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To improve energy harvesting performance, this paper investigates the resonance mechanism of nonlinear vibrational multistable
energy harvesters under narrow-band stochastic parametric excitations. Based on the method of multiple scales, the largest
Lyapunov exponent which determines the stability of the trivial steady-state solutions is derived. �e �rst kind modi�ed Bessel
function is utilized to derive the solutions of the responses of multistable energy harvesters.�en, the �rst-order and second-order
nontrivial steady-state moments of multistable energy harvesters are considered. To explore the stochastic bifurcation phe-
nomenon between the nontrivial and trivial steady-state solutions, the Fokker–Planck–Kolmogorov equation corresponding to
the two-dimensional Itô stochastic di�erential equations is solved by using the �nite di�erence method. In addition, the
mechanism of the stochastic bifurcation of multistable energy harvesters is analyzed for revealing their unique dynamic
response characteristics.

1. Introduction

Vibration energy harvesting is expected to replace some
small traditional chemical batteries and permanently supply
power for the low-powered wireless sensors and actuators
and also can promote structural health monitoring [1–5].
Recently, vibrational nonlinear energy harvesters have been
receiving more and more attention because they have the
better energy harvesting performance than traditional linear
energy harvesters under time-varying ambient environ-
mental excitations [4–9]. By far, di�erent kinds of high-
performance nonlinear energy harvesters have been
designed based on geometric nonlinearity, additional
nonlinear magnetic force, residual thermal stress, or active/
passive control strategies [9–12].

In past several years, the novel methods to broaden the
bandwidth are achieved by introducing nonlinearity and
multioscillator structures, and the nonlinear behaviors may

extend the operating bandwidth of the energy harvester,
allowing for e�cient energy harvesting under random vi-
brations. Nonlinear energy harvesters with monostable,
bistable, tristable, and even quadstable characteristics have
been extensively studied to improve the harvesting perfor-
mance in natural. Cottone et al. [12] designed a bistable
energy harvester (BEH) based on additional nonlinear
magnetic force and a cantilever beam structure, and they
experimentally veri�ed its advantage for harvesting energy
from random vibrations. Later on, Litak et al. [13, 14] deeply
investigated and veri�ed the energy harvesting improvement
of the BEH under random base excitations. Chen and Jiang
[15] presented the internal resonance mechanism to enhance
vibration energy harvesting. Wang et al. [16] experimentally
tested a BEH to harvest energy from human motions, and a
better energy harvesting performance over the linear
monostable harvester was archived. �en, Zhou et al. [17]
designed a tristable energy harvester (TEH) to improve the
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broadband energy harvesting performance from low-level
ambient vibrations. /e TEH physically has three potential
energy wells, which may have lower potential barriers than
the BEH [18]. /e advantages of the TEH in broadband
vibration energy harvesting over the BEH under low-level
harmonic and random base excitations were experimentally
and numerically verified [17, 19–21]. For example, Xu et al.
[22] revealed the stochastic resonance mechanism of the
TEH. Tékam et al. [23] studied the influence of the frac-
tional-order viscoelastic material of a TEH on its energy
harvesting performance. /e influence mechanism of the
system parameters of the TEH on the dynamic responses
and the energy harvesting performance was completely
provided in [24–26].

In recent years, based on the magnetic coupled energy
harvesting structures, Zhou et al. [27, 28] developed mul-
tistable energy harvesters with four or five stable equilibrium
positions, and a better energy harvesting performance over
the BEH was verified. For the real application, Younesian
and Alam [29] designed broadband multistable wave energy
harvesters based on the multistable mechanism, and the
designed harvesters were verified to have high-efficiency
energy harvesting performance. Gao et al. [30] presented a
multistable energy harvester based on the magnetic levita-
tion oscillation, and it has the quadstable configuration. In
the railway test, the RMS power output is 440.98mW, which
is large enough to power some small wireless sensor nodes.
Under harmonic base excitations, the theoretical solutions of
nonlinear vibrational multistable energy harvesters were
provided by Huang et al. [31]. /ese research studies verify
the high-efficiency energy harvesting performance of mul-
tistable energy harvesters in experiments and real envi-
ronmental tests.

In practice, the operation of the piezoelectric system is
highly susceptible to the various random factors from in-
ternal and external environment fluctuation [32–39], for
example, the devices which are manufactured by the pie-
zoelectric ceramic widely used in meteorological observation
and household appliances; the normal operation of these
devices are often influenced by the atmospheric turbulence,
voltage fluctuation, and even other random disturbance.
/us, the nonlinear energy harvesters, especially in sto-
chastic vibratory environments, have become an unavoid-
able topic [34–40]. Xu et al. [34] developed the stochastic
averaging technique for the energy harvester under Gaussian
white noise excitation to evaluate the mean-square electric
voltage and mean output power. /ey also considered the
responses of bistable energy harvester under additive and
multiplicative white noises [35]. Jiang and Chen [36, 37]
analyzed the response of nonlinear energy harvesters subject
to external Gaussian white noise and parametric excitations.
He and Daqaq [38] illustrated the optimal potential shape on
the mean output power through the statistical linearization
techniques. Recently, Liu et al. [39] proposed a new qua-
siconservative stochastic averaging method to discuss the
probabilistic response of the nonlinear energy harvesting
system subjected to correlated Gaussian colored noise.
Zhang and Jin [40] discussed the stationary probability
density and signal-to-noise ratio of a piezoelectric energy

harvester with correlated additive and multiplicative colored
noises. He et al. [41] explored the parameter resonance
mechanism of nanocomposite energy harvesters based on
Galerkin’s method and the perturbation principle of
Poincaré–Lindstedt. /ey found that a functionally graded
reinforcement has a significant influence on the bifurcation
buckling, the postbuckling path, the output voltage, and the
harvested power.

