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The objective of this study is to propose a new operationmethod based on the universal grey number to overcome the shortcomings
of typical interval operation in solving system fault trees. First, the failure probability ranges of the bottom events are described
according to the conversion rules between the interval number and universal grey number. A more accurate system reliability
calculation is then obtained based on the logical relationship between the AND gates andOR gates of a fault tree and universal grey
number arithmetic. Then, considering an aircraft landing gear retraction system as an example, the failure probability range of the
top event is obtained through universal grey operation. Next, the reliability of the aircraft landing gear retraction system is evaluated
despite insufficient statistical information describing failures. The example demonstrates that the proposed method provides many
advantages in resolving the system reliability problem despite poor information, yielding benefits for the function of the interval
operation, and overcoming the drawback of solution interval enlargement under different orders of interval operation.

1. Introduction

The fault tree analysis (FTA) method is typically applied as
the main method in the reliability analysis of large systems
[1–3]. A fault tree is a logical block diagram composed of a
top event (outcome), intermediate events, and bottom events
and is used to describe the internal functional logical rela-
tionship between events. The logical relationships between
the components of a system and their events are obtained
based on the operating principle and fault mechanisms of
the system. The top-level failure probability of the system
can be obtained through the logical relationship between
event layers and through data operations using the failure
probability statistics of the underlying components of the
system. Then, a system-level reliability evaluation can be
performed [4–7]. In recent studies, researchers have made
major achievements in theoretical system and engineering
reliability analyses based on fault trees. The FTA method
based on a probability model has seen wide application in
several systems engineering fields such as aviation, aerospace,
and nuclear power [8–12].

The traditional fault tree analysis method is based on a
probability model; when there is a large set of failure samples
and other sufficient statistical information describing the
evaluated parts of a system, the uncertainty of bottom events
can be quantified independently [5, 12]. However, when only
small sample sets are available in an engineering analysis case,
the statistics describing component failure are insufficient
to accurately estimate failure distribution [13, 14]. It is thus
difficult to determine the failure probability of components
in many kinds of complex systems, such as landing gear
retraction systems and large-scale space-borne antennae.
This limits the application of the probabilistic model-based
fault tree method in complex engineering applications.

Based on the fuzzy set theory, the fuzzy fault tree
describes the probability of event occurrence using various
fuzzy numbers, addressing the difficulties associated with
precisely measuring the probability of base event occurrence
due to the complexity of the environment and incomplete
data [15–18]. Ding and Lisianski regarded the performance
rate and corresponding probability of an event as fuzzy
values and developed a reliability evaluation technique for
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a multistate system using the fuzzy universal generation
function [19]. Li et al. introduced random fuzzy variables
and proposed a hybrid universal generation function [20].
Liu and Huang proposed a fuzzy continuous-time Markov
model with a finite discrete state and used it to evaluate
the fuzzy state probability of multistate elements at any time
[21]. However, in the fuzzy fault tree, the determination of
the fuzzy value, fuzzy variable, and fuzzy state probability is
highly subjective.

The interval domain is an important model in non-
probability theory: the shape of an interval domain rep-
resents the degree to which events occur in an interval
model, while the size of the interval domain signifies the
volatility or degree of deviation of an uncertain event. To
establish an interval model, only the boundaries of an event
set are required, not its internal distribution. This results
in significant independence from the data compared to a
conventional probability model [22–27]. However, it should
be pointed out that the power exponentiation of an interval
number will lead to the expansion of the interval and
that different orders of operation performed on the same
interval numbers can provide different expansion intervals
[28, 29].

The universal grey number provides the function of the
interval operation and overcomes the drawback associated
with traditional interval operation, i.e., the change in solution
interval with order of operation [29]. Some scholars have
gradually introduced and successfully applied the universal
grey operation to structural reliability research [30–33]. Luo
introduced the grey range transformation into the process
of model building to eliminate the incomparability of dif-
ferent dimensions and achieved an effective risk assessment
of the ice plug phenomenon [30]. Jin et al. proposed a
generalized Rayleigh quotient method based on general-
ized grey mathematics to represent the interval parameters
in uncertain structures using generalized grey numbers
[31]. Liu et al. considered the uncertainty of the inter-
val arithmetic for the structural, nonprobabilistic reliability
calculation of nonlinear systems, using the universal grey
number instead of the interval parameters to overcome the
impact of interval arithmetic uncertainty on reliability results
[32].

