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Lump wave and line rogue wave of the (2 + 1)-dimensional Mel’nikov system are derived by taking the ansatz as the rational
function. By combining a rational function and di�erent exponential functions, mixed solutions between the lump and soliton are
derived.­ese solutions describe the interaction phenomena of the lump-bright soliton with �ssion and fusion, the half-line rogue
wave with a bright soliton, and a rogue wave excited from the bright soliton pair, respectively. Some special concrete interaction
solutions are depicted in both analytical and graphical ways.

1. Introduction

In nonlinear science, searching exact solutions plays an
important role in physics and engineering [1–5]. Many
methods are very powerful to investigate the nonlinear
evolution equations, such as the Darboux transformation
[2, 6], the inverse scattering transformation [1, 7], and the
Hirota bilinear method [8, 9]. Recently, lump waves, rogue
waves, and the interaction solutions between the lump and
soliton have intensively aroused much attention [10–17].
­ere are two main ways to deal with this problem. One
method is the KP-hierarchy reduction theory, which was
established by the Kyoto School in 1980s [18]. Ohta et al.
used this method and obtained various rogue wave solutions
of the NLS equation [19, 20], the DS equations [21], and the
multicomponent Yajima–Oikawa system (YO system) [22].
­e other method is the ansatz method, which directly
constructed a positive quadratic form by the bilinear form of
a PDE. ­is method was successfully applied into the KP
equation [23, 24], the (2 + 1)-dimensional Boussinesq
equation [25], the BKP equation [26, 27], the (2 + 1)-di-
mensional coupled nonlinear partial di�erential equation
[28], and so on. Besides, Yong et al. used this method into the
complex system such as the KPI equation with a self-con-
sistent source [29]. It is obvious that rational solution, rogue
wave, mixed rogue wave, and stripe wave of PDEs are in-
tuitively derived by the ansatz method.

Rogue waves are large and spontaneous ocean surface
waves that occur in the sea and are a threat even to large
ships and ocean liners [30]. Besides an optical analog of
rogue waves, optical rogue waves were also observed in
optical �bers [31–33]. ­ese facts motivate us to seek rogue
waves in more (2 + 1)-dimensional equations. In this paper,
we will use the direct ansatz method to investigate lump and
mixed rogue-soliton solutions of the (2 + 1)-dimensional
complex Mel’nikov system:

3utt − 3uxy − 3u2 + uxx + δ|A|2( )
xx
� 0,

iAt − uA − Axx � 0,
(1)

where the function u is the real long wave amplitude, A is the
complex short wave amplitude, and δmust satisfy the condition
δ2 � 1. ­e system described (under certain conditions) the
interaction of long wave and short wave envelope propagating
on the x − y plane at an angle to each other [34, 35], and this
systemwas �rst given in [35] for the interactions of water waves.
­e investigation of this equation has a great application in
plasma physics, solid-state physics, nonlinear optics, and hy-
drodynamics [36, 37]. When y � x, the system can be reduced
to the NLS–Boussinesq equation, which is used to describe the
nonlinear development of modulational instabilities associated
with Langmuir �eld amplitude coupled to intense electro-
magnetic waves in dispersive media such as plasma electro-
magnetic waves in the dispersive medium [38]. In an earlier
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study, the boomeron-type solution which describes the in-
teraction between long and short waves forMel’nikov system (1)
was obtained [36]. +en, the Panlevé analysis and the dromion
solution were obtained by Kumar et al. [37]. In addition,
multisoliton solutions were derived via the theory of matrices
[34]. Hase et al. have derived the bright- and dark-type solitons
from the Wronskian solutions of KP-hierarchy theory [39].
Zhang et al. obtained the general higher-order rogue waves and
the hybrid solutions [40, 41]. Furthermore, they researched in
the multicomponent Mel’nikov system to get the general
N-dark solitons and the bright-dark mixed N-solitons through
the KP-hierarchy reduction technique [42, 43]. Later, Sun et al.
investigated the semirational solutions of the Mel’nikov system
with the aid of the bilinear method and the KP-hierarchy re-
duction method [44]. However, to the best of our knowledge,
there are no reports on rational solution, rogue wave, mixed
rogue wave, and stripe waves by using the ansatz technique.

