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Input and state constraints widely exist in chemical processes. e optimal control of chemical processes under the coexistence of
inequality constraints on input and state is challenging, especially when the process model is only partially known.e objective of
this paper is to design an applicable optimal control for chemical processes with known model structure and unknown model
parameters. To eliminate the barriers caused by the hybrid constraints and unknown model parameters, the inequality state
constraints are �rst transformed into equality state constraints by using the slack function method. en, adaptive dynamic
programming (ADP) with nonquadratic performance integrand is adopted to handle the augmented system with input con-
straints. e proposed approach requires only partial knowledge of the system, i.e., the model structure. e value information of
the model parameters is not required. e feasibility and performance of the proposed approach are tested using two nonlinear
cases including a continuous stirred-tank reactor (CSTR) example.

1. Introduction

Constraints on input and state commonly exist in chemical
processes due to �nite capability of the actuators [1], safety
limits [2], requirements on product quality, and environ-
mental regulations [3]. For example, in practice, it is re-
quired to keep the outlet species concentrations of a
chemical reactor in reasonable and stable ranges. In addi-
tion, the value of manipulated variables is constrained in a
certain range de�ned by the operating instructions.
erefore, the ability to handle constraints is an essential
concern in the control design and synthesis of real chemical
processes [4, 5].

e study of constrained optimal control has undergone
di�erent stages and can be classi�ed into di�erent categories,
e.g., problem transformation methods, Lyapunov function-
based methods, state-dependent Riccati equation (SDRE)
methods, model predictive control (MPC), and machine
learning-based methods, to name a few. Since the 1960s,
numerous approaches have been proposed to handle the
input and/or state constraints in the optimal control of
linear/nonlinear systems. Leitmann [6] and Bryson and

Denham [7] proposed penalty-function technique for the
optimal control of systems with state-variable inequality
constraints; the solution of the penalized optimal control
problem converges to the constrained optimal control
problem if the penalty multiplier approaches in�nity [8].
Sakawa [9] transformed the optimal control of linear sys-
tems with input constraints into an in�nite-dimensional
nonlinear programming problem by integrating the linear
di�erential equation of the system states. Jacobson and Lele
[10] used slack variable method to eliminate the scalar in-
equality constraints on the state variables. Hager [11] applied
the Ritz–Tre�tz method in the optimal control of system
with both state and control constraints. Vlassenbroeck [12]
transformed the state-variable inequality constrained opti-
mal control problem into a parameter optimization problem
using Chebyshev series expansion. Lim et al. [13] generalized
the separation theorem to the constrained linear-quadratic
(LQ) and linear-quadratic-Gaussian (LQG) optimal control
problem. Manousiouthakis and Chmielewski [14] approxi-
mated the optimal control of nonlinear systems subject to
pointwise-in-time inequality constraints in the SDRE
framework. El-Farra and Christo�des [3] developed a
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unified framework for constrained optimal control of
nonlinear uncertain systems based on a general state-space
Lyapunov approach. Balestrino et al. [15] designed a control
Lyapunov R-functions (CLRF) solution for constrained
linear systems with input and state constraints. Kiefer et al.
[16] first transformed the input and state constraints into the
constraints on the outputs and their higher-order de-
rivatives, and then, special saturation functions were utilized
to incorporate the constraints into overall control design.
Stathopoulos et al. [17] studied the linear-quadratic-regu-
lation (LQR) with input and state constraints. By using
proximal algorithms and duality, they decomposed the
corresponding quadratic program (QP) into two sub-
problems including an infinite-dimensional least squares
problem and a simple clipping of an infinite sequence to the
nonpositive orthant.