Based on the advantages of the universal grey number
method, a new method for solving the reliability of the top
event of a fault tree is proposed in this paper to overcome
the shortcomings of the existing nonprobabilistic reliability
method of interval operation.Theproposedmethod complies
with the conversion rule between the interval number and
universal number, and the four arithmetic operations of the
universal grey number.

2. Interval Analysis of Simple System
Fault Trees

2.1. Four Arithmetic Operations of Traditional Interval Anal-
ysis. Let ‘∗’ represent a real binary operation on the set of
real numbers, ∗ ∈ {+, −, ⋅, /}. For [𝑥] = [𝑥, 𝑥] ∈ 𝐼(𝑅) and

[𝑦] = [𝑦, 𝑦] ∈ 𝐼(𝑅), the binary operation on interval set 𝐼(𝑅)
is defined as follows:

[𝑥] ∗ [𝑦] = {𝑧 | 𝑧 = 𝑥 ∗ 𝑦, 𝑥 ∈ [𝑥] , 𝑦 ∈ [𝑦]} (1)

The four arithmetic operation rules can then be derived
as follows [27]:

[𝑥] + [𝑦] = [𝑥 + 𝑦, 𝑥 + 𝑦]
[𝑥] − [𝑦] = [𝑥 − 𝑦, 𝑥 − 𝑦]
[𝑥] ⋅ [𝑦]
= [min (𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥 𝑦) ,max (𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥 𝑦)]

[𝑥][𝑦] = [𝑥, 𝑥] ⋅ [ 1𝑦 , 1𝑦] (0 ∉ [y])

(2)

It can be seen in (2) that the calculation of the interval
number provides an extremely wide range due to the influ-
ence of interval expansion. This is the primary drawback of
the interval method.

2.2. Four Arithmetic Operations of Interval Analysis Based on
the Universal Grey Operator. Setting the domain as 𝑈 = 𝑅
(the set of real numbers), the universal grey number set in 𝑅
is denoted by 𝑔(𝑅). Calling an element in 𝑔(𝑅) the universal
grey number, 𝑔 = (𝑥, [𝜇, 𝜇]), 𝑥 ∈ 𝑅, and 𝜇, 𝜇 ∈ 𝑅, where 𝑥 is
the observed value and [𝜇, 𝜇] is the grey information portion
of 𝑥.

The corresponding four arithmetic operation rules are
accordingly [27]

𝑔1 + 𝑔2 = (𝑥1 + 𝑥2, [𝑥1𝜇1 + 𝑥2𝜇2𝑥1 + 𝑥2 , 𝑥1𝜇1 + 𝑥2𝜇2𝑥1 + 𝑥2 ]) (3)

𝑔1 − 𝑔2 = (𝑥1 − 𝑥2, [𝑥1𝜇1 − 𝑥2𝜇2𝑥1 − 𝑥2 , 𝑥1𝜇1 − 𝑥2𝜇2𝑥1 − 𝑥2 ]) (4)

𝑔1 × 𝑔2 = (𝑥1𝑥2, [𝜇1 𝜇2, 𝜇1 𝜇2]) (5)

𝑔1𝑔2 = (
𝑥1𝑥2 , [

𝜇1
𝜇2 ,

𝜇1𝜇2]) (6)

In practical applications, the universal grey number and
interval number can be interchanged with each other via
conversion. For the grey number 𝑔 = (𝑥, [𝜇, 𝜇]), the
corresponding interval number is in the formof𝑔 = [𝑥𝜇, 𝑥𝜇].
The interval number 𝑔 = [𝑥, 𝑥] can be uniformly expressed
as 𝑔 = (𝑥, [𝑥/𝑥, 1]) for ease of operation.
2.3. Interval Analysis of Fault Trees Based on Universal Grey
Operator for an OR Gate Operator. A fault tree interval
analysis based on the universal grey operator is performed
by using an OR gate operator with three bottom events as an
example. The fault tree is shown in Figure 1.
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Figure 1: OR gate operator with three bottom events.

