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Complex systems contain a large number of components, and in some cases, failure of one or more of these components can cause
the entire system to fail. Replacing failed components with other functioning components properly in the original system can be
an attractive way for improving system reliability. This paper proposes a new system reliability optimization model to achieve
optimal component reliability and the ideal component-swapping strategy under a certain set of constraints. Furthermore, the
survival signature is introduced to more efficient calculation of system reliability under various component-swapping cases, and
an artificial bee colony (ABC) algorithm with local search method for component swapping is applied to solve the optimization

problem. Finally, numerical examples are presented to illustrate the optimization process.

1. Introduction

As science and technology continue to progress, the com-
plexity and scale of systems are rapidly increasing. More-
over, to achieve diverse sophisticated functions, these
complex systems must be capable of operating under severe
conditions such as uninterrupted high loads and extreme
temperatures. The high risk and uncertainties associated
with extreme environments can lead to serious accidents
resulting in huge economic losses and threats to human lives
[1-4].

Two fundamental methods are commonly applied for
enhancement of system reliability. The first way is to im-
prove reliability of components (reliability allocation), and
the second way is to provide parallel redundancy compo-
nents (redundancy allocation) [5, 6]. Since effort for im-
provement usually requires resources, system reliability
optimization aims to obtain the optimal component re-
liability level and redundancy level to maximize the system
reliability within a certain amount of resources [7]. Multiple
heuristic algorithms have been proposed to solve such a
nonlinear programming problem, and excellent results are

achieved [8-12]. In addition, other mathematical methods
have also been presented. Caserta and Voss [13] translated
the reliability redundancy allocation problem into a knap-
sack problem solved by the branch and cut algorithm.
Hemmati et al. [14] introduced neural networks in reliability
redundancy allocation. Birnbaum importance and reliability
sensitivity are also applied as reference for system reliability
optimization [15-17]. Besides, some studies have widened
the research subjects of system reliability optimization, in-
cluding phased mission system [18], complex network
system [19, 20], and system with uncertainties [21, 22].

As is clear from the literature, the existing research
studies tend to focus on developing algorithms with high
efficiency and applying them to various systems. However,
the basic model of system reliability optimization is still
limited in fundamental patterns, i.e., reliability and re-
dundancy allocation, which will increase the cost, volume,
and weight of the entire system and do not always yield ideal
results. Component swapping is a new effective strategy for
system reliability enhancement through swap between failed
component and functioning component in a system [23].
This method is attractive since it makes full utilization of the
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existing components in the original system to avoid un-
necessary cost and ponderosity of the entire system.
However, not enough attention is paid on component
swapping in related research and the algorithms for the
optimal swapping strategy are rarely studied. Therefore, in
this paper, a system reliability optimization model based on
component swapping is proposed. Survival signature is
introduced for efficient reliability calculation, and artificial
bee colony algorithm is applied for optimization.

The remainder of the paper is organized as follows:
Section 2 provides a description of the component-swapping
strategy for improving system reliability and introduces the
survival signature for more efficient reliability calculations
under different swapping cases; Section 3 introduces the
component swapping-based system reliability optimization
model and artificial bee colony (ABC) algorithm for opti-
mization; Section 4 presents three numerical cases to il-
lustrate the application of newly proposed reliability
optimization model based on component swapping; Finally,
some conclusions and directions for future work are pre-
sented in Section 5.

2. Swapping between Components in the
Original System

In practical systems, certain components have a higher
degree of importance than others, and failure of these
components can cause the entire system to malfunction [24].
To make systems more resilient to possible breakdowns,
failed components with higher importance can be replaced
with other components in the original system of lower
importance that are still functioning [23]. Consider a system
with three components, as shown in Figure 1. Component 1
and 2 are of the same type, and failure of component 1 will
lead to the failure of the entire system. If component 1 fails
and is replaced by component 2, the system can continue
working.

For the purpose of discussion, the components to be
replaced are called “target components” and the components
to replace target components are called “spare components.”
The following conditions are defined in this paper:

(1) Each target component corresponds to one unique
spare component; that is to say, the maximum
number of swapping sets for n components of same
type is n/2 or (n —1)/2, for n is an even or odd integer

(2) Swapping only occurs when the target component
and the whole system fail

(3) Swapping only occurs between the same type of
components

(4) The time required for component swapping is
ignored

2.1. Efficient Reliability Analysis with Survival Signature under
Component Swapping. For a system with #n components,
the vector x= (xy,%,,...,x,) describes the working
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state of all components where x;=1 or 0 denotes
functioning or failure, respectively, of the ith compo-
nent. Then, the structure function of the system ¢ (x) can
be mapped as an associated state vector x with a value of 1
or 0 denoting functioning or failure of the system, re-
spectively [25].