MPC is a standard tool to handle input and state con-
straints within an optimal control setting [15], especially in
industry applications [18], e.g., paper and pulp [19], minerals
processing [20], chemical engineering [21–23], renewable
energy [24], mechatronics engineering [25], and urban water
supply [26]. One problem in the MPC implementation is the
high computational load for large-scale or fast-sampling
systems. Scokaert and Rawlings [27] solved the constrained
LQR problem in a finite-dimensional MPC setting with
optimality and stability. Wang and Wan [28] developed a
structured neural network to solve the QP problem in a
constrained MPC. Bemporad [29] moved the MPC com-
putations offline and proposed a technique to obtain the
piecewise explicit optimal control law for both MPC and
constrained linear-quadratic-regulation (CLQR). By offline
approximation, Pin et al. [30] designed a MPC scheme for
constrained nonlinear discrete-time systems which allows
coping with discontinuous control laws. Mhaskar [31]
combined control Lyapunov function (CLF) and MPC to
form a Lyapunov-based MPC approach that guarantees
stability and constraint satisfaction from an explicitly
characterized set of initial conditions. More detailed review
of constrained optimal control could be found in [32–34]
and the references therein.

Application of the aforementioned methods relies on the
full knowledge of system dynamics. With the increased
unavailability of quality raw materials, it is imperative that
raw materials of low grade with large variations should be
employed in the production in order to maximize the use of
resources. In this context, the operation of some chemical
processes exhibit complexity in terms of variable dynamic
characteristics, strong nonlinearities, heavy coupling, un-
clear mechanism, and mathematically unmodelable parts.
,erefore, a common situation is that a chemical process has
various working conditions. ,e structure of the process can
be derived by applying conservative laws and its essential
physicochemical mechanisms. However, the model pa-
rameters are unknown under some working conditions, e.g.,
insufficient data samples for model identification and un-
determined reaction mechanism. ,is constitutes challenges
to the existing control theory and technology.

In recent years, the development of machine learning
supported and gave rise to the emergence of data-driven

constrained optimal control methods and the integration of
machine learning and MPC [35]. Chakrabarty et al. [36]
used a support-vector machine (SVM) to learn feasible
region boundaries for an explicit nonlinear model predictive
control (ENMPC). Lin and Zheng [37] devised a re-
inforcement learning agent to obtain the optimal control
strategy for nonlinear systems with inequality constraints on
input and state via cycle-by-cycle finite-time optimization.
Full knowledge of the system model is still required in this
approach. Abu-Khalaf and Lewis [38], Modares et al. [39],
Luo et al. [40], Yang et al. [41], Zhang et al. [42], and Zhu
et al. [43] used adaptive dynamic programming (ADP)
[44–46] to approximate the optimal state-feedback con-
troller for input-constrained nonlinear systems. Fan and
Yang [47] applied ADP to approximate the optimal control
law for state-constrained nonlinear systems. ,ese ADP-
based approaches are model-free or do not need partial
knowledge of the system model; however, they provide the
optimal control solution for either input-constrained or
state-constrained systems. Chi et al. [48] studied the con-
strained data-driven iterative learning control (ILC) for
point-to-point optimal control problem of discrete-time
nonlinear systems with input and output constraints.

,e aim of this study is to design an approximated
optimal control algorithm for continuous-time nonlinear
chemical processes with both state and input constraints.
,e proposed algorithm requires only the structural
knowledge of the system model, the value of the model
parameters is not needed, which is a common situation in
industrial applications. ,e input and state constraints were
handled in a sequential manner. ,e state constraints were
first eliminated by introducing slack functions to form an
augmented system without inequality state constraints.
,en, a nonquadratic performance integrand was adopted in
the ADP framework to account for the input constraints in
the augmented system.

,e rest of this paper is organized as follows. In Section
2, the constrained optimal control is formulated, some
preliminaries are introduced. ,e constraint handling ap-
proach and the approximated optimal control design are
described in Section 3. Simulation results are presented and
discussed in Section 4, followed by concluding remarks in
Section 5.

2. Problem Formulation and Preliminaries

2.1. Formulation of the Nonlinear Constrained Optimal
Control Problem. Consider a chemical process described by
following continuous-time constrained system:

_x � f(x) + g(x)u, (1)

where x ∈ X is the system state and u ∈ U is the manipulated
input; f(x) ∈ Rn and g(x) ∈ Rn×m are differentiable and
Lipschitz continuous functions. X and U are compact and
contain the equilibrium point, i.e., the origin in their in-
teriors. More specifically, X � x � (x1, . . . , xn) ∈ Rn :

Cmin ⩽ C(x) ⩽ Cmax} and U � u � (u1, . . . , um) ∈ Rm :

umin ⩽ u ⩽ umax} denote the hard constraints on the states
and inputs, respectively. C(x) is a Lipschitz continuous
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function of x, which demonstrates the physical or technical
constraints on the system states. Cmax, Cmin, umax, and umin
are the maximum and minimum value vectors of C(x) and
input variables.