Most previous results studied the energy harvesting
performance of the energy harvesters subjected to stochastic
external excitation by means of the stochastic averaging
technique or the equivalent linearization technique. How-
ever, due to the complexity and the multistable character-
istics, it is difficult to use these techniques to study
multistable energy harvesters under random excitations, and
there is only theoretical, numerical, and experimental in-
vestigation for multistable energy harvesters under de-
terministic excitations by far [27–31]. For optimal vibration
energy harvesting, it is necessary and of importance to
theoretically reveal the response mechanism of multistable
energy harvesters subject to random parametric excitations.

/e novelty of this paper is to theoretically investigate
the resonance mechanism of multistable energy harvesters
under narrow-band stochastic parametric excitations for
improving vibration energy harvesting performance. In
Section 2, the theoretical analysis framework is presented. In
Section 3, based on the method of multiple scales, the largest
Lyapunov exponent which determines the stability of the
trivial solutions is derived. /e first kind modified Bessel
function is utilized to solve the theoretical solutions. In
Section 4, the nontrivial solutions and their stability are
provided. In Section 5, the stochastic bifurcation is analyzed
for revealing the response mechanism of multistable energy
harvesters by using the finite difference method. Main
conclusions are addressed at last.

2. Theoretical Analysis Framework

As introduced above, several different nonlinear vibra-
tional multistable energy harvesters were designed by far.
Taking the piezoelectric pentastable energy harvester as an
example to demonstrate the structure of multistable energy
harvesters, the structural schematic is shown in Figure 1.
/e piezoelectric materials (PZTs) attached at the clamped
end of the cantilever beam are used to convert vibration
energy into usable electric energy, which may supply power
for wireless sensors and small portable electromechanical
devices. Because of the nonlinear magnetic force produced
by the interaction between the tip magnet and external
magnets, the pentastable energy harvester has nine equi-
librium positions. 1, 3, 5, 7, and 9 are stable equilibrium
positions, and intercalary 2, 4, 6, and 8 are unstable
equilibrium positions. Figure 2 describes the equivalent
schematic diagram of the general piezoelectric multistable
energy harvester which is subjected to the base excitation
xb(t). In principle, the harvester may exhibit nonlinear
monostable, bistable, tristable, or other multistable char-
acteristics which mainly depend on the property of the
nonlinear spring.
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For the cantilever beam-based nonlinear energy har-
vesters, the theoretical model can be obtained based on
Euler–Bernoulli beam theory, piezoelectric theory,
Kirchhoff’s law, and experimental identification [17, 42].
Under the stochastic parametric excitation, the mechanical
governing equation and the electrical governing equation of
multistable energy harvester shown in Figures 1 and 2 can be
described as follows [17, 42]:

M €x(t) + C _x(t) + Fr(t) − θ0υ(t) � Fξ(t)x(t), (1)

Cp _υ(t) + υ(t) Rl( 
− 1

+ θ0 _x(t) � 0, (2)

where x(t) is the tip displacement of the harvester relative to
the base. M, C, and Cp are the equivalent mass, the
equivalent damping, and the equivalent capacitance, re-
spectively. Rl and θ0 are the load resistance and the
equivalent electromechanical coupling coefficient, re-
spectively. υ(t) is the output voltage. ξ(t) is the stochastic
excitation, and F is the density of the stochastic excitation
(F> 0). Fr is the equivalent nonlinear restoring force (it
should be noted that its opposite number − Fr is the real
restoring force in physics and experiments), which is the
vector sum of the linear restoring force and the nonlinear
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Figure 2: Equivalent schematic diagram of the general piezoelectric vibrational multistable energy harvester.
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Figure 1: Structural diagram of the piezoelectric vibrational pentastable energy harvester.
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magnetic force. Its general expression can be expressed as a
polynomial, as follows [17, 42]:

Fr � m0 + m1x + m2x
2

+ · · · + mnx
n
, (3)

where m0, m1, m2, . . ., mn are the polynomial coefficients.
For the pentastable energy harvester, Fr � (ω2

0/x
2
1x

2
2x

2
3

x2
4)x(x2 − x2

1)(x2 − x2
2)(x2 − x2

3)(x2 − x2
4), where ω0 can be

considered as a coefficient. It should be noted that x� 0 is the
middle stable equilibrium position of the harvester.