For example, the structure function of the system pre-
sented in Figure 1 can be expressed as

$00 = x,[1-(1- ) (1-x))]. 1)

Obtaining the structure function of a complex system
with multiple components requires a large amount of cal-
culations [26]. Furthermore, the structure of the system
changes after component swapping, which makes it difficult
to describe the system using the structure function. To
calculate the system reliability more efficiently under various
component swapping cases, truth table and survival sig-
nature are introduced.

The reliability truth table is a matrix describing the
working status of the components and the system itself
using Boolean values [27]. For a system with n compo-
nents, the truth table is a matrix of 2" rows and n columns.
Each row represents a single possible combination of
component statuses, and the entire truth table contains all
possible combinations of component statuses. Each row of
the truth table also has a corresponding indicator with a
value of 0 or 1 representing either the failure or func-
tioning of the whole system based on the statuses of
components. Together, all 2" indicators make up the
indicator vector of the system.

For a system with 3 components, as shown in Figure 1,
the truth table and the indicator vector are presented in
Table 1.

When component swapping is introduced, the new
structure of the system can be expressed by modifying the
truth table of the original system. Since swapping only
occurs when a target component and the whole system have
tailed, rows with a system status indicator value of 1 should
remain unchanged. For the rest of the truth table, all rows
with the target component value of 0 and the spare com-
ponent value of 1 are found, and the values of 0 and 1 in each
row are swapped. If the system can function after the rows
are modified, the corresponding indicator changes from 0 to
1. Thus, the modified truth table and indicator vector can
clearly describe the structure of the system after introducing
component swapping. For example, to describe the swap-
ping case where component 2 replaces component 1 in the
system presented in Figure 1, transformation of the truth
table is illustrated in Figure 2.

After the truth table and indicator vector are obtained,
the reliability of the system can be calculated using the
survival signature, which is an effective tool for the re-
liability analysis of complex systems with multiple com-
ponent types. The survival signature represents the
conditional probability that a system can maintain normal
operation while a certain number of components in the
system are functioning normally [28, 29]. For a system
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FIGURE 1: Schematic illustration of component swapping. (a) Before the swapping. (b) After the swapping.

TaBLE 1: Reliability truth table of the system with 3 components.

Component 1 Component 2 Component 3 System
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
1 2 3 sys 1 2 3 sys 1 2 3 sys
0 0 0 O 0 0 0 0 0 0 0 O
Areas Update
0 0 1 0| peed O O 1 O thesystemO 0 1 0
0 1 o o|modifying; o o o ndicatory 5o,
P vector
01 1 0 Lo 1 o 1o
1 0 0 O 1 0 0 O 1 0 0 O
1 0 1 1 1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1

FiGure 2: Transformation of the truth table.

containing K different types of components, the survival
signature can be calculated as

-1

K
Q(ZI’ZZ""’IK):ll—I(Tk)] XY ¢(x), (2
k=1 k x€S;

where [,,1,,...,lx are the number of functioning compo-
nents of each type, m is the total number of components of
type k, ¢ (x) is the structural function of the system, and s;
denotes the set of all possible combinations of functioning
components of each type, given the number of functioning
components of each type I,,1,,...,Ig. Since the truth table
and indicator vector are already known for the system with
component swapping, ) ¢(x) can be easily obtained by
searching the matrix.

For the system shown in Figure 1, the survival signatures
of the original system, ®(/;, ), and the system with com-
ponent 1 swapped with component 2, ®(l;, L), are pre-
sented in Table 2.

TaBLE 2: Survival signature of the system with and without
swapping.

L L o, b) (L, b)
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1/2 1
2 0 1 1
2 1 1 1

The survival signature is essentially the conditional
probability of system reliability; thus, the full probability
equation can be used to derive the reliability of the system at
a certain moment. Letting C* denote the number of func-
tioning components of type k at time ¢, the probability of the
system functioning at time f can be calculated as follows [28]:

m, mg K
Ry(H) = P(Ty>1)= 3 .. Z[@(ll,zz,--.,lK)]_[p(cf=zk) .
[=0 =0 k=1

(3)

By using the cumulative distribution function (CDF) of
type k components, denoted by F (t), the above equation
can be further derived into the following form:

my my K
Rg()=) - ) [@(ll,lz,...,ZK)H
k=1

=0  I=0

' ( mk >Fk(t)’”k‘lk [1-F0)]"].

Iy

(4)

2.2. Influence of Different Swapping Strategies on System
Reliability. A bridge system consisting of 7 components of 2
types is presented in Figure 3 to illustrate all possible
swapping cases. Letting [a;-by, ..., a,-b,] denote a certain
swapping case in which target component b; is replaced with
spare component a;(1 <i <n), all possible swapping cases for
each type of component are listed in Tables 3 and 4.