For chemical processes described by (1) with system state
and input constrained inX andU, the aim of optimal control
is to find a control policy which minimizes the following
performance index:

V x0(  � 
tf

0
[W(x(τ)) + M(u(τ))]dτ, (2)

where V(x0) is the value function and W(·) and M(·) are
positive definite weighting functions of the immediate states
and inputs, respectively. V(x0) is an overall index of the
control performance. A lower value of V(x0) indicates better
control performance. W(x) evaluates the deviation of the
system state with the origin, e.g., the difference between the
actual outlet concentration of a chemical reactor with its
setting value. M(u) accounts for the control effort to be
placed on the process, e.g., the dosage of additive for the
reactor to change the outlet concentration. [0, tf] is the time
interval of interest.

2.2. Preliminaries on Optimal Control of Nonlinear Systems.
To start with, the preliminaries on optimal control of
nonlinear systems are introduced without considering the
system and input constraints. When the system is un-
constrained, W(x) and M(u) are usually selected as W(x) �

xTQx and M(u) � uTRu, with Q⩾ 0 and R> 0, the sym-
metric weighting matrices. ,e solution of the un-
constrained optimal control problem can be obtained by
solving a Hamilton–Jacobi–Bellman (HJB) equation:

V
T
xf(x) + xTQx −

1
4
V

T
xg(x)R− 1g(x)

T
Vx � 0, (3)

with the boundary condition V(0) � 0. Vx is the partial
derivative of the cost function V regarding system state x. If
the HJB equation has an optimal solution V∗, then the
optimal control is

u∗ � −
1
2
g(x)

T
V
∗
x. (4)

,e HJB equation involves a nonlinear differential
equation whose analytic solution is difficult to obtain.
However, for the HJB equation, if a control policy u has been
improved using V(x) to generate a better policy u′, then
V(x)′ corresponding to the improved policy u′ can be used
to yield an even better policy u″.,is approach of solving the
optimal control policy is called policy iteration, which can
gradually converge to an optimal policy and optimal value
function.

,erefore, successive approximation methods are de-
veloped to iteratively improve the control policy [49]. For
system (1), starting from an initial admissible control u0(x),
two sequences of Vi(x) 

∞
i�0 and ui+1(x) 

∞
i�0 could be

generated via the policy iteration (PI) approach defined in
[49]:

(1) For i⩾ 0, solve the Lyapunov equation (LE) which is
linear in V:

V
T
ix

f(x) + g(x)ui  + xTQx + uTi Rui � 0. (5)

(2) Use the solution Vix
to update the control policy:

u∗i � −
1
2
g(x)

T
V
∗
ix

, (6)

and
(1) 0⩽Vi+1(x)⩽Vi(x)

(2) ui(x) is admissible
(3) if V∗ and u∗ exist, Vi(x)⟶ V∗ and ui(x)⟶ u∗

[50]

,e above is the general iterative framework for solving
the optimal control problem of nonlinear processes. Dif-
ferent from the unconstrained idea case, for practical
chemical processes, the evolution trajectory of the system
must obey the constraints. So, the feasible region of state and
input is shrunk. ,ese constraints must be taken into ac-
count in the optimal control design in order to avoid vio-
lating physical or technical limits.

3. Approximated Constrained Optimal
Controller Design with Partially Known
System Dynamics

In this section, an optimal controller design approach
without knowing the full system dynamics is proposed for
constrained nonlinear systems. ,e state constraints are
eliminated first by introducing slack functions. ,en, the
input constraints are managed by using ADP in the optimal
control of the resulted augmented system. ,e iterative
solution procedure introduced in Section 2 relies on the
precise knowledge of the system dynamics f(x) and g(x). In
order to eliminate this dependence, in this section, an ap-
proximated optimal control is studied and designed.