/e stochastic excitation ξ(t) is assumed as an ergodic
narrow-band stochastic process with zero mean. It is
governed by the following equation advanced by Wedig
[43]:

ξ(t) � cos(Ωt + cW(t)), (4)

where Ω is the center frequency, W(t) is the standard
Wiener process, and c is the bandwidth of the stochastic
excitation. /e corresponding power spectrum Sξ(ϖ) can be
written as follows [43]:

Sξ(ϖ) �
1
2

c2 Ω2 + ϖ2 + c4/4( 

Ω2 − ϖ2 + c4/4( 
2

+ ϖ2c4
. (5)

Under the limiting procedure c⟶∞, it results in the
uniformly distributed power spectrum of white noise.
However, when c⟶ 0, the power spectrum Sξ(ϖ) vanishes
in the entire frequency range except at the singular fre-
quency ϖ � ±Ω, where Sξ(ϖ) goes to infinity. /e power
spectrum in equation (5) is same as the power spectral
density of the narrow-band filtered Gaussian white noise. In
this paper, we focus on the case that c is small; thus, ξ(t) is
bound to a narrow-band random process.

/en, for the convenience of the following analysis, the
nondimensional governing equations of equations (1) and
(2) are provided, as follows:

€x(t) + c _x(t) + ω2
x(t) + a1x

3
(t) + a2x

5
(t)

+ a3x
7
(t) + a4x

9
(t) − θυ(t) � fξ(t)x(t),

(6)

_υ(t) + λυ(t) + g _x(t) � 0, (7)

where c � C/M, θ � θ0/M, f � F/M, λ � 1/RlCp, g � θ0/Cp,
ω2 � ω2

0/M, a1 � − (ω2(x2
1x

2
2x

2
3 + x2

1x
2
2x

2
4 + x2

1x
2
3x

2
4 + x2

2x
2
3

x2
4)/x

2
1x

2
2x

2
3x

2
4), a2 � ω2(x2

1x
2
2+ x2

1x
2
3 + x2

1x
2
4 + x2

2x
2
3 + x2

2x
2
4 +

x2
3x

2
4)/x

2
1x

2
2x

2
3x

2
4, and a3 � − (ω2(x2

1 + x2
2 + x2

3 + x2
4)/x

2
1x

2
2

x2
3x

2
4); a4 � ω2/x2

1x
2
2x

2
3x

2
4.

/e method of multiple scales [44] is applied to find the
second-order analytically approximate solutions of equa-
tions (6) and (7). Firstly, the expressions of the solutions can
be expressed as

x(t, ε) � x0 T0, T1(  + εx1 T0, T1(  + · · · , (8)

υ(τ, ε) � υ0 T0, T1(  + ευ1 T0, T1(  + · · · , (9)

whereTn � εnt and ε is a small nondimensional bookkeeping
parameter.

Denoting the differential operators by D0 � z/zT0,
D1 � z/zT1, and D2 � z/zT2 and using the chain rule, the
following equations can be obtained:

z

zt
� D0 + εD1 + ε2D2 + · · · , (10)

z2

zt2
� D

2
0 + 2εD0D1 + ε2 D

2
1 + 2D0D2  + · · · . (11)

To use the method of multiple scales, the system pa-
rameters could be expressed as c � εc, a1 � εa1, a2 � εa2,
a3 � εa3, a4 � εa4, and f � εf. /en, substituting equations
(8)–(11) into equations (6) and (7) and collecting the terms
with the identical powers of ε, we have the following:

ε0:

D
2
0x0 T0, T1(  + ω2

x0 T0, T1(  � 0, (12)

D0υ0 T0, T1(  + λυ0 T0, T1(  � − gD0x0 T0, T1( . (13)

ε1:

D
2
0x1 T0, T1(  + ω2

x1 T0, T1(  � − 2D0D1x0 T0, T1( 

− cD0x0 T0, T1( 

− a1x
3
0 T0, T1( 

− a2x
5
0 T0, T1( 

− a3x
7
0 T0, T1( 

− a4x
9
0 T0, T1( 

+ θυ0 T0, T1( 

+ f cos ΩT0 + cW T1( ( 

· x0 T0, T1( ,

(14)

where the statistical property of the standardWiener process
cW(t) � cW(εt)/

�
ε

√
� cW(T1) is used.

According to equations (12)–(14), the first-order solu-
tions can be written as follows:

x0 T0, T1(  � A T1( cos ωT0 + φ T1( ( ,

(15)

υ0 T0, T1(  � C0 T1( e
− λT0 +

gωA T1( 

λ2 + ω2
λ sin ωT0 + φ T1( ( 

− ω cos ωT0 + φ T1( ( ,

(16)

where A � A(T1) and φ � φ(T1) are the functions of the
slow time scale T1.

Denoting the excitation frequency as Ω � 2ω + εσ (σ is
the detuning parameter), we introduce a new variable
η(T1) � σT1 + cW(T1) − 2φ(T1). Substituting equations
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(15) and (16) into equation (14), the following equation can
be obtained:

D
2
0x1 T0, T1(  + ω2

x1 T0, T1(  � 2ωA′ T1( sin ωT0 + φ(  + 2ωA T1( φ′ cos ωT0 + φ( +

cA T1( ω sin ωT0 + φ(  − a1A
3

T1( cos3 ωT0 + φ(  − a2A
5

T1( cos5 ωT0 + φ( −

a3A
7

T1( cos7 ωT0 + φ(  − a4A
9

T1( cos9 ωT0 + φ( 

+ θ C1 T1( e
− λT0 +

gωA T1( 

λ2 + ω2
λ sin ωT0 + φ(  − ω cos ωT0 + φ(   

+
f

2
A T1( cos η cos ωT0 + φ(  −

f

2
A T1( sin η sin ωT0 + φ( 

+
f

2
A T1( cos η cos 3ωT0 + 3φ(  −

f

2
A T1( sin η sin 3ωT0 + 3φ( .

(17)

