎12𝑎∗14(𝜀) > 𝑎12𝑎∗14(𝜀). Applying
Lemma 2 (i) and comparison principle again, we have

𝑥∗ (𝜀) ≤ lim inf
𝑡󳨀→+∞
𝑥 (𝑡) ≤ lim sup

𝑡󳨀→+∞

𝑥 (𝑡) ≤ 𝑦∗ (𝜀) , (19)

where

𝑥∗∗ (𝜀) = − (𝑎
∗
14 (𝜀) 𝑎13 + 𝑎12𝑏1) + √(𝑎∗14 (𝜀) 𝑎13 + 𝑎12𝑏1)2 + 4𝑏1𝑎13 (𝑎11 − 𝑎12𝑎∗14 (𝜀))

2𝑏1𝑎13 ,

𝑥∗∗ (𝜀) = − (𝑎
∗
14 (𝜀) 𝑎13 + 𝑎12𝑏1) + √(𝑎∗14 (𝜀) 𝑎13 + 𝑎12𝑏1)2 + 4𝑏1𝑎13 (𝑎11 − 𝑎12𝑎∗14 (𝜀))

2𝑏1𝑎13 .
(20)

Letting 𝜀 󳨀→ 0+, we get 𝑥∗∗ ≤ lim inf 𝑡󳨀→+∞𝑥(𝑡) ≤
lim sup𝑡󳨀→+∞𝑥(𝑡) ≤ 𝑥∗∗ and hence lim𝑡󳨀→+∞𝑥(𝑡) = 𝑥∗∗. It
follows that lim𝑡󳨀→+∞(𝑥(𝑡), 𝑦(𝑡)) = 𝐴3 and so 𝐴3 is globally
attractive in (0, +∞)×(0, +∞).This completes the proof.

3. Numeric Simulations

In this section, we provide numeric simulations to illustrate
the four situations inTheorem 3.
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Figure 1: Solutions (𝑥(𝑡), 𝑦(𝑡)) of system (21) with the initial
conditions (𝑥(0), 𝑦(0)) = (1, 0.3), (0.4, 2), and (0.7, 1.1).

Example 4. Let 𝑎11 = 3, 𝑎12 = 2, 𝑎13 = 2, 𝑎14 = 3, 𝑏1 = 3,𝑐1 = 2, 𝑑1 = 3, 𝑎21 = 1, 𝑎22 = 2, 𝑎23 = 3, 𝑎24 = 1, and 𝑏2 = 2.
Then (5) becomes

𝑑𝑥
𝑑𝑡 = 𝑥 (

3
2 + 2𝑥 − 2 − 3𝑥 +

2𝑦
3 + 𝑦2) ,

𝑑𝑦
𝑑𝑡 = 𝑦(

1
2 + 3𝑦 − 1 − 2𝑦) .

(21)

Clearly, 𝑎21 = 1 < 2 = 𝑎22𝑎24 and 𝑎11 = 3 < 6 = 𝑎12𝑎14. By
Theorem 3(i), the boundary equilibrium 𝐴0(0, 0) is globally
attractive. Figure 1 strongly supports it.

Example 5. Consider

𝑑𝑥
𝑑𝑡 = 𝑥(

3
1 + 𝑥 − 2 − 𝑥 +

2𝑦
3 + 𝑦2) ,

𝑑𝑦
𝑑𝑡 = 𝑦(

4
1 + 𝑦 − 1 − 𝑦) .

(22)

Corresponding to (5), 𝑎11 = 3, 𝑎12 = 1, 𝑎13 = 1, 𝑎14 = 2, 𝑏1 =1, 𝑐1 = 2, 𝑑1 = 3, 𝑎21 = 4, 𝑎22 = 1, 𝑎23 = 1, 𝑎24 = 1, 𝑏2 = 1.
Obviously, 𝑎11 > 𝑎12𝑎14 > 𝑎12𝑎∗14 and 𝑎21 > 𝑎22𝑎24. It follows
from Theorem 3 (iv) that 𝐴3 = (0.5, 1) is globally attractive
(see Figure 2).

Example 6. Consider

𝑑𝑥
𝑑𝑡 = 𝑥(

3
1 + 𝑥 − 2 − 𝑥 +

2𝑦
3 + 𝑦2) ,

𝑑𝑦
𝑑𝑡 = 𝑦(

1
2 + 3𝑦 − 1 − 2𝑦) ;

(23)

that is, we take 𝑎11 = 3, 𝑎12 = 1, 𝑎13 = 1, 𝑎14 = 2, 𝑏1 = 1, 𝑐1 =2, 𝑑1 = 3, 𝑎21 = 1, 𝑎22 = 2, 𝑎23 = 3, 𝑎24 = 1, 𝑏2 = 2 in (5). This
time, 𝑎11 > 𝑎12𝑎14 and 𝑎21 < 𝑎22𝑎24. Therefore, 𝐴1 is globally
attractive byTheorem 3 (ii), which is illustrated by Figure 3.
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Figure 2: Solutions (𝑥(𝑡), 𝑦(𝑡)) of system (22), with the initial
conditions (𝑥(0), 𝑦(0)) = (1, 0.3), (0.4, 2), and (0.7, 1.1).
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Figure 3: Solutions (𝑥(𝑡), 𝑦(𝑡)) of system (23) with the initial
conditions (𝑥(0), 𝑦(0)) = (1, 0.3), (0.4, 2), and (0.7, 1.1).

Example 7. Finally, let 𝑎11 = 3, 𝑎12 = 2, 𝑎13 = 2, 𝑎14 = 3, 𝑏1 =3, 𝑐1 = 2, 𝑑1 = 3, 𝑎21 = 4, 𝑎22 = 1, 𝑎23 = 1, 𝑎24 = 1, 𝑏2 = 1 in
(5); that is, consider

𝑑𝑥
𝑑𝑡 = 𝑥(

3
2 + 2𝑥 − 2 − 3𝑥 +

2𝑦
3 + 𝑦2) ,

𝑑𝑦
𝑑𝑡 = 𝑦(

4
1 + 𝑦 − 1 − 𝑦) .

(24)

Note that 𝑎21 > 𝑎22𝑎24. We can calculate that 𝑦∗ = 1 and
𝑎∗14 = 5/2. Then we see that 𝑎11 = 3 < 5 = 𝑎12𝑎∗14. Thus it
follows fromTheorem 3 (iii) that 𝐴2 is globally attractive (see
Figure 4).
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Figure 4: Solutions (𝑥(𝑡), 𝑦(𝑡)) of system (24) with the initial
conditions (𝑥(0), 𝑦(0)) = (1, 2), (0.4, 1.5), and (2.5, 0.8).

4. Discussion

In this paper, inspired by the work in [17–19], we proposed
a commensalism model under the assumption that the
intrinsic growth rates of both species are density-dependent.
The model can have at most four equilibria. For the first
time, differential inequality has been applied to obtain the
global attractivity of equilibria of such ecosystem models.
Depending on the availability of resources, each of the
possible equilibria can be globally attractive. This implies
that density-dependent birth rates play an important role
in the dynamics. Though the dynamics can be complicated,
from the point view of commensalism, commensalism can
be established only when resources for both species are large
enough (see Theorem 3 (iv)). Hence, these results agree with
those of Chen and Wu [5] (see Theorem A in Introduction).

As we know, delay always exists in many biological
processes. We will leave the effect of delay on the dynamics
for future study.
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