+is paper is organized as follows. In Section 2, the ra-
tional solution and the line rogue wave are derived by using
the ansatz technique based on the Hirota bilinear method.
Section 3 is devoted to find the mixed solutions between the
lump and one bright soliton. By combining a rational
function and one exponential function, the lump-bright
soliton interaction with fission and fusion phenomena, and
the half-line rogue wave with a bright soliton are obtained. In

Section 4, a rogue wave excited from the bright soliton pair is
given by introducing a rational-exponential function. +e last
section contains conclusions and discussions.

2. The Rational Solution

In this section, we will give the rational solution ofMel’nikov
system (1) based on the Hirota bilinear method. Firstly,
using the following dependent variable transformation,

A �
ρ exp(ibt)g

f
,

u � 2(ln(f))xx − b,

(2)

Mel’nikov system (1) is transformed into the bilinear
form:

D
4
x + DxDy − 3D

2
t − 6bD

2
x􏼐 􏼑f · f − δρ2 f

2
− gg
∗

􏼐 􏼑 � 0,

D
2
x − iDt􏼐 􏼑g · f � 0,

(3)

where b and ρ are arbitrary constants, f is a real function, g is
a complex function, g∗ is a complex conjugate function of g,
and the operator D is defined by

D
l
xD

n
yD

m
t f(x, y, t) · g x′, y′, t′( 􏼁 �

z

zx
−

z

zx′
􏼠 􏼡

l
z

zy
−

z

zy′
􏼠 􏼡

n
z

zt
−

z

zt′
􏼠 􏼡

m

f(x, y, t) · g x′, y′, t′( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�x′,y�y′ ,t�t′
. (4)

In order to obtain the rational solution of Mel’nikov
system (1), we assume f and g have the following function:

f � ξ21 + ξ22 + a9,

g � b0 + ic0( 􏼁 + b1 + ic1( 􏼁ξ1 + b2 + ic2( 􏼁ξ2 + b3 + ic3( 􏼁ξ21
+ b4 + ic4( 􏼁ξ22,

(5)
with

ξ1 � a1x + a2y + a3t + a4,

ξ2 � a5x + a6y + a7t + a8,
(6)

where ai(i � 1, 2, . . . , 9), bi(i � 0, 1, . . . , 4), and ci(i �

0, 1, . . . , 4) are arbitrary real parameters. Inserting (5) into
(3) and balancing different powers of x, y, and t, the re-
lations among arbitrary constants read

c4 � c3,

b4 � b3,

c3 � − kb3,

b1 � kc1,

b2 � kc2,

c0 � − kb0,

a2 �
2b0b3k

2 + c21k
2 + 24a2

1b + 12a2
3 − 12a2

7 + 2b0b3 + c21 − 2a9

4a1
,

a5 � 0,

a6 �
c1c2k

2 + 24a3a7 + c1c2

4a1
,

a9 �
a4
1

a2
7
,

b0 �
a4
1b3 a2

3 − 3a2
7( 􏼁

a2
7 a2

3 + a2
7( 􏼁

,

c1 � −
4a2

1b3a3

a2
3 + a2

7
,

c2 �
4a2

1b3a7

a2
3 + a2

7
,

(7)

where k is an arbitrary real constant which needs to satisfy
the following condition:
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b
2
3 1 + k

2
􏼐 􏼑 − 1 � 0, (8)

and the other parameters need to satisfy the restricting
condition a7(a2

3 + a2
7)≠ 0.