Eliminating the secular terms in equation (17), we can derive

A′ T1(  � −
θgλA T1( 

2 λ2 + ω2 
−

c

2
A T1(  +

fA T1( 

4ω
sin η,

(18)

A T1( η′ T1(  � σA T1(  −
θgωA T1( 

λ2 + ω2
−
3a1

4ω
A

3
T1( 

−
5a2

8ω
A

5
T1(  −

35a3

64ω
A
7

T1( 

−
63a4

128ω
A
9

T1(  +
fA T1( 

2ω
cos η

+ cA T1( W′ T1( .

(19)

Equations (18) and (19) are the first-order equations
which govern the amplitude and the phase of the response
displacement and the output voltage of the multistable
energy harvester. /e first-order uniform expansion of the
solutions of equations (6) and (7) is given by

x � 2A(εt) cos
Ω
2

t −
η(εt)
2

  + O(ε). (20)

3. Trivial Solutions and Their Stability

Obviously, equations (18) and (19) have a trivial solution of
A � 0, which corresponds to the steady-state response. Hence,
the trivial steady-state solutions and their stability should be
analyzed firstly. /e induced linearization equations of equa-
tions (18) and (19) at the point (0, 0) can be written as follows:

A′ T1(  � −
θgλA

2 λ2 + ω2 
−

c

2
A +

fA

4ω
sin η, (21)

Aη′ T1(  � σA −
θgωA

λ2 + ω2
+

fA

2ω
cos η + cAW′ T1( . (22)

Let ρ � ln(A), and according to Itô’s formula, equations
(21) and (22) can be written as the following Itô stochastic
differential equations:

dρ � −
θgλ

2 λ2 + ω2 
−

c

2
+

f

4ω
sin η⎛⎝ ⎞⎠dT1, (23)

dη � σ −
θgω

λ2 + ω2
+

f

2ω
cos η dT1 + c dW. (24)

According to equations (23) and (24), the steady-state
probability density p(η) is governed by the following
Fokker–Planck–Kolmogorov (FPK) equation:

d2p
dη2

−
d
dη

[(σ − f cos η)p] � 0, (25)

where σ � 2(σ − (θgω/λ2 + ω2))/c2 and f � − 2f/(2ωc2).
Using both the periodicity condition and the normality

condition [45], the solution of equations (18) and (19) can be
derived, as follows:

p(η) �
exp[σ(η + π) − f sin η]

4π2Iiσ(f)I− iσ(f)

η+2π

η
[exp(− σ(y) + f siny)]dy,

(26)
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where Iiσ(f) and I− iσ(f) are the first kind modified Bessel
functions. η is any real or complex number. According to the
multiplicative ergodic theorem [46], the Lyapunov exponent
of the trivial steady-state solutions of equations (21) and (22)
can be written as follows:

λ0 � lim
T1⟶∞

1
T1

ln
A T1( 

A(0)




� lim

T1⟶∞

1
T1

ρ T1(  − ρ(0)( 

� −
θgλ

2 λ2 + ω2 
−

c

2
+

f

4ω
lim

T1⟶∞

1
T1


T1

0
sin η(θ)dθ

� −
θgλ

2 λ2 + ω2 
−

c

2
+

f

4ω
E[sin η] � −

θgλ
2 λ2 + ω2 

−
c

2
+

f

4ω

· 
2π

0
sin ηp(η)dη

� −
θgλ

2 λ2 + ω2 
−

c

2
+

f

8ω
I1− iσ(− f)

I− iσ(− f)
+

I1+iσ(− f)

Iiσ(− f)
 ,

(27)

where E[·] denotes the mathematical expectation.
Since the response mechanism of nonlinear systems

are very complex [42, 44, 47], in order to verify the
aforementioned theoretical results, the parameters of
equations (6) and (7) are chosen as θ � 0.5, g � 1.0,
λ � 1.0, ω � 1.0, and c � 0.1. Figure 3 shows the variations
of the largest Lyapunov exponent determined by equation
(27). Specifically, Figure 3(a) depicts the three-di-
mensional plot of the largest Lyapunov exponent λ0.
Corresponding isohypse curves of λ0 are shown in
Figure 3(b). Obviously, there exist two different ranges of
the solutions for the largest Lyapunov exponents. Near the
resonance area, the largest Lyapunov exponent increases
to the maximum value in the center of the instability
region. Outside this area, there exists a complete plane
where the Lyapunov exponents are zero. To verify the
results shown in Figure 3, the time-domain results in
Figure 4(a) show that the trivial solution is unstable at
point A (f � 1.5 and σ � 0.5) in Figure 4(b). However, the
results shown in Figure 4(b) indicate a contrary phe-
nomenon that the trivial solution is stable at point B
(f � 0.5 and σ � 0.5).