As shown in Tables 3 and 4, the total number of
swapping cases for type 1 and type 2 components is 25 and 7,
respectively. Thus, the number of swapping cases for the
whole system is 25x7=175.
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FI1GURE 3: Bridge system with 7 components of 2 types.

TasLE 3: All possible swapping cases for type 1 component.

Number of swaps

Swapping cases

Number of cases

0 [-] 1
1 [1—2], [1_5]) [1_7]r [Z_S]a [ ]> [5 ] 12
(2-1], [5-1], [7-1], [5-2], [7- ], (7-5]
[1-2,5-7], [1-7,5-2], [1-5, 2-7], [2-1, 5-7], [7-1, 5-2],
2 [5-1,2-7], [1-2,7-5], [1-7,2-5], [1-5, 7-2], [2-1, 7-5], 12
[7-1, 2-5], [5-1, 7-2]

TaBLE 4: All possible swapping cases for type 2 component.

Number of swapping

Swapping case

Number of cases

0

1 [3-4], [3-6], [4-6], [4-3], [6-3], [6-4],

(-] 1

6

To illustrate the influence of different swapping strategies
on system reliability, four cases are considered and
discussed:

Case 1. Component 2 replaces component 1 in type 1.
Case 2. Component 2 replaces component 5 in type 1.

Case 3. Component 2 replaces component 1 in type 1 and
component 3 replaces component 4 in type 2.

Case 4. Component 2 replaces component 1 in type 1 and
component 4 replaces component 3 in type 2.

Truth tables and indicator vectors for the original bridge
system under four different swapping cases can be applied
according to Section 2.1. The survival signature of the
original system, ®(l;, I,), and the survival signature of the
system under four different swapping cases, @;(/y, 1), (11,
L), @51}, 1), and D4(I;, ), were calculated by equation (2),
and the results are presented in Table 5. Rows with ®(/y,
L) =®,_5(I;, L) = 0 are omitted since these data do not affect
the calculations.

The CDFs of each type of component in Figure 3 can be
expressed as follows:

Fi(t)=1- e

/4)* (%)
Fi(t)=1-¢".
Reliability curves of the original system and the system
under four swapping cases were derived and are shown in
Figure 4.

TABLE 5: Survival signature of the system under different swapping
strategies.

h b O, b) Ohb) Pl b)) Ps(h, b) Pully, b)
2 2 118 1/9 1/18 1/18 2/9

2 3 1/6 1/3 1/6 1/3 1/3
32 1/3 1/2 5/12 5/12 2/3
303 1/2 3/4 1/2 3/4 3/4

4 0 1 1 1 1 1

4 1 1 1 1 1 1

4 2 1 1 1 1 1

4 3 1 1 1 1 1

As shown in Figure 4, component swapping consider-
ably improves the reliability of the entire system, and a clear
gap between improvements can be observed among the
different swapping strategies. It is worth noting that more
components were swapped in Case 3 compared to Case 1.
However, a smaller improvement in reliability was observed
for Case 3 because swapped components can affect other
components, leading to disconnection of some pathways in
some cases. For example, if components 1, 4, and 5 all fail at
the same time, the system will not work properly and all of
the failed components will need to be replaced (Figure 5).

The system structure after separately implementing
swapping strategies 1 and 3 is shown in Figures 6 and 7,
respectively.

In Case 1, failed component 1 is replaced by component
2 and a connected path [2 3 6 7] is created, which allows the
system to continue operating normally. However, in Case 3,
component 4 is also replaced by component 3 in addition to
swapping components 1 and 2 and no connected path is
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FIGURE 4: Reliability curves of the system under four different
component-swapping cases.

FIGURE 7: System structure after implementing swapping
strategy 3.

created. Thus, the system cannot continue to function
properly.

This can be explained by the Birnbaum importance [30].
The Birnbaum importance of a component can reflect the
impact of component status on system reliability, which can
be measured by

ORg (1)
BI, = R(0) h(1;,R(t)) - h(0;R(1)), (6)
where R; is the reliability of ith component at time t and h(1;,
R(1t)) and h(0;, R(t)) represent the reliability of the system
with ith component that is working and failed, respectively.
The importance curves of component 3 and component 4 in
the bridge system obtained by equation (6) are shown in
Figure 8.

As can be seen above, the importance of component 3 is
always higher than that of component 4 during the working
period, which means replacing component 4 with compo-
nent 3 is not an effective strategy to improve system
reliability.

With the increase in scale and complexity of the system,
it becomes more complicated to determine the effective
swapping strategy based on component importance.
Therefore, a swapping-based system reliability optimization
model is built and a heuristic algorithm is applied to achieve
the optimal swapping strategy.