3.1. Handling State Constraints Using Slack Functions.
Consider the state constraint Cmin ⩽C(x) ⩽Cmax; it contains
the following inequality constraints:

Cmin − C⩽ 0,

C − Cmax ⩽ 0.
(7)

,ere exists slack function li(αi(t)) ([10, 47]), which
satisfy, for each state constraint,

ηi(x) + li αi(t)(  � 0, (8)

where ηi(x) could be (Ci(x) − Cmax
i ), (Cmin

i − Ci(x)), or
(Ci(x) − Cmax

i )(Cmin
i − Ci(x)), and according to the struc-

ture of ηi(x) and the value of Cmin
i and Cmax

i , the slack
function li(αi)⩾ 0 could be selected as cie

αi(t) or 1/2α2i , ci > 0.
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By using (8), the inequality state constraints could be
transformed into equality state constraints. For example,
consider a single inequality constraint:

C
min
i − Ci(x)⩽ 0. (9)

If

li αi(  � cie
αi(t)

, (10)

then ci is chosen that

ci � − ηi(0). (11)

In addition, the relationship between the time derivative
of αi(t) and the input could be obtained by differentiating
(8) pi(pi ⩾ 1) times until the appearance of input u:

zli

zαi

_αi + ηi1(x) � 0,


z2li

z2αi

_α2i +
zli

zαi

€α + ηi2(x) � 0,

⋮

zli

zαi

α pi( )
i + lipi

αi(  −
zli

zαi

α pi( )
i  + ηipi

(x, u) � 0, (12)

where ηij is the jth derivative of ηi(x)(1⩽ j⩽pi) and lipi
(αi)

is the pith derivative of li(αi).
Denote the jth order derivative of αi as αij, and de-

compose ηipi
(x,u) as ηipi

(x, u) � Γi1(x) + Γi2(x)u. If there
exist k (k⩾ 1) state constraints and Ns(Ns � 

k
i�1pi) slack

variables, then combining (12) with system (1) could form
the following augmented system:

_xs � fs xs(  + gs xs( u, (13)

where xs � [x, α1,α11,α12, . . . ,α1p1
, . . . ,αk, αk1, αk2, . . . , αkpk

]T,

fs xs(  �

f(x)

α11

α12

⋮

−
zl1

zα1
 

− 1

Γ11(x) + l1p1
α1(  −

zl1

zα1
α p1( )
1  

⋮

αk1

αk2

⋮

−
zlk

zαk

 

− 1

Γk1(x) + lkpk
αk(  −

zlk

zαk

α pk( )
k  

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(14)

gs xs(  �

g(x)

0

0

⋮

−
zl1

zα1
 

− 1

Γ12(x)

⋮

0

0

⋮

−
zlk

zαk

 

− 1

Γk2(x)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

From (8), for each i, if αi(t) exists and is bounded, then
the state constraints are not violated. ,erefore, regarding
the following performance index, if there exists an optimal
controller u∗ for system (13) without state constraints, then
u∗ is also optimal for the state-constrained system (1):

V x0(  � 
tf

0
Ws xs(τ)(  + M(u(τ)) dτ, (16)

where Ws(xs) � xTs Qsxs and Qs � diag(Q, 0) with a di-
mension n + Ns.

3.2. Handling Input Constraints by Using Nonquadratic
Performance Integrand. In order to incorporate the control
constraints in the optimal control design, the nonquadratic
sufficiently differentiable performance integrand could be
applied [51]:

M(u) � 2
u

0
H− T

(v)Rdv, (17)

where H(·) � [h1(·), h2(·), . . . , hm(·)]T are vectors of
bounded, monotonic Cϵ functions (ζ ⩾ 1 and ϵ⩾ 1) to ap-
proximate the hard constraints

umin ⩽H(·)⩽ umax. (18)

,e corresponding Hamiltonian and HJB equations
using the nonquadratic performance integrand are

V xs(  � xTs Qsxs + 
u

0
H− T

(v)Rdv  + λT fs xs(  + gs xs( u( ,

(19)

V
T
xs

f xs(  − g xs( H
1
2
R− 1

g
T xs( Vxs

   + xTs Qsxs

+ 2
− H 1

2R
− 1gT xs( )Vxs( 

0
H− 1

(v) 
T
Rdv � 0,

(20)
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where λ(t) ∈ Rn is the Lagrange multiplier and V(0) � 0.
If the solution V∗(x) of the HJB equation exists, the

optimal control law is

u
∗
(x) � − H

1
2
R− 1

g
T xs( V

∗
xs

 , (21)

which can be approximated by using a computational ap-
proach based on PI [38]:

(1) Choose an initial stabilizing admissible controller
u0(xs).