4. Nontrivial Solutions and Their Stability

In this section, the nontrivial steady-state solutions of
equations (18) and (19) will be derived. To obtain the first-
order and the second-order steady-state moments of the
displacement amplitude, the Itô stochastic differential
equations of equations (18) and (19) can be derived, as follows:

dA � −
θgλA

2 λ2 + ω2 
−

c

2
A +

fA

4ω
sin η⎛⎝ ⎞⎠dT1, (28)

dη � ⎛⎝σ −
θgωA

λ2 + ω2
−
3a1

4
A

2
−
5a2

8
A

4
−
35a3

64
A

6
−
63a4

128
A

8

+
f

2ω
cos η⎞⎠dT1 + c dW.

(29)

For the case of c � 0, the nontrivial steady-state solutions
can be denoted as A � A0 and η � η0. Combining the
conditions of A′ � 0, η′ � 0, and A≠ 0, the following re-
lations can be derived based on equations (28) and (29):

−
θgλ

2 λ2 + ω2 
−

c

2
+

f

4ω
sin η0 � 0, (30)

σ −
θgωA0

λ2 + ω2
−
3a1

4
A

2
0 −

5a2

8
A

4
0 −

35a3

64
A

6
0 −

63a4

128
A

8
0

+
f

2ω
cos η0 � 0.

(31)

When c≠ 0, the stability of the nontrivial steady-state
solutions can be examined by using the perturbation terms,
as follows:

A � A0 + A1, (32)

η � η0 + η1, (33)

where A0 and η0 are determined by equations (30) and (31).
A1 and η1 are the perturbation terms.

Substituting equations (32) and (33) into equations (28)
and (29), neglecting the nonlinear terms, we can obtain the
linearization modulation of equations (28) and (29) at A0
and η0, as follows:

dA1 �
f

4ω
A0 cos η0η1dT1, (34)

dη1 � −
3
2

a1A0 −
5
2

a2A
3
0 −

105
32

a3A
5
0 −

63
16

a4A
7
0 A1dT1

−
f

2ω
sin η0η1dT1 + c dW.

(35)

Since equations (34) and (35) are the linear Itô stochastic
differential equations, the property can be obtained by
combining the moment method [48], as follows:

dEA1

dT1
�
dEη1
dT1

�
dEA2

1
dT1

�
dEη21
dT1

� 0. (36)
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/e first-order and second-order steady-state moments
of the nontrivial steady-state solutions of equations (34) and
(35) can be derived, as follows:

EA1 � Eη1 � 0,

EA1η1 � 0,

Eη21 �
c2ω

f sin η0
,

EA
2
1 �

− σ + θgωA0/λ
2 + ω2  + 3a1/4( A2

0 + 5a2/8( A4
0 + 35a3/64( A6

0 + 63a4/128( A8
0

− (3/2)a1 − (5/2)a2A
2
0 − (105/32)a3A

4
0 − (63/16)a4A

6
0

Eη21
2

.

(37)

Taking the expectation on both sides of equations (32)
and (33), the first-order and second-order steady-state

moments of the nontrivial steady-state solutions of equa-
tions (18) and (19) can be obtained, as follows:

3
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Figure 3: Largest Lyapunov exponents: (a) mesh surface; (b) isohypse curves.
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EA � E A0 + A1(  � A0, (38)

EA
2

� A
2
0 + EA

2
1 � A

2
0 +

− σ + θgωA0/λ
2 + ω2  + 3a1/4( A2

0 + 5a2/8( A4
0 + 35a3/64( A6

0 + 63a4/128( A8
0

− (3/2)a1 − (5/2)a2A
2
0 − (105/32)a3A

4
0 − (63/16)a4A

6
0

·
Eη21
2

. (39)

For the steady-state case, T0 � t⟶∞ is satisfied,
which corresponds the term C0(T1)e

− λT0 in equation (16)
satisfied C0(T1)e

− λT0⟶ 0 with the conditions C0(T1)

bounded and λ> 0; then, the amplitude of the response
voltage could be obtained:

V �
gω

������
λ2 + ω2

 A T1( . (40)

/e first-order and second-order steady-state moments
of the voltage amplitude are

EV �
gω

������
λ2 + ω2

 A0, (41)

EV
2

�
g2ω2

λ2 + ω2
EA

2
. (42)

For the case of x1 � 1.8, x2 � 3.3, x3 � 4.5, and x4 � 5.4,
according to the expressions below equation (7), the cor-
responding nonlinear coefficients are a1 � − 0.4841456090,
a2 � 0.06354506813, a3 � − 0.003049732679, and a4 �

0.00004799705192. Figures 5(a) and 5(b) indicate the first-
order and second-order steady-state moments of the dis-
placement amplitude determined by equations (38) and (39).
/e corresponding steady-state moments of the voltage
amplitude are plotted in Figures 5(c) and 5(d). Due to the
dependence on the steady-state moments of the displace-
ment amplitude in expressions (41) and (42), the similar
phenomenon could be observed in Figures 5(a)–5(d).

It can be found that the steady-state moments change
along with the appearance of the multivalued response
branches, which are induced by the existence of the high-
order nonlinear terms. As a comparison, another case of
a4 � 0.0001 (keeping other parameters being same) is also
shown in Figure 5. /e results showed that the response of
the multistable energy harvester is very sensitive to the high-
order stiffness coefficients a4 which also have a strong in-
fluence on output voltage.