3. Component Swapping-Based System
Reliability Optimization

Section 2 shows large variation in system reliability im-
provement depending on the component-swapping case
selected. For complex systems with a large number of
components, more feasible swapping strategies are available
to choose from; therefore, new optimization approaches for
these problems are necessary. In practice, many factors
inevitably restrict swapping of components; thus, compo-
nent swapping should be considered an optional way to
improve system reliability under various constraints, instead
of component redundancy. A new reliability optimization
model can be constructed that searches for the optimal
component reliability as well as the best component-
swapping strategy to maximize reliability of the system
under certain constraints, such as cost, weight, and volume.

3.1. Establishment of Swapping-Based Reliability Optimiza-
tion Model. Consider a system comprised of K different
types of components with m; components of type
k(1<k<K). Components of the same type share the same
reliability, and swapping can only occur between the same
component type. For ease of programming, the swapping
strategy for components of type k can be expressed by matrix
h;. with n rows and 2 columns:
X1 N
X
ho=| 277, 7)

xnk ynk

where x represents spare components of type k, y represents
target components of type k, and ny represents the number
of component-swapping set in type k, which should not
exceed m, /2 since each target component corresponds to
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FiGure 8: Importance of component 3 and component 4.

only one unique spare component. It should be noted that
matrices can only describe swapping of a single component
type; therefore, exchanging rows within the matrix will have
no effect on the calculations. Moreover, if no type k com-
ponent is swapped, hy is an empty matrix.

Taking the bridge system presented in Figure 3 as an
example, for type 1, component 2 replaces component 1 and
component 5 replaces component 7 and for type 2, com-
ponent 4 replaces component 3. Then, the swapping strategy
can be expressed using the following matrices:

R
1_[5 7]’ (8)
h,=[4 3].

The survival signature of the system for a certain
swapping case @, , , can be obtained from equation (2),
and under a certain component reliability and certain
swapping strategy, the system reliability can be expressed by
equation (4). Therefore, the swapping-based system re-
liability optimization problem can be seen as a nonlinear
mixed-integer programming problem for determining the
optimal component reliability of each component type and
the best component-swapping matrix for each. The math-
ematical model can be defined as follows:

m; my
maximum R (r,h) =) - ) [@hl,hz ,,,,, n (Lo lys 1)
L=0  Ix=0

Ko —_—
JIre(=r)™ |
k=1

g, (r,h) = V(r,h) -V <0,

g, (r,h) = C4(r,h) - C <0,

g5 (r,h) = W (r,h) - W <0,

subject to

)
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wherer = [r|,7,,...,7x]" is a variable vector containing the
reliability of components in each type, h = {h;, h,, ..., hi}is
a collection containing K matrices representing the swap-
ping strategy for components in each type, and V(-), C, (-),
and W (-) are the total volume, cost, and weight, re-
spectively, as a function of the component reliability and
swapping case.

Obviously, component swapping does not directly
increase the weight and volume of the system. However,
the movement of spare components to the target com-
ponent position will undoubtedly bring some in-
convenience to the process of swapping considering the
weight and volume of the components. In order to reflect
the limitation of the weight and volume of components
on the number of swapping in the optimization model,
the constraint functions V (-)and W (-) are defined as
follows:

M=

Vs (r,h) = (vknz + vkmk),
k=1 (10)

=

Wy (r,h) = Z(wkni + wkmk),
k=1

where #;, is the number of swapping sets in type k com-
ponents, i.e., the number of rows of matrix h;; wy and v, are
the weight and volume factors of type k components; the
additional terms in the constraint functions, w,m; and v my,
represent the volume and weight of the original components
in the system. The cost function C () increases with
component reliability and the number of swapping sets in
the system and can be expressed as follows [7]:

Cs(r,h) = iak(—ln(j;k)fk[mk + +exp<%>], (11)

k=1

where « and f are known constants representing the scaling
factor and the shaping factor of the component, respectively,
and T is the mission time during which the system must
function normally.

3.2. Penalty Guided Artificial Bee Colony Algorithm. Once a
system reliability optimization model is established, the
optimal solution can be quickly obtained through in-
telligent algorithms. In this paper, the artificial bee colony
(ABC) algorithm is used [31, 32]. The ABC algorithm
based on the forging behavior of honey bees can search
over both feasible and infeasible space to find the best
solution; thus, the optimal swapping strategy can be
obtained from finite possible strategies after multiple
iterations.

For the ABC algorithm to be capable of solving the
constrained optimization problem, it is necessary to
process constraints in the optimization problem and add
them to the objective function as a penalty factor. The
penalized optimization objective function can be
expressed as [32]
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_R,

S

P
-R, <min {

where Rg is the system reliability obtained by using (9) and y
is a positive amplification constant. A flowchart of the al-
gorithm is presented in Figure 9. The main processes for
solving the swapping-based reliability optimization problem
using the ABC algorithm are as follows.