(2) For i⩾ 0, solve the following LE for V(i) :

V
T
xs

fs xs(  + gs xs( ui xs(   + xTs Qsxs

+ 2
ui xs( )

0
H− 1

(v) 
T
Rdv � 0.

(22)

(3) Update the control law:

ui+1 xs(  � − H
1
2
R− 1

g
T xs( Vxs

 . (23)

3.3. Approximated Optimal Control Design. In Section 3.1
and 3.2, the problems caused by the constraints on the states
and inputs are eliminated, respectively. However, the PI
denoted by (22) and (23) relies on the full knowledge of the
system dynamics. To eliminate this requirement, a com-
putational approach [50] is applied and tailored. For de-
notation simplicity, in this subsection, xs, fs(xs), gs(xs), and
Ws(xs) are denoted as x, f(x), g(x), and W(x), respectively.

To start with, decompose u as

u � u(i)
+ v(i)

, (24)

then

_xs � fs xs(  + gs xs( u(i)
+ gs xs( v(i)

, (25)

where u is the control forced actually on the system and u(i)

is the control policy to be improved iteratively.
Consider a cost function V(i) satisfying (22):

_V
(i)

� V
(i)T
xs

fs xs(  + gs xs( u(i)
  + gs xs( v(i)

 

� − Ws xs(  − M u(i)
  − 2H− T u(i+1)

 Rv(i)
.

(26)

Integrate _V
(i) on a time interval [t, t + Δt]:

V
(i)

(t + Δt) − V
(i)

(t)

� 
t+Δt

t
− Ws xs(  − M u(i)

  − 2H− T u(i+1)
 Rv(i)

 dτ.

(27)

Assume ϕj(xs) 
∞
j�1 and ψj(xs) 

∞
j�1 are two infinite

sequences of linearly independent smooth basis functions on
X, where ϕj(0) � 0 and ψj(0) � 0 for all j � 1, 2, . . .. Ap-
proximate the cost function and the control policy as

V
(i)

� 

N1

j�1
c

(i)
j ϕj xs(  � Φ xs( 

T
c

(i)
, (28)

where c(i) � c
(i)
1 c

(i)
2 · · · c

(i)
N1

 
T
, Φ(x) � ϕ1(x) ϕ2(x) · · ·

ϕN1
(x)]T, and

u
(i)

� − H R− T Υi xs(  , (29)

where

Υi xs(  � k
(i)
Ψ xs( , (30)

with

k
(i)

�

k
(i)

11
k

(i)

12 · · · k
(i)

1N2

k
(i)

21
k

(i)

22 · · · k
(i)

2N2

⋮
k

(i)

m1
k

(i)

m2 · · · k
(i)

mN2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (31)

Ψ xs(  � ψ1 xs(  ψ2 xs(  · · · ψN2
xs(  

T
. (32)

In (28)–(32), N1 > 0 and N2 > 0 are two sufficiently large
integers. Substitute equations (28)–(32) into (27), and de-
note t and t + Δt as tk and tk+1:



N1

j�1
c

(i)
j ϕj xs tk+1( (  − ϕj xs tk( (  

− 
tk+1

tk

k
(i+1)
Ψ xs(  uj xs(  − u

(i)
j xs(  dt

� − 
tk+1

tk

Ws xs(  + M u(i)
  dt + εi,k.