The failure function of the top event in relation to the
bottom event is given by

𝑃𝑇1 = 1 − (1 − 𝑃1) (1 − 𝑃2) (1 − 𝑃3) (7)

and the other three equivalent forms are given as follows:

𝑃𝑇2 = 1 − (1 − 𝑃1 − 𝑃2 + 𝑃1𝑃2) (1 − 𝑃3) (8)

𝑃𝑇3 = 1 − (1 − 𝑃1) (1 − 𝑃2 − 𝑃3 + 𝑃2𝑃3) (9)

𝑃𝑇4 = 𝑃1 + 𝑃2 + 𝑃3 − 𝑃1𝑃2 − 𝑃1𝑃3 − 𝑃2𝑃3 + 𝑃1𝑃2𝑃3 (10)

The failure probabilities of the three bottom events are
expressed by the interval number as follows:

𝑃1 = [0.1, 0.3] (11)

𝑃2 = [0.2, 0.6] (12)

𝑃3 = [0.4, 0.8] (13)

Substituting the values in (11), (12), and (13) into (7) to
(10), the probability interval range of the top event of the fault
tree can be obtained as follows:

𝑃
𝑇1 = [1, 1] − [0.7, 0.9] ⋅ [0.4, 0.8] ⋅ [0.2, 0.6] = [1, 1]
− [0.056, 0.432] = [0.568, 0.944] (14)

𝑃𝑇2 = [1, 1] − ([1, 1] − [0.1, 0.3] − [0.2, 0.6]
+ [0.1, 0.3] ⋅ [0.2, 0.6]) ⋅ ([1, 1] − [0.4, 0.8]) = [1, 1]
− [0.12, 0.88] ⋅ [0.2, 0.6] = [0.472, 0.976]

(15)

𝑃𝑇3 = [1, 1] − ([1, 1] − [0.1, 0.3]) ⋅ ([1, 1] − [0.2, 0.6]
− [0.4, 0.8] + [0.2, 0.6] ⋅ [0.4, 0.8]) = [1, 1]
− [0.7, 0.9] ⋅ [−0.32, 0.88] = [0.208, 1.288]

(16)

𝑃𝑇4 = [0.1, 0.3] + [0.2, 0.6] + [0.4, 0.8] − [0.1, 0.3]
⋅ [0.2, 0.6] − [0.1, 0.3] ⋅ [0.4, 0.8] − [0.2, 0.6]
⋅ [0.4, 0.8] + [0.1, 0.3] ⋅ [0.2, 0.6] ⋅ [0.4, 0.8]
= [−0.192, 1.704]

(17)

The failure probability intervals of the three bottom
events can then be expressed in terms of universal grey
numbers as

𝑃
1 = (0.3, [13 , 1]) (18)

𝑃2 = (0.6, [13 , 1]) (19)

𝑃3 = (0.8, [12 , 1]) (20)

The interval operation based on the universal grey oper-
ator is performed by substituting (18) to (20) into (7) to (10),
and the probability interval ranges of the top event of the fault
tree in the four forms are as follows:

𝑃
𝑇1 = (1, [1, 1]) − {(1, [1, 1]) − (0.3, [13 , 1])}
⋅ {(1, [1, 1]) − (0.6, [13 , 1])} ⋅ {(1, [1, 1])
− (0.8, [12 , 1])} = (1, [1, 1]) − (0.056, [547 , 1])
= [0.568, 0.944]

(21)

𝑃𝑇2 = (1, [1, 1]) − {(1, [1, 1]) − (0.3, [13 , 1])
− (0.6, [13 , 1]) + (0.3, [13 , 1]) ⋅ (0.6, [13 , 1])}
⋅ {(1, [1, 1]) − (0.8, [12 , 1])} = (1, [1, 1])
− (0.056, [2.160.28 , 1]) = [0.568, 0.944]

(22)