Actually, the functions ξ1 and ξ2 are linearly independent.
Meanwhile, it is readily observed that at any given time t, the
lump solution u⟶ 0 when x2 + y2⟶∞. To catch the
moving path of the lump wave, the critical point is just
calculating the first derivative (fx, fy) � 0.+e exact moving
path of the lump waves is written as

x �
a2a7 − a3a6( 􏼁t + a2a8 − a4a6( 􏼁

a1a6
,

y � −
a7t

a6
−

a8

a6
,

(9)

which can describe the traveling path of the lump waves
along a straight line:

y � −
a1a7x

a2a7 − a3a6
+

a4a7 − a3a8

a2a7 − a3a6
, (10)

with a2 and a6 satisfying (7). By selecting different kinds of
these parameters, we can derive various kinds of structures
for Mel’nikov system (1). Here, we obtain two kinds of
structures of the lump wave and rogue wave when taking the
parameters a1 � 5/3, a3 � 1/3, a4 � − 1, a7 � − 1, a8 � 0,
b3 � 1/2, and b � 1 and a1 � 5/3, a3 � 0, a4 � − 1, a7 � − 1,
a8 � 0, b3 � 1/2, and b � 1.

When t � 0, their spatial structures and propagations of
the lump waves of u and |A|2 are described in Figure 1. +e
spatial structure of the lump waves of u and |A|2 are plotted
in Figures 1(a) and 1(c). Figures 1(b) and 1(d) display the
contour plots of the lump waves of u and |A|2 at
t � − 40, 0, 38. +e relevant moving direction of the lump
waves u and |A|2 are y � − (5x/9) + (1/3). When a3 � 0, the
propagation of the line rogue waves are plotted in Figure 2.
+e spatial structures of the rogue wave propagation at
different times t � − 20, − 5, 0, 5, 20 are described in Figure 2,
respectively. It is shown that the line rogue wave occurs from
a constant background with a line profile, reaches a peak
around time t � 0, and finally retreats back to a constant
background again. Because the functions A and u are
handled in the same way, to simplify the calculation, we will
only analyze the function u while the function A will not be
discussed in the following parts.

3. LUMP Interacting with One Soliton Solution

Interaction solutions between the lump and soliton can be
constructed by combining the rational functions and ex-
ponential functions. Firstly, we take the functions f and g as
the ansatz with the following rational-exponential function:

f � ξ21 + ξ22 + a9 + m0 exp(η),

g � b0 + ic0( 􏼁 + b1 + ic1( 􏼁ξ1 + b2 + ic2( 􏼁ξ2 + b3 + ic3( 􏼁ξ21
+ b4 + ic4( 􏼁ξ22 + m1 + im2( 􏼁exp(η),

(11)

with

ξ1 � a1x + a2y + a3t + a4,

ξ2 � a5x + a6y + a7t + a8,

η � k1x + k2y + k3t,

(12)

where the parameters ai(i � 1, 2, . . . , 9), bi(i � 0, 1, . . . , 4),
ci(i � 0, 1, . . . , 4), and mi(i � 0, 1, 2) are determined real
parameters. By substituting (11) into (3) and vanishing the
different powers of the variables x, y, and t, we obtain a series
of algebraic equations on the undetermined parameters.
+en, two sets of constraining relations are obtained by
solving these equations.

Case 1
c4 � c3,

b4 � b3,

b3 � − 1,

c3 � 0,

m1 � 0,

m2 � m0,

a5 � 0,

k2 �
2a3k

4
1 + a2k

3
1 + a3

a3k1
,

k3 � k
2
1,

b2 � 0,

b1 � 0,

c2 �
2a3

k2
1

,

c1 �
2 2a1k1 − a4( 􏼁

k2
1

,

c0 � 0,

b0 �
a2
3

k4
1
,

b �
a2k1

6a3
,

a9 �
a2
3

k4
1
,

a7 � − a3,

a6 �
− a3 6k4

1 − 1􏼐 􏼑

k3
1

,

a1 �
a3

k1
,

(13)

with the condition k1a3 ≠ 0.
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It is known that the stripe soliton is expressed by the
exponential function and the lump wave is a type of rational
function. ­us, the solution of interaction (2) with (11) and
(13) describes the interaction between a lump and one bright