(33)

In (33), there are N1 + N2 variables to be determined in
c(i) and k

(i+1)

j (j � 1, 2, . . . , m), considering a sufficient long
time sequence tk 

L
k�0 with L⩾N1 + N2; then, according to

(33),

IΦ − IΨu + IΨu(i)(  

c(i)

vec k
(i+1)T

 

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ � − IW − IMu(i) + Δi,

(34)
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where

IΦ �

Φ xs(1)( 
T

− Φ xs(0)( 
T

Φ xs(2)( 
T

− Φ xs(1)( 
T

⋮

Φ xs(L)( 
T

− Φ xs(L − 1)( 
T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L×N1

, (35)

IΨu �


t1

t0

uT Im ⊗Ψ xs( 
T

 dt


t2

t1

uT Im ⊗Ψ xs( 
T

 dt

⋮


tL

tL− 1

uT Im ⊗Ψ xs( 
T

 dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L×mN2

, (36)

IΨu(i) �


t1

t0

H
1
2
R− 1k

(i)
Ψ xs(  

T
Im ⊗Ψ xs( 

T
 dt


t2

t1

H
1
2
R− 1k

(i)
Ψ xs(  

T
Im ⊗Ψ xs( 

T
 dt

⋮


tL

tL− 1

H
1
2
R− 1k

(i)
Ψ xs(  

T
Im ⊗Ψ xs( 

T
 dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L×mN2

,

(37)

IW �


t1

t0

W xs( dt


t2

t1

W xs( dt

⋮


tL

tL− 1

W xs( dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L×1

, (38)

IMu(i) �

t0
t1

M u(i)( dt


t2

t1

M u(i)
 dt

⋮


tL

tL− 1

M u(i)
 dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L×1

, (39)

and Δi � εi,1 εi,1 · · · εi,L 
T ∈ RL is the approximation

error.
From (34), if

rank Θ k
(i)

   � N1 + mN2, (40)

where Θ(k
(i)

) � IΦ − (IΨu + IΨu(i) ) , then c(i) and k
(i+1)

can be obtained as

c(i)

vec k
(i+1)T

 

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ � Θ k

(i)
 

T
Θ k

(i)
  

− 1

Θ k
(i)

 
T
Π k

(i)
 ,

(41)
where Π(k

(i)
) � [− IW − IMu(i) ].

Equation (41) along with (28)–(32) serves as a com-
putational approach to approximate V(i) and generate an
improved controller u(i+1) when an admissible control policy
u(i) is given. By using this approach iteratively, starting from
an admissible bounded control u(0), a control sequence
u(i)(x) 

∞
i�0 could be obtained, and it satisfies the following

theorem.

Theorem 1. Consider system (1) with both state and input
constraints, and augment it as (13) using an appropriate
number of slack functions; if there exists an optimal controller
and Assumption 1-2 hold, then

u(i+1)
� − H R− Tk

(i)
Ψ xs(  , (42)

which is generated by the PI ((41), (28), and (29)), is an
admissible control sequence for (1) on X. >e cost function
V(i) � J(t0)|u�u(i) satisfies the following Lyapunov equation
(LE)

V
(i)T
xs

fs xs(  + gs xs( u(i)
  + Ws xs(  + M u(i)

   � 0,

(43)

and then V∗(xs)⩽V(i+1)(xs)⩽V(i)(xs) for ∀xs ∈ X. In ad-
dition, V(i)⟶ V∗ and u(i)⟶ u∗ uniformly on X.

Proof. ,e proof of this theorem follows the same lines of
reasoning as in the proof of Lemma 1 and,eorem 1 in [38]
and is omitted here for brevity. □

Assumption 1. ,ere exist L0 > 0 and δ > 0, such that for all
L>L0,

1
L



L

k�1
θTi,kθi,k ⩾ IN1+N2

, (44)

where θi,k is the kth row of Θ(k
(i)

).

Assumption 2. ,e closed-loop system is composed of (18),
and

u � u0 + e (45)

is ISS (input-to-state stable) [52] when the exploration noise
e is considered as the input.

4. Case Study

In this section, two cases, including a CSTR (continuous
stirred-tank reactor) model [14], are selected to test the
feasibility and performance of the proposed control design.
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4.1. A Nonlinear System. Consider the following nonlinear
system:

_x1 � x2,

_x2 � 1 − x1( 
2
x2 − x1 + u,

(46)

with state and control constraints x2 ⩾ − 0.4 and − 1⩽ u⩽ 1,
and initial condition (x1, x2) � [1, 0].