𝑃𝑇3 = (1, [1, 1]) − {(1, [1, 1]) − (0.3, [13 , 1])}
⋅ {(1, [1, 1]) − (0.6, [13 , 1]) − (0.8, [12 , 1])
+ (0.6, [13 , 1]) ⋅ (0.8, [12 , 1])} = [0.568, 0.944]

(23)

𝑃𝑇4 = (0.3, [13 , 1]) + (0.6, [13 , 1]) + (0.8, [12 , 1])
− (0.3, [13 , 1]) ⋅ (0.6, [13 , 1]) − (0.3, [13 , 1])
⋅ (0.8, [12 , 1]) − (0.6, [13 , 1]) ⋅ (0.8, [12 , 1])
+ (0.3, [13 , 1]) ⋅ (0.6, [13 , 1]) ⋅ (0.8, [12 , 1])
= [0.568, 0.944]

(24)

For the four equivalent forms of the failure function of the
fault tree composed of three OR gate bottom events shown
in Figure 1, four different failure probability interval values
of the top event are obtained using the traditional interval



4 Complexity

T

X1 X2 X3

Figure 2: AND gate operator with three bottom events.

computation: [0.568, 0.944], [0.472, 0.976], [0.208, 1.288],
and [-0.192, 1.704]. Because (7) has a physical meaning and is
not simplified, [0.568, 0.944] is the correct result. Although
(8) to (10) are equivalent to (7) in form, different orders
of interval computation can result in different expansion
degrees of the failure probability with respect to the top event
in the fault tree.

The failure probability interval of the top event calculated
using the four equivalent forms is [0.568, 0.944] as deter-
mined through the universal grey operation, the same value
obtained using (7), but without the enlargement or reduction
by different degrees when a traditional interval operation is
applied using different orders of operation. This indicates
that an interval analysis combined with grey operation can
overcome the drawbacks of traditional interval operations.

2.4. Interval Analysis of Fault Trees Based on the Universal
GreyOperator for anANDGateOperator. A fault tree interval
analysis based on the universal grey operator is illustrated by
using an AND gate operator with three bottom events as an
example. The fault tree is shown in Figure 2.

The failure function of the top event related to the bottom
events is given by

𝑋
𝑇 = 𝑋1 ⋅ 𝑋2 ⋅ 𝑋3 (25)

The failure probabilities of the three bottom events
are indicated by their interval numbers with the following
interval values:

𝑋1 = [0.1, 0.3] (26)

𝑋2 = [0.2, 0.6] (27)

𝑋3 = [0.4, 0.8] (28)

The failure probability of the top event can then be
calculated according to the traditional interval operation
using:

𝑋𝑇 = [0.1, 0.3] ⋅ [0.2, 0.6] ⋅ [0.4, 0.8] = [0.008, 0.144] (29)

For the AND gate operator, the failure probability inter-
vals of the three bottom events can be explained in terms of
universal grey numbers as follows:

𝑋1 = (0.3, [13 , 1]) (30)

𝑋2 = (0.6, [13 , 1]) (31)

𝑋3 = (0.8, [12 , 1]) (32)

The probability interval value of the top event of the fault
tree as determined by the universal grey operation is thus

𝑋
𝑇 = (0.3, [13 , 1]) ⋅ (0.6, [13 , 1]) ⋅ (0.8, [12 , 1])
= (0.144, [0.0556, 1]) = [0.008, 0.144]

(33)

Because the failure function of the three bottom events
in the AND gate operator has only one form, the traditional
interval analysis and the proposed grey number interval anal-
ysis will provide the same solution for the failure probability
of the top event. For the AND gate, the traditional interval
arithmetic is equivalent to the universal grey operation. In
actual engineering, however, complex system fault trees are
generally composed of multiple AND gates and OR gates.
Therefore, in order to demonstrate the effectiveness of the
proposed universal grey operation, it is necessary to perform
an interval analysis of a complex system fault tree that is
appropriate for universal grey operation.