/e steady-state moments of the voltage amplitude are
proportional to the displacement amplitude; thus, in the
following part, only the dynamic properties of the dis-
placement amplitude are given, which also reflects the
characteristics of the corresponding voltage amplitude.

For a different detuning parameter σ, the first-order
steady-state moments with the variation in θ are plotted in
Figure 6. /e detailed response properties are presented in
Table 1. When σ is small (the case of σ � − 1.51 shown in
Figure 6(a)), the response curve is made up of one semicircle,
which is the response property I in Table 1. /e larger value
of σ leads to the other semicircle appearing in the region with
the lower amplitude (the cases of σ � − 1.507 and σ � − 1.5 in
Figure 6(a) and σ � − 1.4 in Figure 6(b)); thus, the response
curve includes two semicircles (response property II). /ey

combine to one continuous curve, and the critical value of σ
is approximate to − 1.3 (response property III). With the
increase in σ, the continuous curve moves to the right side
of the transverse axis (the cases of σ � − 1.1 and σ � − 0.9
shown in Figure 6(b); response property IV). /e threshold
for appearing this kind of phenomenon is σ ≈ − 0.732
(response property V), which means that the existence of
the other two smaller semicircles could be found in the
response curve. /e response curve could also consist of
three branches (the general case of σ � − 0.6 shown in
Figure 6(b); response property VI). Furthermore, the new
two semicircles become larger gradually, and they finally
combine to one continuous curve at σ � − 0.525 (response
property VII). /erefore, the response curve separates into
two independent continuous curves, which can be clearly
observed from the case of σ � − 0.3 shown in Figure 6(c)
(response property VIII).

Along with the increase in σ, it can be observed that the
left continuous curve moves to the right side quickly al-
though the continuous curve on the right side also shifts to
this side. At last, they attach to each other at point H
(σ ≈ − 0.2666) as response property IX shown in Table 1.
Due to the further increase in σ, the curve degenerates the
higher branch and the lower branch (the cases of σ ≈ − 0.2
shown in Figure 6(d); response property X). Increasing σ
leads to the appearance of the new phenomenon, such as in
the case of σ ≈ 0.0 (response property XI). /en, for the
larger σ, the lower branch moves to the origin point and
disappears gradually, as shown in Figure 6(e) (the cases of
σ � 0.1 and σ � 0.3; response property XII). Furthermore,
this phenomenon is observed in the remaining branch, as
shown in Figure 6(e). At the beginning, the response curve is
shown by response property XIII (the case of σ � 0.45).
When σ is increased to 0.4522, the independent branch
degenerates to one continuous curve and one closed circle
(response property XIV). It locates at the bottom of the
curve, which is attached to each other at point K. Naturally,
increasing the value of σ makes the response curve separate
into two parts: the continuous curve and the closed circle
(the cases of σ � 0.455 and σ � 0.458 plotted in Figure 6(e);
response property XV). Due to the increase in σ, the closed
circle becomes smaller and smaller. Finally, the critical case
appears at σ ≈ 0.4582 (response property XVI). Only one
part remains as shown in Figure 6(e) for the case of σ � 0.48
(response property XVII). It can be found that the elec-
tromechanical coupling coefficient θ plays an important role
in the steady-state responses of the multistable energy
harvester.

/e effect of the damping coefficient on the first-order
steady-state moment is shown in Figure 7. It can be found
that the different phenomena also appear along with the
change in the damping coefficient under different detuning
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parameters. When the detuning parameter σ is small, the
response curve is one independent semicircle, as shown in
Figure 7(a) (σ � − 0.7 and σ � − 0.5). /e peak pointO at the
right side turns inward, which is shown in Figure 7(a)
(σ � − 0.35). Furthermore, the lower branch from the
original case with a single solution degenerates to the curve
with two solutions for the case of σ � − 0.268, which is
tangent to the vertical axis at point P. /is part shifts to the
right side of the lateral axis, while the peak value in the
middle of the response curve moves to the left side of the
lateral axis (σ � − 0.2 at point Q). Finally, the peak value in
the middle part attaches with the vertical axis, which appears
at σ � − 0.156 (point R), as shown in Figure 7(b).

/en, the response curve separates into two parts
(σ � 0.1 in Figure 7(b)). /e higher branch turns inward,
while the lower branch moves to the left side gradually, and
the critical value can be found in Figure 7(b) for the case of
σ � 0.355. /erefore, the lower branch finally disappears in
Figure 7(c) for the critical case of σ ≈ 0.356. For σ ≈ 0.473,
the remaining higher branch turns inward to the vertical axis
(tangent to the vertical axis at point S) and the response
curve degenerates into two parts. /e semicircle in the lower

branch becomes smaller and smaller for the case of σ � 0.495
in Figure 7(c). Finally, only the higher branch remains for
the cases of σ � 0.6, σ � 0.8, and σ � 1.5 in Figure 7(c).

As a conclusion, the damping coefficient is found to be
one unavoidable factor to induce the complex dynamic
properties of the multistable energy harvester.