To start with, one slack function was introduced:

− x2 − 0.4 + ce
α(t)

� 0. (47)

According to (11) and (12), c � 0.4 and α(0) � 0. Denote
x3 � α, and combine _x3 with the original system:

_x1 � x2,

_x2 � 1 − x1( 
2
x2 − x1 + u,

_x3 �
1

0.4ex3
1 − x1( 

2
x2 − x1 + u .

(48)

For simulation purpose, we set Qs � diag(1, 1, 0), so the
augmented state x3 is not taken into account in the value
function, R � 0.5; so, the value function mainly concerns the
deviation between the actual state and its setting point,
H(v) � tanh(v). ,e basis functions for approximation of
value function and control input were selected as poly-
nomials of system states:

Φ � x2
1 x2

2 x1x2 x4
1 x4

2 x2
1x

2
2 x1x

3
2 x3

1x2 ,

Ψ � x1 x2 x1x2 x1x
2
2 x2

1x2 .
(49)

,e initial weight k
(0)

� 0.8 − 1.5 2 0 − 1 . ,e initial
weight was determined using the structural information of
system model and the basis functions. ,e actual input was
set such that u � − H(0.5R− 1k

(0)
Ψ + 0.008e) with the ex-

ploration noise

e � rand ·[rand · sin(0.1t) + rand · sin(t) + rand · sin(5t)

+ rand · sin(10t)].

(50)
,e ADP iteration started after the learning finished at

t � 20 s. After 20 iterations, the difference between k
(20)

and
k

(19)
was less than 10− 7, and the ADP algorithm stopped.,e

resultant approximated optimal controller was k
(20)

�

0.4586 3.3914 18.3107 19.5615 7.1479 .
,e state trajectories driven by the initial admissible

controller and the approximated optimal controller were
given in Figure 1. ,e approximated cost difference was
illustrated in Figure 2. ,e control input using the two
controllers were shown in Figure 3. From the figures, both
the initial admissible controller and the approximated op-
timal controller can force the system to the equilibrium
point x1 � 0 and x2 � 0. However, the state trajectories of x1
and x2 driven by the approximated optimal control has less
fluctuations and less approximated control cost compared
with the initial admissible controller.

4.2. A CSTR Model. Consider a reversible reaction 2A⇌B

taken place in a CSTR, and the forward and reverse kinetic

constants with respect to species B are ka and kb, re-
spectively. ,e dynamics of the process is

_x1 � − 2kax
2
1 − c1x1 + 2kbx2 +

F

V
u,

_x2 � kax
2
1 + c2x1 −

F

V
+ kb x2,

(51)

where x1 � CA − CA, x2 � CB − CB, and u � CAin − CAin are
the deviation of the outlet concentrations of species A and B
and the inlet concentration of species A, respectively. c1 �

4kaCA + F/V and c2 � 2kaCA are some constant variables. V
and F are the volume and inlet flow-rate of the reactor,
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0.4

0.6

0.8

1
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x1-approximated optimal controller
x2-approximated optimal controller
x1-initial controller
x2-initial controller

Figure 1: State trajectories driven by initial admissible control and
approximated optimal control.
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Figure 2: Cost difference between initial admissible control and
approximated optimal control.
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respectively. ,e constraints, initial conditions, and the
values of model parameters were shown in Table 1.

According to Section 3.1, two slack functions were in-
troduced first to transform the inequality constraints into
equality constraints:

x1 + 0.09(  x1 − 0.16(  + c1e
α1(t)

� 0, (52)

− x2 − 4.21(  + c2e
α2(t)

� 0. (53)

,e values of c1 and c2 were calculated by setting both
x1, α1 and x2, α2 as 0: c1 � 0.0144 and c2 � 4.21. ,e initial
value of α1 and α2 were calculated using the initial value of x1
and x2: α1(0) � 0 and α2(0) � − 0.5212. By differentiating
(51) and (52), the derivatives of α1 and α2 were obtained:

_α1 � −
2x1 − 0.07
0.0144eα1

− 2kax
2
1 − c1x1 + 2kbx2 +

F

V
u , (54)

_α2 �
1

4.21eα2
kax

2
1 + c2x1 −

F

V
+ kb x2 . (55)