3. Interval Analysis of Landing Gear
Retraction System Fault Tree Based on
Universal Grey Operation

3.1. Fault Tree Model of Landing Gear Retraction System. An
aircraft landing gear retraction system mainly consists of
hydraulic retractable cylinders, shock struts, foldable rear
struts, two rotation shafts fixed to the airframe, and other
corresponding attachments. When an aircraft extends its
landing gear, the lower lock opens first, then hydraulic oil
is injected into the actuating cylinder, causing its piston rod
to extend outward, pushing the landing gear shock strut to
rotate it about the front rotation shaft. When the landing
gear is in place, the upper lock is closed and the injection of
hydraulic oil stops. When an aircraft retracts its landing gear,
the upper lock opens first, then the hydraulic oil is injected
into the actuating cylinder causing its piston rod to retract
inward, pulling the landing gear shock strut to rotate it about
the front rotation shaft. Once the landing gear is stowed, the
lower lock is closed and the injection of hydraulic oil stops
[34].

In this study, the system fault tree was constructed
according to the working principle, composed structure, and
fault classification of the landing gear retraction system, as
shown in Figure 3.

This paper reviews the failure probability interval range of
each bottom event in the landing gear retraction system fault
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Figure 3: Fault tree of an aircraft landing gear retraction system, where T is a landing gear retraction system fault; M1 is an actuating cylinder
fault; M2 is a control system fault; M3 is a hydraulic system fault; M4 is a piston rod fault; M5 is a sealing ring fault; M6 is an end eyelet fault;
M7 is a hydraulic pump fault; X1 is a cylinder fracture; X2 is a seized piston rod; X3 is a loose piston rod; X4 is a fractured piston rod; X5 is
a mechanically damaged sealing ring; X6 is an aging and cracking sealing ring; X7 is a chemically corroded sealing ring; X8 is an eyelet bolt
fracture; X9 is an eyelet rotation; X10 is the failure of the pressure switch; X11 is the failure of the electromagnetic switch; X12 is the failure of
the safety valve; X13 is oil leakage from the hydraulic line; X14 is an air lock fault; X15 is a fracture of the pump plunger piston spring; X16 is
oil leakage from the pump rotary joint; X17 is a damaged pumpmotor; X18 is oil contamination; X19 is a broken hard pipe; X20 is a break in
the accumulator.

Table 1: Interval of basic event failure probability in the landing gear retraction system fault tree.

Fault code Interval of basic event failure probability Fault code Interval of basic event failure probability
X1 [2.02 × 10−5, 6.40 × 10−5] X11 [2.14 × 10−4, 8.09 × 10−4]
X2 [2.62 × 10−5, 9.29 × 10−5] X12 [4.95 × 10−4, 1.44 × 10−3]
X3 [6.42 × 10−5, 1.40 × 10−4] X13 [2.62 × 10−3, 7.20 × 10−3]
X4 [2.10 × 10−6, 8.85 × 10−6] X14 [2.62 × 10−4, 8.25 × 10−4]
X5 [4.60 × 10−4, 2.45 × 10−3] X15 [4.60 × 10−5, 1.85 × 10−4]
X6 [2.62 × 10−4, 8.29 × 10−4] X16 [2.44 × 10−4, 7.52 × 10−4]
X7 [2.44 × 10−4, 9.72 × 10−4] X17 [2.45 × 10−3, 7.72 × 10−3]
X8 [4.60 × 10−4, 1.95 × 10−3] X18 [2.79 × 10−3, 9.85 × 10−3]
X9 [2.24 × 10−4, 7.29 × 10−4] X19 [2.12 × 10−5, 8.29 × 10−5]
X10 [1.62 × 10−5, 8.29 × 10−5] X20 [4.42 × 10−5, 1.70 × 10−4]

tree, shown in Table 1. By referring to the logical relationship
OR gates in the fault tree, the probabilistic structure function
model of the fault tree can be obtained as

𝑃𝑇 = 1 − (1 − 𝑃𝑀1) (1 − 𝑃𝑀2) (1 − 𝑃𝑀3) (34)