In order to discuss the influence mechanism of sto-
chastic noise, the bifurcation diagrams of the output
voltage of the energy harvester with the variation of the
excitation frequency Ω are plotted in Figure 8 under the
system parameters g � 1.0, λ � 1.0, ω0 � 1.0, θ � 0.5,
c � 0.1, f � 2.0, σ � 0.5, c � 0.1, x1 � 1.8, x2 � 3.3, x3 � 4.5,
and x4 � 5.4. In Figure 8(b), the noise intensity is c � 0.1,
while the deterministic case is plotted in Figure 8(a). As can
be seen that the existence of the stochastic noise has the
obvious influence on the output voltage, the regular bi-
furcation behavior disappears; thus, the random factor
could not be ignored in the energy harvesters. Two typical
examples are shown in Figure 9, and the existence of the
stochastic noise could induce the instability of the output
voltage, which leads to the difference in the spectrum of the
output voltage.
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Figure 5: Steady-state moments of displacement and voltage of the multistable energy harvester with different high-order stiffness co-
efficients (c � 0.1). (a, b) First-order and second-order steady-state moments of the displacement amplitude; (c, d) first-order and second-
order steady-state moments of the voltage amplitude.
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Figure 6: Steady-state moments of the multistable energy harvester under different detuning parameters versus θ.
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Table 1: Response characteristics shown in Figure 6.

Response characteristics θ⟶ EA Interval range of f

I [− 1.512, − 1.507)

II [− 1.507, − 1.3)

III (critical case) σ ≈ − 1.3

IV (− 1.3, − 0.732)

V (critical case) σ ≈ − 0.732

VI (− 0.732, − 0.525)

VII (critical case) σ ≈ − 0.525

VIII (− 0.525, − 0.2666)

IX (critical case) σ ≈ − 0.2666

X (− 0.2666, 0.01)
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Table 1: Continued.

Response characteristics θ⟶ EA Interval range of f

XI [0.01, 0.063)

XII [0.063, 0.387)

XIII [0.387, 0.4522)

XIV (critical case) σ ≈ 0.4522

XV (0.4522, 0.4582)

XVI σ ≈ 0.4582

XVII (0.4582, 401)
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Figure 7: Steady-state moments of the multistable energy harvester under different detuning parameters versus the damping coefficient.
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/en, in Figure 10, with the variation in excitation f, the
bifurcation diagram of the output voltage with c � 0.5,
Ω � 3.0, and other parameters is the same with Figure 8./e

fluctuation of the voltage is obvious in Figure 10(b), and the
existence of the noise results in the change of the bifurcation
characteristics of the energy harvesters. One typical example
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Figure 9: Response of the energy harvester forΩ � 1.8: (a) time-domain output voltage for c � 0.0; (b) spectrum of the time-domain output
voltage for c � 0.0; (c) time-domain output voltage for c � 0.1; (d) spectrum of the time-domain output voltage for c � 0.1.

–6

–4

–2

0

2

4

6

V
ol
ta
ge

0.5 1 1.5 2 2.5 3 3.5 40
Ω

(a)

–6

–4

–2

0

2

4

6

V
ol
ta
ge

0.5 1 1.5 2 2.5 3 3.5 40
Ω

(b)

Figure 8: Bifurcation diagram of the output voltage with the variation in Ω: (a) c � 0.0; (b) c � 0.1.
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is shown in Figure 11, and it can be seen that the
response curve becomes disordered in Figure 11(c),
which is very different from the case without the

existence of noise. /e corresponding spectrum of
output voltage shown in Figures 11(b) and 11(d) also
makes a big difference.
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Figure 10: Bifurcation diagram of the output voltage with the variation in f: (a) c � 0.0; (b) c � 0.1.
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Figure 11: Response of the energy harvester for f � 2.22: (a) time-domain output voltage for c � 0.0; (b) spectrum of the time-domain
output voltage for c � 0.0; (c) time-domain output voltage for c � 0.1; (d) spectrum of the time-domain output voltage for c � 0.1.
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Figure 13: Joint probability of the multistable energy harvester: (a) c � 0.1; (b) c � 0.2; (c) c � 0.3; (d) c � 0.4.
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Figure 14: Potential energy functions: (a) pentastable energy harvester; (b) tristable energy harvester; (c) monostable energy harvester.
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Finally, in order to consider the influence of the
number of potential wells, the restoring force of the tri-
stable and monostable energy harvesters are degraded into
Fr � (ω2

0/x
2
1x

2
2)x(x2 − x2

1)(x2 − x2
2) and Fr � ω2

0x, and the
bifurcation diagrams of the tristable and monostable
energy harvesters are shown in Figure 12, which are
different from the results shown in Figure 8. /e
monostable energy harvesters keep the steady-state be-
havior; thus, the existence of noise does not lead to the
fluctuation of the voltage.

5. Stochastic Bifurcation

For understanding the stochastic bifurcation phenomenon
which is induced by stochastic excitations, the finite dif-
ference method [32] is used in this section. Apparently,
equations (28) and (29) are two-dimensional Itô differ-
ential equations when c≠ 0. /e statistics of the responses
of the multistable energy harvester can be obtained by
solving the following FPK equation of equations (28) and
(29):

zp

zT1
� −

z

zA
u1(A, η)p(  −

z

zη
u2(A, η)p(  +

c2

2
z2

zη2
(p),

(43)

where p(A, η, T1) is the transition probability density.
/e two functions in equation (40) are defined as

follows:

u1(A, η) � −
θgλA

2 λ2 + ω2 
−

c

2
A +

fA

4ω
sin η,

u2(A, η) � σ −
θgωA

λ2 + ω2
−
3a1

4
A

2
−
5a2

8
A

4
−
35a3

64
A

6
−
63a4

128
A

8

+
f

2ω
cos η.