,en, (54) was differentiated until the appearance of
input u which is present in _x1:

€α2 � − _α2
2

+
1

4.21eα2
0.1x1 + 0.159(  _x1 − 0.03 _x2 , (56)

and _α2(0) � 0.0205.
Denote α1, α2, and _α2 as x3, x4, and x5, and combining

the original system with the derived equality constraints, the
following augmented system was obtained:

_x1 � − 2kax
2
1 − c1x1 + 2kbx2 +

F

V
u,

_x2 � kax
2
1 + c2x1 −

F

V
+ kb x2,

_x3 � −
2x1 − 0.07
0.0144ex3

− 2kax
2
1 − c1x1 + 2kbx2 +

F

V
u ,

_x4 � x5,

_x5 � − x
2
4 +

1
4.21ex4

 0.1x1 + 0.159( 

· − 2kax
2
1 − c1x1 + 2kbx2 +

F

V
u 

− 0.03 kax
2
1 + c2x1 −

F

V
+ kb x2 .

(57)

In the simulation, Qs � diag(5, 5, 0, 0, 0); so, the aug-
mented states were not considered when evaluating the
control performance. Compared with the evolution of outlet
concentrations to their set points in time, the selection of
input variables is not that important, so R � 0.5 and
H(v) � 10tanh(v/10). ,e basis functions in Φ include x2

1,
x2
2, x1x2, x4

1, x4
2, x2

1x
2
2, x1x

3
2, x3

1x2, x6
1, x6

2, x1x
5
2, x2

1x
4
2, x3

1x
3
2,

x4
1x

2
2, x5

1x2, and Ψ � x1 x2 x2
1 x2

2 . ,e initial weight
k

(0)
� − 1 − 1 − 1 − 1 . ,e exploration noise was set such

Table 1: Model parameters, initial conditions, and constraints.

Variable Value
ka 0.05
kb 0.01
c1 0.338
c2 0.159
F/V 0.02
CA 1.59
CB 4.21
CAin 10
x1(0) 0
x2(0) − 1.71
x1(t) [− 0.09, 0.16]
x2(t) ⩾ − 4.21
u(t) [− 10, 10]
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CA-approximated optimal controller
CA-initial controller

Figure 4: Trajectory of CA driven by initial admissible control and
approximated optimal control.
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Figure 3: Control inputs using initial admissible controller and
approximated optimal controller.
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that u � − H(0.5R− 1k
(0)
Ψ + 0.1e) with e � rand ·

[rand · sin(0.1t) + rand · sin(t) + rand · sin(5t) + rand · sin
(10t)].

,e ADP iteration started after the learning finished at
t � 40 s. After 20 iterations, the difference between k

(20)
and

k
(19)

was less than 10− 7, and the ADP algorithm stopped.,e
resultant approximated optimal controller was k

(20)
�

− 6.1373 2.7789 − 3.2045 1.4604 .
,e state trajectories of x1 and x2 under the initial

admissible controller and the approximated optimal con-
troller were given in Figures 4 and 5, respectively. ,e
approximated cost difference was illustrated in Figure 6. ,e
control input using the two controllers were shown in
Figure 7. Compared with the initial admissible controller,

the approximated optimal controller could force the CSTR
to the desired working point CA � 1.59 and CB � 4.21 with
less steady-state error and better performance regarding to
the performance index.

In the simulation, structural knowledge of the system
model was required to derive the explicit formulations of
(47) and (56). However, the numerical value of the slack
variables can be obtained without knowing the full system
dynamics; only the model structure is required. ,us, via
learning from online input and state information, the
performance of the controller was improved.

5. Conclusions

An approximated optimal control approach for chemical
processes with both input and state constraints was pro-
posed. Its feasibility and performance were tested via two
nonlinear examples. ,e proposed approach requires only
the structure knowledge of the system model. ,e value
information of the model parameters is not needed. ,is
indicates the proposed approach can be applied to practical
systems or a single unit (like a CSTR in this study) with
determined model structure but has unknown parameters
under some working conditions. However, the proposed
approach is applicable only when Assumptions 1 and 2 hold.
,e global stability issue still needs future study.
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