\%4 C w
Vs (r,h)] > [CS (r,h)]’ [Ws(r,h

(1) Setting Parameters of the Algorithm

The maximum cycle number of the algorithm M,
population of solutions N, and limit update number
L are set.

(2) Solution Initialization
The initial population is formed by randomly gen-

erating N solutions. Reliability of components of type
k can be generated as follows [32]:

T} = T'min + rand [0, 1] (r (13)

max rmin)’

where 7. and r,;, represent the upper and lower
bounds of reliability, respectively.

The swapping matrices of the system are generated by
stochastic extraction and random arrangement. First, a
random integer n; is generated to determine the
number of component pairs participating in swapping
of type k:

randi[O,%],
2
ny = (14)
-1

], if my is odd.

if my, is even,

randi [0, M

Then, 2n; elements are randomly selected from the
set of type k components and randomly arranged to
form matrix hy. The process can be realized using the
randperm function in MATLAB.

(3) Fitness Evaluation for Each Solution

To describe the degree of excellence of each solution,
a fitness value is calculated using the following
equation:

fi,=4 (15)

Ry + 1, R,<0,

where R, is the optimization result of the ith solution
calculated by equation (12).
(4) Local Search and Generating New Solutions

Let X; = {ri1»...»7ix> 15 .. hix} be the ith solution
in the whole swarm population. To generate a new
candidate solution X} nearby X, a variable index

it g, (r,h) <0, g, (r,h) <0, g5 (r,h) <0,

(12)
otherwise,

z(1<z<2K) is generated and solution X; = {r;,,...,
rixohin . hig) (i# ) is randomly selected. Except
for the zth variable, the rest of the newly generated
solution is the same as the original solution X.

If z <K, the variable to be modified is the reliability of
type z components, which can be generated as follows
[32]:

TESW = ri,z + ¢(ri,z - rj,z)’ (16)

where ¢ is a random parameter between 1 and —1; thus,
the new solution will be

X" = {ri,l, T Ty ,hi)K}. (17)
If K<z<2K, the variable to be modified is the
swapping matrix for components of type z-K which can
be generated as follows:

new azl><2
hi "k = [b ] (18)

Z,X2

where a is a matrix of z; rows and 2 columns, consisting
of rows of the same content between matrix h; , ;- and
h;, k. For example, if h;,_g is [1 42 5; 9 3; 6 7] and
hj,z—K is [9 3,68, 14], then a can be formed as [9 3, 1 4].
In addition, a matrix b with z, rows and 2 columns can
be randomly generated using the method described in
step 1: removing all elements of matrix a from com-
ponents of type z-K, then randomly selecting 2z, ele-
ments from the remainder, and randomly arranging
them to form rest of the matrix, where z, is a random
integer index, generated as follows:

m,_g

randi[O, -2z, ], if m,_y iseven,
2y = (19)
-1
randi[O, mz_;(

- 2z1], if m,_ isodd.

Thus, the new solution is

new new
X ={ri e hn SRS (20)

i

Then, the solutions are substituted into the objec-
tive function to calculate the fitness using equation
(15). If the newly generated solution is better than
the original one, the original is replaced with
the new one; otherwise, the original solution is
retained.

(5) Assign Onlooker Bees

Evaluate the whole swarm population and accept the
solution with probability calculated as follows [32]:
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Evaluate the fitness of newly generated solution via equation
(19), apply greedy selection between the original and the new

4
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A

Abandon the solution cannot be improved and replace it with
a newly randomly generated solution

Cycle < M

FiGure 9: Flowchart of optimization algorithm.

P, ==
by fit,

where fit is the fitness value of the solution reflecting
the superiority of solution vector and N is the total
number of solutions of the whole swarm; moreover,
the better the solution, the more likely it will be

accepted.

fit;

1

(6) Determine the Abandoned Solution

If a solution is not accepted after L cycles of update,
the solution is abandoned and replaced with a new

solution randomly generated using Step 1.

(21)

Complexity
(7) Repeat the Aforementioned Steps for M Iterations

4. Numerical Examples

A swapping-based system reliability optimization model was
established for two complex systems, and the ABC algorithm
was applied to determine the optimal component reliability
and best swapping strategy. Multiple calculations were
carried out for each example to verify the stability of the
algorithm.

Example 1. A system consisting of 9 components of 2 types
is shown in Figure 10. Components 1, 2, 3, 5, and 8 are type
1, and components 4, 6, 7, and 9 are type 2. Parameters used
in the model are listed in Table 6. Assuming the failure time
of components in the system obeys an exponential distri-
bution, and failure rates of each component, type 1 and type
2, at time T are 0.05 and 0.07, respectively.