(44)

/e boundary condition is the natural boundary con-
dition, while the initial distribution is assumed to be
Gaussian with a probability density, as follows [49]:
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Figure 15: Contour surfaces: (a, b) pentastable energy harvester; (c, d) tristable energy harvester; (e, f ) monostable energy harvester.
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p(A(0), η(0)) �
1

2πs1s2
exp −

A(0) − μ1( 
2

2s21
−

η(0) − μ2( 
2

2s22
 ,

(45)

where μ1 � (Aup + Abelow)/2, μ2 � (ηup + ηbelow)/2, s1 � 0.1,
and s2 � 0.2.

In the following analysis, the system parameters are set as
θ � 0.5, g � 1.0, λ � 1.0, ω � 1.0, σ � 0.05, c � 0.1, and
f � 0.5. /e values of other nonlinear coefficients are same
with those in Section 4. /e numerical simulation is ob-
tained in a reduced state space [0.0, 2.0] × [− 5.0, 10.0]. It is
verified that the joint probability density can be stationary
when T≥ 15 with the time step size of Δt � 0.01./e integral
time can be defined as T � 20. In addition, the upwind
scheme, which is accurate enough to discrete, is adopted to
deal with the convective term, while the central difference
scheme is applied on the diffusion term. Figure 13 shows a
series of the joint probability densities of the amplitude and
the phase obtained from the FPK equation solved by using
the finite difference method with different bandwidths of c.

It is found that the joint probability density concen-
trates at the nontrivial steady-state solution branch when
c � 0.1, as shown in Figure 13(a). /e joint probability
density apparently jumps downward to the trivial steady-
state solution branch for c � 0.2, as shown in Figure 13(b).
Due to the increase in c, the joint probability density
continues to jump downward to the trivial steady-state
solution branch for c � 0.3 in Figure 13(c) and c � 0.4 in
Figure 13(d). /e results in Figure 13 indicate that, for a
lower noise intensity c, the most probable motion of the
multistable energy harvester is around the higher branch
(nontrivial branch) of the amplitude response curve.
However, the most probable motion of the multistable
energy harvester is around the lower branch (trivial
branch) of the amplitude response curve for a higher noise
intensity c. /erefore, the change in c will induce the
phenomenon of stochastic bifurcation. /e direction of
the jump moves from the higher branch to the lower
branch along with the increase in c.

In order to deeply investigate the probability distribu-
tion, three different energy harvesters are studied and the
corresponding potential energy functions (U(x) � 

x0

− x0
Frdx, where − x0 and x0 are the integral boundaries) are
depicted in Figure 14. In detail, the equivalent nonlinear
restoring forces of the tristable energy harvester and the
monostable energy harvester are Fr � (ω2

0/x
2
1x

2
2)x(x2−

x2
1)(x2 − x2

2) and Fr � ω2
0x, respectively. /e contour sur-

faces for the three different energy harvesters are compared.
It is found that the contour surface of the tristable energy
harvester in Figures 15(c) and 15(d) is very similar to that of
the pentastable energy harvester in Figures 15(a) and 15(b).
For the monostable energy harvester, u2 degenerates into
u2(A, η) � σ − (θgωA/λ2 + ω2) + (f/2ω)cos η, as shown in
Figures 15(e) and 15(f). Its response characteristic is very
different with the other two harvesters. In other words, the
number of stable equilibrium positions leads to variation in
the distribution of the trivial and nontrivial steady-state
solutions. /erefore, the appearance of the stochastic

bifurcation can be partly determined by the number of stable
equilibrium points. /is conclusion can be referred for the
optimization design of energy harvesters for different ex-
ternal excitation conditions.

6. Conclusions

/is paper theoretically investigates the resonance
mechanism of nonlinear vibrational multistable energy
harvesters under narrow-band stochastic parametric ex-
citation. /e largest Lyapunov exponent of the trivial
steady-state solutions of multistable energy harvesters is
deduced to analyze its stability, and the first-order and
second-order steady-state moments of the nontrivial
steady-state solutions are derived. It is found that the
electromechanical coupling coefficient and damping co-
efficient greatly influence the dynamic characteristic of the
steady-state moments. /e stochastic bifurcation phe-
nomenon between the nontrivial trivial steady-state so-
lutions is revealed based on the FPK equation
corresponding to the two-dimensional Itô stochastic
differential equations. According to the numerical sim-
ulation results, the stationary joint probability density
concentrates at the nontrivial steady-state solution branch
when the intensity of the stochastic excitation is small. /e
probability of the trivial steady-state solution becomes
larger along with the increase in the intensity of the
stochastic excitation. In addition, the number of stable
equilibrium points is found to influence the distribution
of the trivial and nontrivial steady-state solutions. /is
influences the appearance of the stochastic bifurcation
phenomenon and further influences the energy harvesting
performance. Overall, the resonance mechanism of
multistable energy harvesters under narrow-band sto-
chastic parametric excitations has been revealed. In the
future, the research framework in this paper can be re-
ferred for the optimization design of nonlinear vibrational
multistable energy harvesters for different external exci-
tation conditions.
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