𝑃𝑀1 = 1 − (1 − 𝑃𝑋1) (1 − 𝑃𝑀4) (1 − 𝑃𝑀5) (1 − 𝑃𝑀6)
𝑃𝑀2 = 1 − (1 − 𝑃𝑋10) (1 − 𝑃𝑋11) (1 − 𝑃𝑋12)
𝑃𝑀3 = 1 − (1 − 𝑃𝑋13) (1 − 𝑃𝑋14) (1 − 𝑃𝑀7) (1 − 𝑃𝑋18)
⋅ (1 − 𝑃𝑋19) (1 − 𝑃𝑋20)

(35)

𝑃𝑀4 = 1 − (1 − 𝑃𝑋2) (1 − 𝑃𝑋3) (1 − 𝑃𝑋4)
𝑃𝑀5 = 1 − (1 − 𝑃𝑋5) (1 − 𝑃𝑋6) (1 − 𝑃𝑋7)
𝑃𝑀6 = 1 − (1 − 𝑃𝑋8) (1 − 𝑃𝑋9)
𝑃𝑀7 = 1 − (1 − 𝑃𝑋15) (1 − 𝑃𝑋16) (1 − 𝑃𝑋17)

(36)

3.2. Failure Probability of Top Event of the System Fault
Tree under Universal Grey Operation. Depending on the
conversion rule of the interval number and universal grey
number, the failure probabilities of the bottom events of
the landing gear retraction system, expressed using universal
grey numbers, are given in Table 2.

The universal grey operation process is first conducted as
follows on the lowest level of gates:

𝑃
𝑀4 = 1 − (1 − 𝑃𝑋2) (1 − 𝑃𝑋3) (1 − 𝑃𝑋4)

= (1, [1, 1])
− {(1, [1, 1]) − (9.29 × 10−5, [0.282024, 1])}
⋅ {(1, [1, 1]) − (1.40 × 10−4, [0.458571, 1])}
⋅ {(1, [1, 1]) − (8.85 × 10−6, [0.237288, 1])}

= (2.4 × 10−4, [0.3793, 1])

(37)
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Table 2: Universal grey representation of basic event failure probability for landing gear retraction system fault tree.

Fault code Universal grey representation of failure probability Fault code Universal grey representation of failure probability
X1 (6.40 × 10−5, [0.315625, 1]) X11 (8.09 × 10−4, [0.264524, 1])
X2 (9.29 × 10−5, [0.282024, 1]) X12 (1.44 × 10−3, [0.343750, 1])
X3 (1.40 × 10−4, [0.458571, 1]) X13 (7.20 × 10−3, [0.363889, 1])
X4 (8.85 × 10−6, [0.237288, 1]) X14 (8.25 × 10−4, [0.317576, 1])
X5 (2.45 × 10−3, [0.187755, 1]) X15 (1.85 × 10−4, [0.248649, 1])
X6 (8.29 × 10−4, [0.316043, 1]) X16 (7.52 × 10−4, [0.324468, 1])
X7 (9.72 × 10−4, [0.251029, 1]) X17 (7.72 × 10−3, [0.317358, 1])
X8 (1.95 × 10−3, [0.235897, 1]) X18 (9.85 × 10−3, [0.283249, 1])
X9 (7.29 × 10−4, [0.307270, 1]) X19 (8.29 × 10−5, [0.255730, 1])
X10 (8.29 × 10−5, [0.195416, 1]) X20 (1.70 × 10−4, [0.260000, 1])

𝑃𝑀5 = 1 − (1 − 𝑃𝑋5) (1 − 𝑃𝑋6) (1 − 𝑃𝑋7)
= (1, [1, 1])
− {(1, [1, 1]) − (2.45 × 10−3, [0.187755, 1])}
⋅ {(1, [1, 1]) − (8.29 × 10−4, [0.316043, 1])}
⋅ {(1, [1, 1]) − (9.72 × 10−4, [0.251029, 1])}

= (4.246 × 10−3, [0.227505, 1])

(38)

𝑃𝑀6 = 1 − (1 − 𝑃𝑋8) (1 − 𝑃𝑋9)
= (1, [1, 1])
− {(1, [1, 1]) − (1.95 × 10−3, [0.235897, 1])}
⋅ {(1, [1, 1]) − (7.29 × 10−4, [0.307270, 1])}