The swapping-based reliability optimization mathe-
matical model can be defined as follows:

i 5 2
maximum R, (r,h) = Z z |:q)h1,hz (1,1,) Hrﬁf (1- rk)mk_lk],
k=1

1,=01,=0

2
subjectto g, (r,h) = Z(vkni + vkmk) -V <o,
k=1

g,(r,h) = i txk(fﬁyﬁ [mk + 1y + exp(%)] -C<o,

g;(r,h) = Z(wkni + wkmk) -W<o.
k=1

(22)

The maximum cycle number was set to 2000, the pop-
ulation of solutions was set to 50, and the limit update
number was set to 100. Then, optimization was performed
by applying the penalty guided ABC algorithm. The optimal
component reliability and swapping strategy are shown in
Table 7.

After multiple calculations, the optimal reliability at time
t="T was 0.90847271 and 0.86742572 for type 1 and type 2
components, respectively. The optimal swapping strategy for
the system is as follows: component 8 is set to replace
component 5 in type 1; component 7 is set to replace
component 4 and component 9 is set to replace component 6
in type 2.

The survival signature of the original system, ®(l;, L),
and the survival signature under the optimal swapping
strategy, @y(l;, ), were calculated using equation (2), and
the results are presented in Table 8. Rows with ([,
L) =@, ) =0 are omitted since these data have no effect
on the calculations.

Birnbaum importance of components is listed in Table 9
to examine the effectiveness of the swapping strategy. As can
be seen from Table 9, the importance of target components is
higher than that of spare components in each type, which
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FIGURE 10: System with 9 components of 2 types.
TABLE 6: Parameters used in optimization (Example 1).
Type . B Vi \%4 C w T
1 2x107° 1.5 6 160 200 160 1000
2 1x107° L5 8
TaBLE 7: Optimal component reliability and swapping strategy (Example 1).
No. 1 No. 2 No. 3 No. 4 No. 5
Rg 0.95922268 0.95922749 0.95923230 0.95923213 0.95922510
r 0.90873718 0.90863069 0.90847271 0.90836202 0.90841362
ry 0.86609207 0.86663327 0.86742572 0.86796996 0.86766398
hy [8 5] [8 5] [8 5] [8 5] [8 5]
hy [7 4; 9 6] [7 4; 9 6] [7 4; 9 6] [7 4; 9 6] [7 4; 9 6]
Slack (g1) 30 30 30 30 30
Slack (g2) 0.0173 0.0120 0.0111 -0.0028 0.0290
Slack (g3) 29 29 29 29 29
TaBLE 8: Survival signature of the system under optimal swapping TaBLE 9: Importance of components in Example 1.
strategy.
Number Importance
L L O, b) y(ly, L) 1 0.2261
3 2 1/20 2/5 2 0.2261
3 3 9/40 3/5 3 0.2261
3 4 3/10 3/5 4 0.2020
4 1 1/20 1/5 5 0.9284
4 2 1/3 5/6 6 0.1230
4 3 13/20 1 7 0.1126
4 4 4/5 1 8 0.0131
5 1 1/2 3/4 9 0.0090
5 2 5/6 1
5 3 1 1
5 4 1 1 The reliability curves show that the component swap-

means that the current swapping strategy is effective in
reliability improving.

Since the component failure time obeys an exponential
distribution and the component reliability at time T is al-
ready known, we can obtain the reliability of the system at
time t € [0,1000] before and after the optimization using
equation (4). Reliability curves are shown in Figure 11, and a
comparison of the system and component parameters before
and after the optimization is presented in Table 10.

ping-based reliability optimization can considerably im-
prove system reliability. Furthermore, the system can still
achieve high reliability levels even if the component re-
liability is lower after the swapping-based optimization, as
seen from Table 10, which can reduce unnecessary costs.

Example 2. A system consisting of 16 components of 3 types
is shown in Figure 12. Components 1, 4, 7, 10, 12, and 15 are
type 1, components 3, 8, 11, and 16 are type 2, and com-
ponents 2, 5, 6, 9, 13, and 14 are type 3. Parameters of the
model are listed in Table 11. Similar to Example 1, failure
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FIGURE 11: System reliability curves (Example 1).

TaBLE 10: Comparison of system and component parameters before and after optimization.

0 100 200 300 400 500 600 700 800 900 1000
Time

Complexity

System reliability Component reliability Component swapping Cost
0.92932008 r1 =0.950
(t=T) 2=0.930 None 369
0.95923230 r1 =0.908 [8 5] 200
(t=T) r2=0.867 [7 4; 9 6]
Type 1
Type 1 Type 2 7 Type 3
A T A [ ] 13
8 Type 2 -
Type 2 ype 2
| Type3| 6 Typel | 10 11 12 |Type 1 16 |
Type 1
Type 3 4 _| Type 3 Type 1
L] 2 9 14 — 15
{ s M

Type 3

Type 3

FIGURE 12: System with 16 components of 3 types.

times of the components in the system are assumed to obey
an exponential distribution, and failure rates of each
component, type 1, type 2, and type 3, at time Tare 0.06, 0.03,
and 0.02, respectively.