soliton. For this situation, the propagation process contains
two kinds of phenomena: fusion and �ssion. As shown in
Figure 3, the propagations of the interaction solution mixed
lump-bright soliton are plotted. Figures 3(a)–3(c) represent
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Figure 1: Lump solution (2) with (5) and (7) taking parameters a1 � 5/3, a3 � 1/3, a4 � − 1, a7 � − 1, a8 � 0, b3 � 1/2, and b � 1. (a) ­e
lump wave of u at t � 0. (b)­e contour plot of u at t � − 40, 0, 38, and red line is the relevant moving direction y � − (5x/9) + (1/3). (c)­e
lump wave of |A|2 at t � 0. (d) ­e contour plot of |A|2 at t � − 40, 0, 38, and red line is the relevant moving direction y � − (5x/9) + (1/3).
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Figure 2:­e propagations of line rogue wave (2) with (5) and (7) taking the parameters a1 � 5/3, a3 � 0, a4 � − 1, a7 � − 1, a8 � 0, b3 � 1/2,
and b � 1 at di�erent times (a) t � − 20, (b) t � − 5, (c) t � 0, (d) t � 5, and (e) t � 20.
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the solution at di�erent times t � − 20, 0, 60, respectively.
Figures 3(d)–3(f ) describe the homologous contour plots at
time t � − 20, 0, 60. It is shown that one bright soliton and
one lump fuse into one bright soliton gradually, which
represents the fusion process. While the parameter k1 � 3/4,
the interaction solution between one lump and one bright
soliton is plotted in Figure 4, which exhibits the �ssion
process that one bright soliton splits into one bright soliton
and one lump conversely.

Case 2

c4 � c3,

b4 � b3,

b3 � − 1,

c3 � 0,

m1 � 0,

m2 � m0,

a5 � 0,

c1 �
2 2a1k1 − a4( )

k21
,

b2 � 0,

b1 � 0,

k3 � k
2
1,

k2 �
4
�
64

√

3
+
�
6

√
a2

6a3
,

k1 � 6− (1/4),

c2 � 2
�
6

√
a3,

c0 � 0,

b0 � 6a23,

b �
6− (5/4)a2
a3

,

a9 � 6a23,

a7 � − a3,

a6 � 0,

a1 � 61/4a3,

(14)

which need to satisfy the condition k1a3 ≠ 0.
­e solution of interaction (2) with (11) and (14) de-

scribes the interaction mixed rogue wave and a bright
soliton. ­e spatial structures of the propagation at di�erent
times t � − 30, − 10, − 3.3, 0, 3.3, 30 are shown in Figure 5,
respectively. It is shown that the half-line rogue wave arises
from a constant background, then interacts with a bright
soliton, reaches a peak around time t � − 3.3, and �nally
retreats to a constant background again.
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Figure 3: ­e propagations of the interaction solution between a lump wave and bright soliton (2) with (11) and (13) taking the parameters
m0 � 1/5, k1 � − (1/2), a2 � 1/2, a3 � − (3/2), a4 � 1/4, and a8 � − (3/2) at di�erent times (a) t � − 20, (b) t � 0, and (c) t � 60. ­e contour
plots at di�erent times (d) t � − 20, (e) t � 0, and (f) t � 60.
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4. Rogue Wave Excited from the Stripe
Soliton Pair

Following the idea of considering the interaction solution
between a lump and one bright soliton, we aim at seeking for
the interaction mixed lump and a pair of bright solitons. To
achieve this aim, we assume f and g as follows:

f � ξ21 + ξ22 + a9 + m1 exp(η) + m2 exp(− η),

g � b0 + ic0( 􏼁 + b1 + ic1( 􏼁ξ1 + b2 + ic2( 􏼁ξ2 + b3 + ic3( 􏼁ξ21

+ b4 + ic4( 􏼁ξ22 + m3 exp(η) + m4 exp(− η),

(15)
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Figure 4: +e propagations of the interaction solution between a lump wave and bright soliton (2) with (11) and (13) taking the parameters
m0 � 1/5, k1 � 3/4, a2 � 1/2, a3 � − (3/2), a4 � 1/4, and a8 � − (3/2) at different times (a) t � − 40, (b) t � 0, and (c) t � 5. +e contour plots
at different times (d) t � − 40, (e) t � 0, and (f) t � 5.
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Figure 5: +e propagations of the interaction solution between a rogue wave and bright soliton (2) with (11) and (14) taking the parameters
m0 � 2, a4 � 5/2, a8 � − 3, k1 � 1, a2 � − 1, and a3 � 3 at different times (a) t � − 30, (b) t � − 10, (c) t � − 3.3, (d) t � 0, (e) t � 3.3, and (f)
t � 30.