= (2.678 × 10−3, [0.2555464, 1])

(39)

𝑃𝑀7 = 1 − (1 − 𝑃𝑋15) (1 − 𝑃𝑋16) (1 − 𝑃𝑋17)
= (1, [1, 1])
− {(1, [1, 1]) − (1.85 × 10−4, [0.248649, 1])}
⋅ {(1, [1, 1]) − (7.52 × 10−4, [0.324468, 1])}
⋅ {(1, [1, 1]) − (7.72 × 10−3, [0.317358, 1])}

= (8.65 × 10−3, [0.3167134, 1])

(40)

Allowing the universal grey operation to be conducted as
follows on the next highest level of gates,

𝑃𝑀1 = 1 − (1 − 𝑃𝑋1) (1 − 𝑃𝑀4) (1 − 𝑃𝑀5) (1 − 𝑃𝑀6)
= (1, [1, 1])
− {(1, [1, 1]) − (6.40 × 10−5, [0.315625, 1])}
⋅ {(1, [1, 1]) − (2.4 × 10−4, [0.3793, 1])}

⋅ {(1, [1, 1]) − (4.246 × 10−3, [0.227505, 1])}
⋅ {(1, [1, 1]) − (2.678 × 10−3, [0.2555464, 1])}
= (7.2145 × 10−3, [0.2431464, 1])

(41)

𝑃𝑀2 = 1 − (1 − 𝑃𝑋10) (1 − 𝑃𝑋11) (1 − 𝑃𝑋12)
= (1, [1, 1])
− {(1, [1, 1]) − (8.29 × 10−5, [0.195416, 1])}
⋅ {(1, [1, 1]) − (8.09 × 10−4, [0.264524, 1])}
⋅ {(1, [1, 1]) − (1.44 × 10−3, [0.343750, 1])}
= (2.33 × 10−3, [0.310623, 1])

(42)

𝑃𝑀3 = 1 − (1 − 𝑃𝑋13) (1 − 𝑃𝑋14) (1 − 𝑃𝑀7) (1 − 𝑃𝑋18)
⋅ (1 − 𝑃𝑋19) (1 − 𝑃𝑋20) = (1, [1, 1])
− {(1, [1, 1]) − (7.20 × 10−3, [0.363889, 1])}
⋅ {(1, [1, 1]) − (8.25 × 10−4, [0.317576, 1])}
⋅ {(1, [1, 1]) − (8.65 × 10−3, [0.3167134, 1])}
⋅ {(1, [1, 1]) − (9.85 × 10−3, [0.283249, 1])}
⋅ {(1, [1, 1]) − (8.29 × 10−5, [0.255730, 1])}
⋅ {(1, [1, 1]) − (1.70 × 10−4, [0.260000, 1])}
= (2.65324 × 10−2, [0.318568, 1])

(43)

Then, for the top event,

𝑃𝑇 = 1 − (1 − 𝑃𝑀1) (1 − 𝑃𝑀2) (1 − 𝑃𝑀3)
= (1, [1, 1])
− {(1, [1, 1]) − (7.2145 × 10−3, [0.2431464, 1])}



Complexity 7

⋅ {(1, [1, 1]) − (2.33 × 10−3, [0.310623, 1])}
⋅ {(1, [1, 1]) − (2.65324 × 10−2, [0.318568, 1])}

= (0.0358, [0.3044832, 1]) = [0.0109, 0.0358]
(44)

indicating that the failure probability interval range of the
aircraft landing gear retraction system varies between 0.0109
and 0.0358.

4. Conclusions

This paper proposes a new method for system fault tree
analysis that overcomes the shortcomings of existing interval
operation methods based on the conversion rules between
the interval number and the universal grey number and
describes the failure probability interval range of the bottom
events of a fault tree using the universal numbers. Based
on the logical relationship between the AND gates and OR
gates of a fault tree and combined with the four arithmetic
operations of the universal grey number, a more accurate
system reliability calculation result is achieved. The proposed
method is demonstrated to be advantageous for interval
operation and is shown to overcome the drawbacks of
enlarged or reduced solution intervals when using different
orders of interval operation.
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