The replacement-based reliability optimization mathe-
matical model for Example 2 can be described as follows:

TaBLE 11: Parameters used in optimization (Example 2).

Type . Bk Vi wg w T
1 2x10° 15 6 7 350 1000
2 1x10° 15 8 8

3 1x10° 15 7 8




Complexity 11
TaBLE 12: Optimal component reliability and swapping strategy (Example 2).

Component no. 1 2 3 4 5

Rs 0.99201627 0.99218370 0.99218370 0.99208033 0.99218370
r 0.81578079 0.82219070 0.82219070 0.81904807 0.82219070
1 0.93593029 0.93655845 0.93655845 0.93462883 0.93655845
r3 0.91029170 0.90963046 0.90963046 0.91438079 0.90963046
hy [10 1; 12 7] [10 1; 12 7] [10 1; 12 7] [10 1; 12 7] [10 1; 12 7]
h, [11 165 8 3] [11 165 8 3] [11 16; 8 3] [11 16; 8 3] [11 165 8 3]
hy [6 13; 14 2] [513; 14 2] [513; 14 2] [513; 6 2] [513; 14 2]
Slack (g1) 32 32 32 32 32
Slack (g2) 5.7331 0.7416 0.7416 0.0363 0.7416
Slack (g3) 66 66 66 66 66

TaBLE 13: Importance of components in Example 2.

Number Importance
1 0.0960
2 0.2058
3 0.0843
4 0.0172
5 0.0338
6 0.0177
7 0.0054
8 0.0152
9 0.0269
10 0.0001
11 0.0004
12 0.0001
13 0.2299
14 0.0677
15 0.0749
16 0.9509
1 ———
0.995 Tl
0.99
2
E 0.985
e
§ 098
c%
0.975
0.97
0.965 S
0 100 200 300 400 500 600 700 800 900 1000
Time
Rsys
-~ R

FIGURE 13: System reliability curves (Example 2).

TaBLE 14: Comparison of parameters before and after optimization
(Example 2).

System Component Component
o Ly . Cost
reliability reliability swapping
r1=0.940
(()t9_6§,§ 9353 r2=0.970 None 463
B r3=0.980
r1 =0.822 [10 15 12 7]
(()1;9_9%8370 r2=0.937 [11 16; 8 3] 319
- 3=0.910 [513; 14 2]

6 4 6 3
maximum R, (rh) =) ) 3 [q’hl,hz,hg (ol ) [k - rk)mkflk],
k=1

1,20 1,0 [,=0

3

g,(r,h) = Z(vkni + vkmk) -V<0,
k=1

subject to

g,(r,h) = Zslock<—lnz;k)>ﬁA [mk +ny + exp(%)] -Cx<0,

k=1

3
g;(r,h) = Z(wknz + wkmk) -W<0.
k=1

(23)

The maximum number of cycles of the algorithm was set
to 4000, the population of solutions was set to 50, and the
limit update number was set to 100. Then, the optimization
was performed by applying the penalty guided ABC algo-
rithm. Results for the optimal component reliability and
swapping strategy are presented in Table 12.

After multiple calculations, the optimal reliabilities of
each type of component at time t=T were 0.82219070,
0.93655845, and 0.90963046. The optimal swapping
strategy for the system is as follows: component 10 is set
to replace component 1 and component 12 is set to replace
component 7 in type 1; component 11 is set to replace
component 16 and component 8 is set to replace com-
ponent 3 in type 2; component 5 is set to replace
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FIGURE 14: Network system with 10 edges and 17 vertices.
TaBLE 15: Parameters used in optimization (Example 3).
Type o B Vi wy \% C w T
1 1.5x107° L5 5 3 350 250 300 1000
2x107° 1.5 7 4
3 1x10°° L5 7 6
TaBLE 16: Optimal component reliability and swapping strategy (Example 3).

Component no. 1 2 3 4 5
Rg 0.99975193 0.99974988 0.99975193 0.99975193 0.99975193
r 0.89355334 0.89355334 0.89355334 0.89355334 0.89355334
23 0.80957855 0.80731652 0.80957855 0.80957855 0.80957855
r3 0.91690166 0.91690166 0.91690166 0.91690166 0.91690166
hy [43;6752] [43;67;52] (43675 2] [43;67;52] (43,675 2]
hy [10 11] (10 11] (10 11] [10 11] [10 11]
hy [12 16; 8 15] [12 16; 8 15] [12 16; 8 15] [12 16; 8 15] [12 16; 8 15]
Slack (gl) 7 7 7 7 7
Slack (g2) 0.0005 0.8005 0.0005 0.0005 0.0005
Slack (g3) 4 4 4 4 4

TaBLE 17: Importance of components in Example 3. component 13 and component 14 is set to replace com-

onent 2 in type 3. Importance of components is listed in

Numb Import P . :

oo mporance Table 13 which shows that importance of target compo-
! 0.0161 nents is higher than that of spare components in each type.
2 0.0174 . 1a1s .
3 0.0210 Reliability curves of the system before and after the opti-
4 0.0015 mization are shown in Figure 13. A comparison of the
5 0.0049 system and component parameters before and after the
6 0.0061 optimization is presented in Table 14.