6 Complexity



with

ξ1 � a1x + a2y + a3t + a4,

ξ2 � a5x + a6y + a7t + a8,

η � k1x + k2y + k3t,

(16)

where the parameters ai(i � 1, 2, . . . , 9), bi(i � 0, 1, . . . , 4),
ci(i � 0, 1, . . . , 4), and mi(i � 1, 2, 3, 4) are determined real
parameters. Similarly, after the substitution of (15) into (3),
vanishing all the coefficients of the exponential functions
and the variables x, y, and t, we obtain a set of algebraic
equations. By solving these equations, the relations of pa-
rameters are yielded as follows:

c4 � c3,

b4 � b3,

b3 � − 1,

c3 � 0,

m3 � m1,

m4 � m2,

a5 � 0,

k3 � 0,

b1 � 0,

b2 � 0,

c1 � 0,

c2 �
− 4a7

k2
1

,

b0 �
− a9k

4
1 + 4a2

7

k4
1

,

c0 � 0,

b �
3k4

1 + 2
6k21

,

a2 � 0,

a3 � 0,

a6 � 0,

a7 � − k1a1,

a9 �
k4
1m1m2 + a4

1

k2
1a

2
1

,

k2 �
2 k4

1 + 2􏼐 􏼑

k1
,

(17)

where a1k1 ≠ 0 and a9 > 0.
+e interaction solutions between two bright solitons

and a rogue wave are shown in Figure 6 with the parameters
selected as m1 � 1, m2 � 3, k1 � 0.8, a1 � − 3.2, a4 � 2, and
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Figure 6: +e propagations of the interaction solutions between two bright solitons and rogue wave (2) with (15) and (16) taking the
parameters m1 � 1, m2 � 3, a4 � 2, a8 � 1, k1 � 0.8, a1 � − 3.2 at different times (a) t � − 30, (b) t � − 5, (c) t � 0, (d) t � 5, and (e) t � 30.
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a8 � 1. Figure 6 represents the spatial structures of propa-
gation for this interaction solution of two bright solitons
with a rogue wave at different times t � − 30, − 5, 0, 5, 30,
respectively. As can be seen, this solution illustrates the
superposition between the two bright solitons and a rogue
wave. Also, we find that a rogue wave excited from the bright
soliton pair. From the whole evolution, the fundamental
rogue wave is the rational wave, and the rogue wave reaches
the highest amplitude around time t � 0 at x � 0 andy � 0.

5. Summary and Discussions

In this work, we derive the rational and rational-exponential
solutions of the (2 + 1)-dimensional Mel’nikov system by
using the direct ansatz method. Based on the bilinear form of
theMel’nikov system, the ansatz form is taken as the rational
function, the different linear combinations of the rational
function and exponential functions, respectively. Not only
can we drive the rational solution, but also we obtain the
rogue wave and the interaction solutions. +e exact rational
solution depicts the lump structure and the line rogue wave
by selecting different parameters. Besides, the rational-ex-
ponential solutions contain two types of the interaction
solutions. One type solution is the interaction solution
between a lump wave and a bright soliton. For this situation,
the propagation process contains fusion and fission phe-
nomena.+e other type solution is the mixed half-line rogue
wave and a bright soliton. In addition, by adding two ex-
ponential functions to a rational function, a rogue wave
excited from the bright soliton pair is derived. It is worth
mentioning that there are three fundamental forms of the
rogue waves, which are the line wave, half-line wave, and
lump-type wave. Also, the peaks of these rogue waves appear
at different times when we take different ansatz forms.
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