7 0.0074

8 0.0092 . . .
9 0.0056 Example 3. An enterprise core directed network system is
10 0.0010 shown in Figure 14. The condition for the system to remain
11 0.0043 functioning is that the source and sink vertices are connected
12 0.0012 by at least one path. It is assumed that all vertices are reliable,
13 0.0027 and the edges are of three types. Type 1 consists of el, €2, e3,
14 0.0039 e4, e5, e6, and e7 with failure rate 0.08 at time T; type 2
15 0.0148 consists of e10, el1, e13, and e14 with failure rate 0.07 at time
16 0.0181 T; type 3 consists of €8, €9, e12, 15, e16, and e17 with failure
17 0.0129

rate 0.05 at time T. The failure times of the edges are all
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FIGURE 15: System reliability curves (Example 3).

TasLE 18: Comparison of parameters before and after optimization
(Example 3).

System Component Component Cost

reliability reliability swapping

0.99896407 r1=0.920

(t=T) r2=0.930 None 312
r3=0.950

0.99975193 r1 =0.893 [43;67;52]

(t=T) 72 =0.809 [10 11] 250
r3=0.916 [12 16; 8 15]

assumed to obey exponential distribution. Parameters used
in the model are listed in Table 15.

The replacement-based reliability optimization mathe-
matical model for Example 3 can be described as follows:

4 6 3
Z z |:(Dh,,hz,h3 (1) H réck (1- rk)mk_lk]’
01,=01,=0

k=1

~

maximum R, (r,h) =
L

3
subjectto g, (r,h) = Z(Vk”k3 + vkmk) -V <o,

g, (r,h) = 23: ak<_ln{rk)>ﬁk [mk + 1y + exp(%)] -C<0,

3
g3 (r,h) = Z(“’k”li + wkmk) -Ww<o.
k=1

(24)

The maximum number of cycles of the algorithm was set
to 5000, the population of solutions was set to 50, and the
limit update number was set to 100. Then, the optimization
was performed by applying the penalty guided ABC algo-
rithm. Results for the optimal component reliability and
swapping strategy are presented in Table 16.

13

After multiple calculations, the optimal reliabilities of
each type of component at time =T were 0.89355334,
0.80957855, and 0.91690166. The optimal swapping strategy
for the system is as follows: component 4 is set to replace
component 3, component 6 is set to replace component 7,
and component 5 is set to replace component 2 in type 1;
component 10 is set to replace component 11 in type 2;
component 12 is set to replace component 16 and com-
ponent 8 is set to replace component 15 in type 3. Im-
portance of components (edges) is listed in Table 17 which
shows that importance of target components is higher than
that of spare components in each type. Reliability curves of
the network system before and after the optimization are
shown in Figure 15. A comparison of the system and
component parameters before and after the optimization is
presented in Table 18.

5. Conclusions

In this paper, a new system reliability optimization model
based on component swapping is proposed to achieve the
optimal component reliability and to determine the best
swapping strategy for each type of component. The analysis
was performed under certain constraint functions for volume,
weight, and cost. The survival signature and truth table are
introduced into the system reliability calculations, by which
the structure of the system can be expressed as a matrix, and
the system reliability under different swapping strategies can
be calculated more efficiently using matrix operations.

The artificial bee colony algorithm is applied to solve this
type of optimization problem. The solution initialization and
local search of the original ABC are modified using matrix
operations for component swapping. Three swapping-based
system reliability optimization examples are established, and
optimizations were performed using the ABC algorithm. The
results show that the component swapping-based optimization
can effectively improve system reliability within limited costs.

It should be noted that the component-swapping
strategy discussed in this paper is limited to a one-to-one
component pattern, whereas in practice, swapping strategies
can be more flexible. For example, more than one com-
ponent could potentially be used to replace an important
component if necessary, making the system more robust.
The component swapping proposed in this paper is time-
consuming which would be impossible to achieve in prac-
tice. The time required for swapping operations can be
viewed as a factor affecting the system reliability and op-
timization costs and will therefore be considered in future
work. Furthermore, the proposed swapping-based optimi-
zation could be combined with redundancy allocation to
form a new system reliability optimization model for de-
termining the optimal redundancy level and component-
swapping strategy.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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